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Robust optimization of turbine cascades
for Organic Rankine Cycles operating

with siloxane MDM

By N. Razaaly†, G. Gori†, O. Le Mâıtre¶,
G. Iaccarino AND P.M. Congedo†

This work presents the application of a robust optimization approach to improve the
efficiency of an Organic Rankine Cycle (ORC) cascade subject to uncertain operating
conditions. The optimization algorithm is based on the minimization of a high quantile
of a random cost function. The system under consideration employs siloxane MDM (Oc-
tamethyltrisiloxane) as a working fluid. The thermodynamic behavior of MDM requires
the utilization of complex Equations-of-State (EoS) that rely on material-dependent pa-
rameters. Discussed here are the aleatory uncertainties affecting both the cascade operat-
ing conditions and the fluid model parameters. An uncertainty quantification framework
is used to forward propagate the considered uncertainties to some performance estima-
tors. The performances of the robust blade design are compared against performances
characterizing the optimal design obtained using a deterministic optimization approach.
Results show that the quantile-based approach yields to a significant improvement in
cascade performance in variable operating conditions.

1. Introduction

Organic Rankine Cycle (ORC) applications take advantage of low-quality heat sources
such as solar energy ponds, waste heat recovery, biomass combustion, etc, to convert
the recovered heat into useful work. ORCs operate at high-pressure conditions, in the
order of the critical point, and close to the liquid-vapor equilibrium curve. Under such
conditions, organic compounds do not abide by the well-known Ideal Gas law. Namely,
the thermodynamics admits different complex phenomena that are of the utmost rele-
vance for industrial applications. For instance, the non-ideal decrease of the flow Mach
number in supersonic expansions (Cramer & Best 1991), the non-ideal evolution of the
Mach number in diabatic supersonic nozzle flows (Schnerr & Leidner 1991) and the
Mach number increase across non-ideal oblique shock waves (Gori et al. 2017a; Vimer-
cati et al. 2018). Besides ORCs, non-ideal effects are also relevant to supercritical CO2

power systems, refrigerating systems, chemical or pharmaceutical industry and to many
other applications (Colonna et al. 2008b; Congedo et al. 2011a; Wheeler & Ong 2013;
Colonna et al. 2015).

Non-ideal flows are a novel research topic and may questions still remain to be ad-
dressed. For instance, the design of ORC devices relies largely on numerical tools and
techniques developed for ideal fluids only. Moreover, the few available experimental data
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are affected by large uncertainties (Cinnella et al. 2010, 2011; Merle & Cinnella 2015),
making the development of high-fidelity EoS highly questionable (Congedo et al. 2011a).

Fluid-dynamic Shape Optimization (FSO) approaches offer the possibility of deal-
ing with complex optimization problems at a reduced computational cost (Pironneau
1974). Those methodologies are perfectly suited to ORC applications, for which there
is little design experience and limited experimental information (Harinck et al. 2013).
Gradient-based and gradient-free algorithms were successfully applied to carry out the
deterministic optimization of ORC nozzles and turbine blades (Pini et al. 2015, 2014;
Vitale et al. 2017; Rubino et al. 2018).

Nevertheless, in ORC applications, the low quality of the heat and cold sources often
result in significant variations of the fluid conditions at the turbine inflow and outflow.
Clearly, the robustness to operating conditions variability must be taken into account
at an early stage in the development process. In this context, Lee & Park (2006) pro-
pose a Robust Optimization (RO) formulation based on the minimization of a target
performance variance. In Janusevskis & Le Riche (2013), the mean performance op-
timization is achieved through a Bayesian Optimization (BO) framework exploiting a
Gaussian-Process (GP) -based model. Moreover, multi-objective optimization (Congedo
et al. 2013; Bufi et al. 2017; Bufi & Cinnella 2017) and a multi-point approach (Pini
2013) have been proposed for ORC optimization problems.

In this work, we present the application of a quantile-based Bayesian optimization
framework in the context of ORC turbine blade optimization. This robust shape op-
timization approach is applied to a typical 2D ORC turbine cascade (Colonna et al.
2008a). Section 2 describes the turbine cascade and the parametrization adopted to con-
trol the geometry of the blade in the optimization process. In Section 3, we summarize
and discuss the aleatory uncertainties affecting our model. Section 4 briefly presents the
deterministic and the quantile-based formulations for the optimization problem. Finally,
Section 5 reports and compares performances of blade designs obtained using the two
different formulations.

