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Abstract.

Business Rules programs encode decision-making processes using “if-then”
constructs in a way that is easy for non-programmers to manipulate. A com-
mon example is the process of automatic validation of a loan request for a bank.
The decision process is defined by bank managers relying on the bank strategy
and their own experience. Bank-side, such processes are often required to meet
goals of a statistical nature, such as having at most some given percentage of re-
jected loans, or having the distribution of requests that are accepted, rejected,
and flagged for examination by a bank manager be as uniform as possible. We
propose a mathematical programming-based formulation for the cases where
the goals involve constraining or comparing values from the quantized output
distribution. We then examine a simulation for the specific goals of (1) a max
percentage for a given output interval and (2) an almost uniform distribution
of the quantized output. The proposed methodology rests on solving mathe-
matical programs encoding a statistically supervised machine learning process
where known labels are an encoding of the required distribution.

Keywords: Distribution learning, mixed-integer programming, statistical goals,
business rules.

1 Introduction

Business Rules (BR) are a “programming for non programmers” paradigm that
is often used by large corporations to store industrial process knowledge formally.
BR replaces the two most abstract concepts of programming, namely loops and
function calls, by means of an implicit outer loop and meta-variables used within
a set of easy-to-manage “if-then” type instructions. BR interpreters are imple-
mented by all BR management systems, e.g. [14]. BR programs are often used
by corporations to encode their policies and empirical knowledge: given some
technical input, they produce a decision, often in the form of a YES/NO output.
Corporations often require their internal processes to perform according to a
prescribed statistical behavior, which could be imposed because of strategy or
by law. This required behavior is typically independent of the BR input data.
The problem is then to parametrize the BR program so it will behave as pre-
scribed on average, while still providing meaningful YES/NO answers on given
inputs.
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In [30] we studied a simplified version of the problem where the statisti-
cal behavior was limited to a given mean. In this paper we provide a solution
methodology for a more general (and difficult) case, where the statistical be-
havior is described by a given discrete distribution. We achieve this goal by
encoding a Machine Learning (ML) procedure by means of a Mathematical Pro-
gram (MP) of the Mixed-Integer Linear Programming (MILP) type. The ML
procedure relies on non-input specific labels that encode the given knowledge
about the distribution. Controlling the statistical behavior of a complex process
such as a BR program is a very hard task, and to the best of our knowledge
this work is the first of its kind in this respect. Methodologically speaking, we
think our MILP formulation is also innovative in that it encodes an ML training
process having labels which, instead of applying to individual inputs, apply to
the entire input distribution at once. Such an ML process bypasses the usual
difficulties of trying to label the training set data, thereby being more practical
for industrial applications.

The motivation for this study is a real industrial need expressed by IBM
(which co-funds this work) with respect to their BR package ODM. Our previ-
ous paper [30] laid some of the groundwork, limited to the most basic statistical
indicator (the mean of a distribution). Though that was a necessary step to the
current work, the methodology described herein is the first to actually address
the need expressed by industry: we feel this is one of the main feature that sets
this work apart from our previous work. We still rely on MILP-based methodol-
ogy, but now the input is a whole discrete distribution, the cardinality of which
largely determines the size of the new MILP formulations presented below. Our
tests show that this has an acceptable impact on empirical solution complexity.

As an experimental illustration, we consider the two cases of the statistical
behavior being (1) a maximum percentage of a certain output value and (2) the
output values being distributed in a fashion close to the uniform distribution,
for integer outputs. We provide an optimization based approach to solving the
learning problem for each of those cases, then examine some test results.

1.1 Preliminaries

We formally represent a BR program as an ordered list of sentences of the form:

if cond(p, x) then
x← act(p, x)

end if

where p is a control parameter vector (with c components) which encodes a
possible “tuning” of the program (e.g. thresholds which can be adjusted by the
user), x ∈ X ⊆ Rd is a variable vector representing intermediate and final stages
of computation, cond is a boolean function, and act a function with values in X.
We call rule such a sentence, condition an expression cond(p, x) and action an
instruction x ← act(p, x), which indicates a modification of the value of x. We
write the final value of the variable x as xf = P (p, q), where P represents the
BR program and q is an input parameter vector representing a problem instance
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and equal to the initial value of x. Although in general BR programs may have
any type of output, we consider only integer outputs, since BR programs are
mostly used to take discrete decisions. We remark that p, x are symbolic vectors
(rather than numeric vectors) since their components are decision variables.