2. Turbine blade model

The Biere is a famous ORC blade geometry which is typically employed in supersonic
axial turbine stators. The Biere represents a reference two-dimensional benchmark case
to test the design of devices operating with siloxane fluid MDM (Octamethyltrisiloxane,
C8H24O2Si3). The blade profile is meant to obtain a convergent-divergent cascade passage
which serves to accelerate the fluid up to a supersonic speed. Across the cascade, the
fluid is expanded from superheated conditions close to the saturation line (PT

in = 8 bar,
TT
in = 545.15 K) to a static pressure in the order of P ≈ 1 bar. As the flow past the

cascade is supersonic (Ma ≈ 2 at the blade trailing edge), compressibility effects play a
key role. Indeed, because of the high Mach number achieved at the nozzle exit, a typical
fish-tail shock pattern is generated downstream the trailing edge (Saracoglu et al. 2013).
The presence of strong shocks past stator vanes may result in large losses and thus the
design of the trailing edge region is critical to turbine efficiency (Denton & Xu 1989; Mee
et al. 1990). Moreover, shock-waves propagate through the vane and usually interact
with the boundary layer developing over the suction side of the neighboring blade, thus
further compromising the efficiency of the cascade.

The numerical domain is periodic over the vertical axis (y) with a stagger spacing of
45 mm. The flow is simulated up to a distance of 0.5 − 0.6 and 2 chord-lengths ahead
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and past the blade, respectively. The Biere pressure and suction sides are parametrized
using a unique B-spline curve of degree 3 (Hoschek et al. 1993; Farin 2002). In this work,
the B-splines were defined over a total number of 30 Control Points (CP). Only a subset
of 11 CPs, mostly located on the suction side and trailing edge, is moved to seek for
the optimal blade shape. The motion of the selected CPs is allowed in the direction
normal to the baseline geometry. The maximum displacement of each CP was limited to
a predefined range of values. In the following, x ∈ IR11 will denote the vector collecting
the displacement of each CP i.e., the design control variables.

3. Uncertainty treatment

Generally, ORC cascades are subject to a wide variability of the operating condi-
tions. According to Pini (2013), the operating conditions, namely the total pressure
(Pt

in) and total temperature (Tt
in) at the turbine inflow and the static pressure past

the cascade (Ps
out), can be modeled as uniformly distributed variables. The random

vector ξ is defined as ξ = [P t
in, T

t
in, P

s
out]

T . Namely, Pt
in ∼ U [7.6, 8.4] bar, Tt

in ∼
U [541.15, 549.15] K and Ps

out ∼ U [1, 2] bar. The nominal operating conditions is defined
as ξ0 = [8.0, 545.15, 1.072]T .

As mentioned, ORC systems take advantage of complex compounds that do not gen-
erally abide by the ideal gas law and thus more complex EoS are needed. Among others,
hereinafter we will consider the Peng-Robinson (PR) thermodynamic model (Peng &
Robinson 1976), which includes a set of material-dependent parameters: the fluid pres-
sure and the temperature at the critical point (Pcr and Tcr, respectively) and the acentric
factor ω. Several authors have provided discrepant reference values for the material-
dependent parameters, and these translate into aleatory uncertainties on the PR fluid
model. Moreover, under the polytropic gas assumption (i.e., the heat capacity is assumed
to be constant with temperature), the PR EoS ultimately depends also on a fourth pa-
rameter, the specific heat ratio γ.

In this work, a first attempt to infer the true value of the PR fluid model parameters for
MDM was carried out based on experimental data. However, the available measurements
are still not sufficient (both in terms of quantity and quality) and little, if nothing, can be
learned from them. Nevertheless, the performances of the Biere blade, at the conditions
of interest here, are almost insensitive to the variability of the fluid parameters. Indeed,
a thorough investigation carried out using the Reynolds-Averaged Navier-Stoke (RANS)
model pointed out that the quantities of interest do not change significantly, even if
the PR parameters are allowed to vary considerably (even pushing the limit of physical
admissibility). This result has also been confirmed in the past (Congedo et al. 2011b,
2013; Geraci et al. 2016). Therefore, any uncertainty underlying the PR fluid model in
not considered and the nominal parameters values, according to Thol et al. (2017), are
used throughout the rest of this work.

4. Optimization framework

In this section we describe the optimization framework. First, we recall the standard
formulation for deterministic and unconstrained design problems. We then introduce the
quantile-based formulation used to design the optimal and robust Biere blade. Finally,
we present the Uncertainty Quantification (UQ) framework needed to propagate the
uncertainties on the operating conditions to the performance parameters, to assess the
characteristics of the final blade design.
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4.1. Deterministic optimization

The classical formulation for constrained optimization problems in a deterministic frame-
work reads

min
x∈Ω

f(x) s.t. g(x) ≤ 0. (4.1)

The cost function f depends on the design vector x ∈ Ω ⊂ IR11, corresponding to the
vector of variables in the B-spline parametrization of the blade profile [see Section 2].
The optimum must satisfy a set of nc constraints g ∈ IRnc . In this work, we consider
only the unconstrained optimization problem, that is nc = 0.

To solve the optimization problem, we rely on a classical Bayesian framework for
Surrogate-Based Optimization (SBO), the popular Efficient Global Optimization (EGO)
(Brochu et al. 2010). Specifically, we consider a sequential approach where GP-based
surrogate models are built to approximate the objective function f . At each step of the
sequence, a new design x is obtained maximizing the so-called Expected Improvement
(EI), which expression analytically depends on the current GP surrogate. This approach
permits both to identify promising regions of Ω (exploitation) and to explore portions of
the design space characterized by high uncertainty on the GP surrogate. The Improve-
ment is defined as

I(x) = max[0, fmin − f̂(x)], (4.2)

where fmin is the current optimum of the objective function obtained while exploring
the design space Ω and f̂(x) denotes the current Gaussian predictor of f(x). Note that

I(x) ∈ IR+ is random, since f̂(x) is an univariate Gaussian variable. Therefore, the new
design point x? is found solving

x? = arg max
x∈Ω

EI(x), (4.3)

where EI(x) = IEf̂(x)[I(x)] is the so-called Expected Improvement and IEf̂(x) the expec-

tation operator related to the randomness of the gaussian predictor f̂(x). The analyti-
cal expression of the expected improvement in the case of Gaussian surrogates is given
in Brochu et al. (2010).

Since the optimization problem in Eq. (4.3) involves the surrogate model f̂ only, it
can be solved by means of any advanced optimization procedure, e.g. using Covariance
Matrix Adaptation (CMA) (Nikolaus Hansen 2018). A full CFD simulation is then per-
formed at the new design point x∗, providing the objective function value f(x?), and
the surrogate model is subsequently updated. This procedure is repeated until either a
stopping criterion on the optimum is met or the budget of CFD simulations is exhausted.

4.2. Robust optimization: quantile minimization

When we are dealing with a system affected by uncertainties, the objective function h
also depends on random quantities, modeled as the random vector ξ. A mono-objective
formulation of the minimization under uncertainties would consist in replacing the ran-
dom objective function by a statistics of h(x, ξ). One natural choice is to minimize the
mean of the random function. The sole minimization of an expected cost function usually
results in a non-robust optimum as it does not incorporate any variability in the cost due
to the uncertain parameters. This observation suggests consideration of the minimization
of composite objective functions combining the first two (or more) statistical moments of
h. For instance, a robust optimization approach could aim at minimizing the mean of h
while penalizing its variance with some weight. Finding appropriate weights is, however,
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Design Euler RANS

∆P [kPa] Y [%] ∆P [kPa] Y [%]
µ σ q95 µ σ q95 µ σ q95 µ σ q95

Deterministic 16.2 10.1 29.9 13.8 7.2 26.5 16.0 9.7 28.6 17.8 6.8 29.7
Quantile-based 8.9 2.4 12.7 11.3 2.4 16.2 8.8 2.4 12.5 15.2 2.3 19.8

Table 1. Blade designs assessment. The table reports the averages, standard deviations
and 95% quantiles of the pressure deviation (∆P ) and total pressure loss (Y ) in un-
certain conditions for the optimal designs obtained with the deterministic and robust
optimization. Also shown are the results for the viscous flow model (RANS).

difficult and somewhat arbitrary and the performance and robustness of the resulting op-
timal design can be highly sensitive to the penalization selected, as pointed out in Cook
& Jarrett (2017). In addition, the accurate estimation of high-order statistical moments
often incurs high computational costs.

Therefore, here we follow a quantile-based robust optimization, which aims at mini-
mizing a usually high quantile of h(·, ξ). The problem is formulated as follows

min
x∈Ω

qα[h(x, ξ)], (4.4)

where, for α ∈ (0, 1), we have denoted qα[h(·, ξ)] the α-quantile of h(·, ξ) defined as

IPξ(h(·, ξ) < qα[h(·, ξ)]) = α. (4.5)

This quantile-based minimization problem is solved using a nested approach, where for
each proposed design point x, the α-quantile is estimated using an adaptive sampling
method. Briefly, for a fixed x, we start building a GP surrogate in the stochastic space of
h(x, ξ), based on an initial Latin Hypercube Sampling (LHS) sample set of NLHS points.
This sample set is then adaptively enriched with new points selected using a criterion
designed to improve the surrogate accuracy for the evaluation of the targeted quantile
value (Schöbi et al. 2017). Denoting hα(x) the surrogate-based estimate of the α-quantile
of h(x, ξ), the SBO method described above is used to solve Eq. (4.4), substituting the
objective function f by hα.