BR programs are executed in an external loop construct which is transparent
to the user. Without getting into the details of BR semantics, the loop executes
a single action from a BR whose condition is True at each iteration. Which BR is
executed depends on a conflict resolution strategy with varying complexity. De
Sainte-Marie et al. [23] describe typical operational semantics, including conflict
resolution strategy, for industrial BR management systems. In this paper, the
list of rules is ordered and the loop executes the first BR of the list with a
condition evaluating to True at each iteration. The loop only terminates once
every condition of the BRs is False. We proved in [29] that there is a universal
BR program which can simulate any Turing Machine (TM), which makes the
BR language Turing-complete.

We consider the problem where the q ∈ Q are the past, known instances
of the BR program, and the outputs P (p, q) of those instances are divided into
N evenly sized intervals [H0, H1], . . . , [HN−1, HN ], forming a quantized output
distribution. Denoting ν1(p), . . . , νN (p) the number of outputs in these categories,
we can formalize the problem as:

min
p,x
‖p− p0‖1

C (ν1(p), . . . , νN (p))

}
(1)

where ‖ ·‖1 is the L1 norm and C is a constraint or set of constraints. While this
formulation uses the number of outputs rather than the probabilities themselves,
the relation between the two is simply a ratio of 1/m, where m = card(Q) is
the number of training data points.

In this paper, we suppose that P1 and P2 are BR programs with a rule set
{Rr | r ≤ ρ} containing rules of the form:

if Lr ≤ x ≤ Gr then
x← Arx+Br

end if

with Lr, Gr, Br ∈ R and Ar ∈ {0, 1}d×d. We note R = {1, . . . , ρ} and D =
{1, . . . , d}.

We discuss the concrete example of banks using a BR program in order to
decide whether to grant a loan to a customer or not. The BR program depends
on a variable vector x and initializes its parameter vector (a component of which
is an income level threshold) to p0. A BR program P1 is used to decide whether
a first bank will investigate the loan request further or simply accept the auto-
mated decision taken by an expert system, and therefore has a binary output
value. This bank’s high-level strategy requires that no more than 50% of loans
are treated automatically, but P1 currently treats 60%. Another bank instead
uses a BR program P2 to accept, reject, or assign a bank manager to the loan
request, and therefore has a ternary return value, represented by an integer in
{0, 1, 2}. That bank’s strategy requires that the proportion of each output is
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{1/3, 1/3, 1/3}, but it is currently {1/4, 1/4, 1/2}. Our aim is in each case to
adjust p, e.g. modifying the income level, so that the BR program satisfies the
bank’s goal regarding automatic loan treatment. This adjustment of parameters
could be required after a change of internal or external conditions, for example.

The first scenario can be formulated as:

min
p,x
‖p− p0‖1

Eq∈Q
[
P1(p, q)

]
≤ g

}
(2)

where P1 has an output in {0, 1}, g ∈ [0, 1] is the desired max percentage of 1
outputs, the q ∈ Q are the past known instances of the BR program, ‖ · ‖1 is
the L1 norm, p, q must satisfy the semantics of the BR program P (p, q) when
executed within the loop of a BR interpreter and E is the usual notation for the
expected value.

Similarly, the second scenario where P2 has an output in {1, . . . , N} and the
desired output is as close to a uniform distribution as possible can be formalized
as:

min
p,x
‖p− p0‖1

∀s, t ∈ {1, . . . , N},
∣∣νs − νt∣∣ ≤ 1

}
(3)

Note that the solution to this problem is not always a truly uniform distribution,
simply because there is no guarantee that m is divisible by N . However, it will
always be as close as possible to a uniform distribution, since the constraint im-
poses that all the outputs will be reached by either floor(m/N) or ceil(m/N)
data points. Again, we use whole numbers (of outputs in a given interval) instead
of frequencies to be able to employ integer decision variables.

Such problems could be solved heuristically by treating P1 or P2 as a black-
box, or by replacing it by means of a simplified model, such as e.g. a low-degree
polynomial. We approach this problem as in [30]: we model the algorithmic
dynamics of the BR by means of MIP constraints, in view to solving those
equations with an off-the-shelf solver. That this should be possible at all in full
generality stems from the fact that Mathematical Programming (MP) is itself
Turing-complete [16].

We make a number of simplifying assumptions in order to obtain a practi-
cally useful methodology, based on solving a Mixed-Integer Linear Programming
(MILP) reformulation of these equations using a solver such as CPLEX [13]:

1. We suppose Q is small enough that solving the MILP is (relatively) compu-
tationally cheap.

2. We assume finite BR programs with a known bound (n− 1) on the number
of iterations of the loop for any input q (industrial BR programs often have
a low value of n relative to the number of rules). This in turn implies that
the values taken by x during the execution of the BR program are bounded.
We assume that M � 1 is an upper bound of all absolute values of all p, q,
and x, as well as any other values appearing in the BR program. It serves
as a “big M” for the MP described in the rest of the paper.
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3. We assume that the conditions and actions of the BR program give rise to
constraints for which an exact MILP reformulation is possible. In order to
have a linear model, each BR must thus be “linear”, i.e. have the form:

if L ≤ x ≤ G then
x← Ax+B

end if

with L,G,B ∈ Rd and A ∈ {0, 1}d×d. In general, Ah,k may have values in R
if it is not a parameter and xh has only integer values.

1.2 Related Works

We follow the formalism used in [30] pertaining to Business Rules (BR) programs
and their statistical behavior.

Business Rules (also known as Production Rules) are well studied as a knowl-
edge representation system [8,10,18], originating as a psychological model of hu-
man behavior [20,21]. They have further been used to encode expert systems,
such as MYCIN [6], [27], EMYCIN [6,25], OPS5 [5,11], or more recently ODM
[14] or OpenRules [22]. On business side of things, they have been defined broadly
and narrowly in many different ways [12,15,24]. We consider Business Rules as
a computational tool, which to the best of our knowledge has not been explored
in depth before.

Supervised Learning is also a well studied field of Machine Learning, with
many different formulations [3,17,26,28]. A popular family of algorithms for the
classification problem uses Association Rules [1,19]. Such Rule Learning is not
to be confused with the problem treated in this article, which is more a regres-
sion problem than a classification problem. There exist many other algorithms
for Machine Learning, from simple linear regression to neural networks [2] and
support vector machines [9]. When the learner does not have as many known
output values as it has items in the training set, the problem is known as Semi-
Supervised Learning [7]. Similarly, there has been research into machine learning
when the matching of the known outputs values to the inputs is not certain [4].
A previous paper has started to explore the Learning problem when the known
information does not match to a single input [30].

2 Learning Goals with Histograms

In the rest of this paper, we concatenate indices so that (Lr)k = Lrk, (Gr)k =
Grk, (Ar)h,k = Arhk and (Br)k = Brk. We assume that rules are feasible,
i.e. ∀r, k ∈ R × D,Lk ≤ Gk. In the rest of this section, we suppose that the
dimension of p is c = 1, making p a scalar, and that p takes the place of A111.
Similar sets of constraints exists for when the parameter p takes the place of
a scalar in Br, Lr or Gr. Additional parameters correspond to additional con-
straints that mirror the ones used for the first parameter.

This formalization is taken from [30], in which we have also proved that
the set of constraints described in Fig. 1 models the execution of such a BR
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program. The iterations of the execution loop are indexed by i ∈ I = {1, . . . , n}
where n − 1 is the upper bound on the number of iterations, the final value of
x corresponds to iteration n. We use an auxiliary binary variable yir with the
property: yir = 1 iff the rule Rr is executed at iteration i. The other auxiliary
binary variables yUir and yLir are used to enforce this property.