5. Results

In this section we present results for the optimization problem for the trailing edge
shock reduction in a turbine stator cascade. The optimization is carried out considering
an inviscid and adiabatic flow model governed by Euler’s equations. The SU2 open-source
suite (Economon et al. 2016) was used for the CFD simulations. We used a generalized
Approximate Riemann solver (ARS), of Roe type, with the SU2’s library of thermody-
namic models for complex fluid flows in the non-ideal regime (Vitale et al. 2015; Gori
et al. 2017b). An implicit Monotone Upstream-centered Schemes for Conservation Laws
(MUSCL) scheme, with van Albada slope limiter, is used to ensure second-order accuracy
and prevent spurious oscillations in the steady-state solution. Non-Reflecting Boundary
Conditions (NRBC) (Giles 1990) are also implemented to suppress the non-physical re-
flection of acoustic pressure perturbations at inflow and outflow boundaries. Detailed
convergence analyses (not shown) have been performed, leading to computational mesh
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Figure 1. PDFs of ∆P for the baseline (dashed curve), deterministic (red curve) and
to the robust (green curve) designs. Diamonds mark the mean values µ, cross symbols
indicate the µ ± σ points, and stars mark the 5% and the 95% quantiles. The optimal
designs are computed with Euler model, whereas the PDFs are estimated from (a) Euler
and (b) RANS simulations.

of the flow domain with 36, 000 triangular elements, which represents a trade-off between
accuracy and computational cost.

Following Rodriguez-Fernandez & Persico (2015), the optimization aims at minimizing
the pressure deviations in an azimuthal section located at half an axial chord downstream
the trailing edge. The pressure deviations are measured by ∆P , the spatial Root Mean
Square (RMS) of the pressure within the considered section. We contrast two optimal
designs: the deterministic design corresponding to the minimization of ∆P for the de-
terministic conditions, that is considering the objective function f(x) = ∆P (x, ξ0), and
the 95% quantile-based robust optimization using f(x) = q0.95[∆P (x, ξ)].

In order to assess the validity of the study, an Uncertainty Quantification (UQ) is
performed considering a LHS set of 100 samples in the stochastic space for the two
optimized profiles, based on Euler and RANS simulations, the latters using the Menter’s
Shear Stress Transport (SST) model (Menter, F.R. 1993). For these viscous simulations,
a refined hybrid mesh with approximately 180, 000 elements was employed to ensure
sufficient resolution of the boundary layers. A Monte-Carlo Sampling (MCS) combined
to a GP-surrogate permits to evaluate meaningful statistics of the Quantities of Interest
(QoI) ∆P and the total pressure loss Y = (P t

in−P t
out)/(P

t
in−P s

out), reported in Table 1.
The interest of the robust optimization is evidenced by confronting the statistics of ∆P
for the deterministic and robust designs. Note that the robust design not only exhibits a
lower quantile (12.6 against 29.9), as expected, but also a lower variance and mean value
of the pressure RMS ∆P than for the optimal design for the nominal conditions, denoting
the lack of robustness of the latter. As reported in the right part of Table 1, although
optimized on the non-viscous flow model, the quantile-based design significantly improves
the statistics of both ∆P and Y when evaluated using the physically more complex model.

To gain further understanding of the impact of the robust optimization, we present in
Figure 1(a,b) the Probability Density Functions (PDF) of ∆P for the baseline geometry
(prior to any optimization), the deterministic optimal design, the q95 robust design and
for both the inviscid (a) Euler and viscous (b) RANS simulations. The deterministic
and the quantile-based optimal designs have distributions of ∆P that are significantly



Robust optimization of ORC turbines

(a)

(b)

(c) (d)

Figure 2. (a) Comparison of the baseline (black), deterministic (red) and robust (green)
blade designs. Coefficients of Variations of the Mach number for the baseline (b), deter-
ministic (c), and robust (d) designs. CoVs are computed with the RANS Model.

displaced toward the lowest values (to the left), with lower mean values, compared to
the nonoptimized baseline design. Comparing the distributions of the deterministic and
quantile-based optima, the effect of the robustness is obvious: whereas the deterministic
design has a rather flat distribution, the robust design not only has a lower mean and
variance (as shown in Table 1) but also its support is much tighter.

Finally, Figure 2(a) reports the baseline (black curve), deterministic (red) and quantile-
based (green) optimal blade profiles. We also report the corresponding local coefficients
of variation (ratio of standard deviation to the mean value) of the Mach number Ma in
the flow domain in Figure 2(b,c,d). Again, the reduction of the Mach number CoV for
the robust design is significant compared to other designs, in particular in the wake of
the blades past the cascade.
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6. Conclusions

This work presents the application of a robust optimization procedure to the design
of a typical ORC turbine cascade operating under uncertain conditions. The optimiza-
tion method minimizes a high quantile of the random cost function. The quantile-based
optimal design is compared to the design obtained from a deterministic optimization
for the nominal conditions. Results indicate that significant improvements are obtained
using the quantile-based framework, with an optimal performance distribution having
much lower mean and much compact support. Other quantities of interest, such as the
Mach number and total pressure drop, benefit of the robustness although they were not
directly optimized.
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