We note (C1), (C2), etc. the constraints related to the evolution of the exe-
cution and (IC1), (IC2), etc. the constraints related to the initial conditions of
the BR program:

– (C1): represents the evolution of the value of the variable x
– (C2): represents the property that at most one rule is executed per iteration
– (C3): represents the fact that a rule whose condition is False cannot be

executed
– (C4)-(C6) represent the fact that only the first rule whose condition is True

can be executed
– (IC1) through (IC3) represent the initial value of a
– (IC4) represents the initial value of x.

∀i ∈ I\{n} xi+1 =
∑
r∈R

(arx
i +Br)yir + (1−

∑
r∈R

yir)x
i (C1)

∀i ∈ I
∑
r∈R

yir ≤ 1 (C2)

∀(i, r) ∈ I×R Lr −M(1− yir)e ≤ xi ≤ Gr +M(1− yir)e (C3)

∀(i, r, k) ∈ I×R×D xik ≥ Grk −MyUirk −M
∑
r′<r

yir′ (C4)

∀(i, r, k) ∈ I×R×D xik ≤ Lrk +MyLirk +M
∑
r′<r

yir′ (C5)

∀(i, r) ∈ I×R 2d− 1 + yir ≥
∑
k∈D

(yUirk + yLirk) (C6)

∀r ∈ {2, . . . , ρ} ar = Ar (IC1)

a111 = p (IC2)

∀(h, k) ∈ D2 \ {1, 1} a1hk = A1hk (IC3)

x1 = q (IC4)

∀i ∈ I xi ∈ X

∀r ∈ R ar ∈ {0, 1}d×d

∀(i, r, k) ∈ I×R×D yir, y
U
irk, y

L
irk ∈ {0, 1}

Fig. 1. Set of constraints modeling the execution of a BR program (e ∈ Rd is the
all-one vector).
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2.1 A MIP for learning quantized distributions

The Mixed-Integer Program from Fig. 2 models the problem from Eq. 1. We
index the instances in Q with j ∈ J = {1, . . . ,m}. We also limit ourselves to
solutions which result in computations that terminate in less than n − 1 rule
executions. As modifying the parameter means modifying the BR program, the
assumptions made regarding the finiteness of the program might not be verified
otherwise.

We note O = {1, . . . , N}, such that ∀t ∈ O, νt = card{j ∈ J | x1n,j ∈
[Ht−1, Ht]}. We enforce this definition of νt by using an auxiliary binary variable
stj with the property: stj = 1 iff x1n,j ∈ [Bt−1, Bt]. The other auxiliary binary

variables sUtj and sLtj are used to enforce this property.
The constraints are mostly similar to the ones in Fig. 1. We simply add

the goal of minimizing the variation of the parameter value and the constraints
C (ν1(p), . . . , νN (p)) from Eq. 1. The new constraints are:

– (C7) represents the need for the computation to have terminated after n− 1
executions

– (C8)-(C12) represents the definition of ν1, . . . , νN
– (IC4’) represents (IC4) with an additional index j.

That solving the MIP in Fig. 2 also solves the original Eq. 1 is a direct
consequence of the fact that the constraints in Fig. 1 simulate P (p, q). The proof
is simple since (C8) through (C12) trivially represent the definition of ν1, . . . , νN .
A similar MIP can be obtained when p has values in different part of the BRs,
from which a more complex MILP is obtained for when p is non-scalar. However,
this formulation is still quite abstract, as it depends heavily on the form of C .
In fact, it can almost always be simplified given a particular constraint over the
quantized distribution, as we see in the rest of this section.

2.2 A MILP for the Max Percentage Problem

A constraint programming formulation of Eq. 2 is the Mixed-Integer Linear
Program (MILP) described in Fig. 3. In the case of the Max Percentage problem,
we can linearize the MIP in Fig. 2 as well as remove some superfluous variables,
since only one of the νt is relevant.

We now note e = (1, . . . , 1) ∈ Rd the vector of all ones. We use the auxiliary

variables w ∈ RI×J×R and z ∈ RI×J×R×D2

such that wijr = (Arx
ij + Br −

xi,j)yijr (i.e. wijr = Arx
i,j +Br − xi,j , the difference between the new and the

old values of xj) and zijrhk = arhkx
i,j
k .

Any constraints numbered as before fulfills the same role. The additional
constraints are:

– (C1’1), (C1’2), (C1’3), (C1’4) and (C1’5) represent the linearization of (C1)
from Fig. 1

– (C8’) represents the goal from Eq. 2, that is a constraint over the average of
the final values of x. It replaces C (ν1, . . . , νN ) and all the constraints used
to define νt from the MIP in Fig. 2.
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minimize
p,a,x,y,yU ,yL,s,sU ,sL,ν

∣∣p0 − p∣∣
subject to

(C1), (C2), (C3), (C4), (C5), (C6), (IC1), (IC2), (IC3)

C (ν1, . . . , νN )

∀j ∈ J
∑
r∈R

ynjr = 0 (C7)

∀(t, j) ∈ O×J Ht−1 −M(1− stj) ≤ xn,j1 ≤ Ht +M(1− stj) (C8)

∀(t, j) ∈ O×J xn,j1 ≥ Ht −MsUtj (C9)

∀(t, j) ∈ O×J xn,j1 ≤ Ht−1 +MsLtj (C10)

∀(t, j) ∈ O×J stj ≥ sUtj + sLtj (C11)

∀t ∈ O νt =
∑
j∈J

stj (C12)

∀j ∈ J x1,j = qj (IC4’)

∀(i, j) ∈ I×J xi,j ∈ X

∀k ∈ R ak ∈ {0, 1}d×d

p ∈ {0, 1}

∀(i, j, r, k) ∈ I×J×R×D yijr, y
U
ijrk, y

L
ijrk ∈ {0, 1}

∀(t, j) ∈ O×J stj , s
U
tj , s

L
tj ∈ {0, 1}

∀t ∈ O νt ∈ N

Fig. 2. Mixed-Integer Program solving Eq. 1.

The MILP from Fig. 3 finds a value of p that satisfies Eq. 2. This is again
derived from the fact that Fig. 1 simulates a BR program, and from the trivial
proof that (C1’1), (C1’2), (C1’3), (C1’4) and (C1’5) represent the linearization
of (C1).

2.3 A MILP for the Almost Uniform Distribution Problem

As before, we exhibit in Fig. 4 a MILP that solves Eq. 3. Any constraints num-
bered as before fulfills the same role. The additional constraints are:

– (C8”) through (C10”) represent the adaptation of (C8) through (C10) to the
relevant case of integer outputs

– (C13) represents the equivalent to C from Eq. 3.

This MILP is obviously equivalent to solving Eq. 3, since it is for the most part
a straight linearization of the MIP in Fig. 2.

3 Implementation and Experiments

We use a Python script to randomly generate samples of 100 instances of P1

and P2 for different numbers of control parameters c, each instance having a
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minimize
p,a,x,y,yU ,yL,w,z

∣∣p0 − p∣∣
subject to

(C2), (C3), (C4), (C5), (C6), (C7), (IC1), (IC2), (IC3)

∀(i, j) ∈ I\{n}×J xi+1,j =
∑
r∈R

wijr + xi,j (C1’1)

∀(i, j) ∈ I×J×R −Myijre ≤ wijr ≤Myijre (C1’2)

∀(i, j, r, h) ∈ I×J×R×D
∑
k∈D

zijrhk +Brh − xi,jh −M(1− yijr)

≤ wijrh ≤
∑
k∈D

zijrhk +Brh (C1’3)

− xi,j +M(1− yijr)e
∀(i, j, r) ∈ I×J×R −Mar ≤ zijr ≤Mar (C1’4)

∀(i, j, r, h, k) ∈ I×J×R×D2 xi,jk −M(1− arhk)

≤ zijhk ≤ xijk (C1’5)

∀j ∈ J
∑
r∈R

ynjr = 0 (C7)

∑
j∈J

xn,j1 ≤ mg (C8’)

∀(i, j, r, k1, k2) ∈ I×J×R×D2 xi,j , zijrhk ∈ X

∀(i, j, r) ∈ I×J×R wijr ∈ Rd

∀r ∈ R ar ∈ {0, 1}d×d

p ∈ {0, 1}

∀(i, j, r, k) ∈ I×J×R×D yijr, y
U
ijrk, y

L
ijrk ∈ {0, 1}

Fig. 3. MILP formulation for solving Eq. 2.

corresponding set of inputs with d = 3, n = 10 and m = 100. The number
of control parameters serves as an approximation of the complexity of the BR
program to optimize: a more complex program will have more buttons to adjust,
thus increasing the complexity, yet be more likely to have the goal be reachable
at all, i.e. have the MILP be feasible. We define the space X as X ⊆ R×R×Z.
The BR programs are sets of ρ = 10 rules, where Lr, Gr, Br are vectors of
scalars in an interval range and Ar are d×d matrices of binary variables. In P1,
we use range = [0, 1] and in P2, we use range = [0, 3]. All input values q are
generated using a uniform distribution in range.

We use these BR programs to study the computational properties of the
MILP. The value of M used is customized according to each constraint, and is
ultimately bounded by 6 and 16 in P1 and P2 respectively (strictly greater than
five times the range of possible values for x). We write the MILP as an AMPL
model, and solve it using the CPLEX solver on a Dell PowerEdge 860 running
CentOS Linux.
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minimize
p,b,x,y,yU ,yL,w,s,sL,sg,ν

∣∣p0 − p∣∣
subject to

(C1’1), (C1’2), (C1’3), (C1’4), (C1’5), (C2),

(C3), (C4), (C5), (C6), (C7), (C11), (C12)

(IC1), (IC2), (IC3), (IC4’)

∀(t, j) ∈ O×J t−M(1− stj) ≤ xn,j1 ≤ t+M(1− stj) (C8”)

∀(t, j) ∈ O×J xn,j1 ≥ t−MsUtj (C9”)

∀(t, j) ∈ O×J xn,j1 ≤ t+MsLtj (C10”)

∀(t, τ) ∈ O2 −1 ≤ νt − ντ ≤ 1 (C13)

∀(i, j) ∈ I×J xi,j ∈ X

∀r ∈ R ar ∈ {0, 1}d×d

p ∈ {0, 1}

∀(i, j, r, k) ∈ I×J×R×D yijr, y
U
ijrk, y

L
ijrk ∈ {0, 1}

∀(t, j) ∈ O×J stj , s
U
tj , s

L
tj ∈ {0, 1}

∀t ∈ O νt ∈ N

Fig. 4. MILP formulation for solving Eq. 3.

3.1 The Max Percentage Problem

We observe the proportion of solvable instances of P1 for c between 5 and 10
and c = 15 in Tab. 1. We use the MILP in Fig. 3 to solve Eq. 2 with the goal
set to g = 0.5.

An instance is considered solvable if CPLEX reports an integer optimal so-
lution or a (non-)integer optimal solution. We separate the instances where the
optimal value is 0 from the others, as those indicate that the randomly generated
BR program already fulfill the goal condition. We expect around fifty of those
for any value of c.

In Fig. 5, we observe both the success rate and the average solving time when
considering only the non-trivial, non-timed out instances of P1. The success rate
increases steadily, as expected. The solving time seems to indicate a non-linear
increase for c greater than 6, even with its values being somewhat unreliable due
to the small sample. Knowing that average industrial BRs are more complex
than our toy examples, regularly having thousands of rules, this approach to the
Maximum Percentage problem does not seem applicable to industrial cases.

3.2 The Almost Uniform Distribution Problem

We observe the proportion of solvable instances of P2 for c between 5 and 10 and
c = 15 in Tab. 2. We use the MILP in Fig. 4 to solve Eq. 3 with N = 2. Again,
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Number of control parameters c 5 6 7 8 9 10 15

Trivial solvable instances
(objective = 0)

52 53 49 49 58 48 46

Non-trivial solvable instances
(objective 6= 0)

5 6 5 13 6 6 8

Infeasible instances 43 43 40 36 31 35 14

Timed out instances 0 0 7 2 5 11 32

Table 1. Experimental values for the maximum percentage problem.
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we separate instances where the goal is already achieved before optimization,
identifiable by being solved quickly with a value of p = p0, i.e. an optimal value
of zero.

In Fig. 6, we display the success rate and average solving time over the
non-timed out, non-presolved instances for all three values of c. We observe
a sharply non-linear progression, with the average problem taking about nine
minutes with 15 control parameters. Knowing that average industrial BRs are
much more complex than our toy examples, regularly having thousands of rules,
we conclude that this method can only be used infrequently, if at all.

Number of control parameters c 5 6 7 8 9 10 15

Trivial solvable instances
(objective = 0)

8 2 1 1 4 7 4

Non-trivial solvable instances
(objective 6= 0)

9 2 8 5 4 15 32

Infeasible instances 83 96 91 93 92 77 63

Timed out instances 0 0 0 1 0 1 1

Table 2. Experimental Values for the Almost Uniform Distribution problem.

4 Conclusion, Discussion and Future Work

We have presented a learning problem of unusual type, that of supervised learn-
ing with statistical labels. We have further explored a particular subset of those
problems, those where the labels apply to a quantized output distribution. This
new approach is easily applied to practical applications in industry where control
parameters must be learned to satisfy a given goal. We have given a mathemat-
ical programming algorithm that solves such a learning problem given a linear
BR program. Depending on the specific learning problem, the mathematical
program might be easy or difficult to solve. We examined two example learn-
ing problems with practical applications for which the learning is equivalent to
solving a MILP.

We observe that, though one could detect a visual similarity in the plots
presented in Fig. 5 and 6, we believe that this similarity is only apparent. In
fact, the error bars (which measure the standard deviation of the solution time
over the instance subclass corresponding to a given size of parameters) point
out that the “hard cases” (with high values of solution times) are also the cases
where the error bars are longest. In other words, this “similarity” is simply a
result of outliers in the corresponding peaks.

The experimental results indicate the general feasibility of this type of ap-
proach. It is clear that, due to the exponential nature of Branch-and-Bound
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(BB, the algorithm solving the MILPs), the performance will scale up poorly
with the size of the BR program: but this can currently be said of most MILPs.
This issue, which certainly requires more work, can possibly be tackled by pur-
suing some of the following ideas: more effective BB-based or formulation-based
heuristics (also called mat-heuristics in the literature), cut generation based on
problem structure, and decomposition. The latter, specifically, looks promising
as the structure of the BR program is, up to the extent provided by automatic
translation based on parsing trees, carried over to the resulting MILP.

Other avenues of research are in extending this statistical learning approach
in other directions, e.g. learning other moments, or given quantiles in continuous
distributions. Statistical goal learning problems are an apparently unexplored
area of ML that has eminently practical applications.
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1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data. pp. 207–
216. ACM, New York, NY (1993)

2. Atiya, A.: Learning Algorithms for Neural Networks. Ph.D. thesis, California In-
stitute of Technology, Pasadena, CA (1991)

3. Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan,
S.: Predicting Structured Data (Neural Information Processing). The MIT Press,
Cambridge, MA (2007)

4. Brodley, C., Friedl, M.: Identifying mislabeled training data. Journal of Artificial
Intelligence Research 11, 131–167 (1999)

5. Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems
in OPS5: An Introduction to Rule-based Programming. Addison-Wesley, Boston,
MA (1985)

6. Buchanan, B., Shortliffe, E. (eds.): Rule Based Expert Systems: The Mycin Ex-
periments of the Stanford Heuristic Programming Project (The Addison-Wesley
Series in Artificial Intelligence). Addison-Wesley, Boston, MA (1984)

7. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge, MA (2010)

8. Clancey, W.: The epistemology of a rule-based expert system: a framework for
explanation. Artificial Intelligence 20(3), 215–251 (1983)

9. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

10. Davis, R., Buchanan, B., Shortliffe, E.: Production rules as a representation for a
knowledge-based consultation program. Artificial Intelligence 8(1), 15–45 (1977)

11. Forgy, C.: OPS5 User’s Manual. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA (1981)

12. G. Knolmayer, H.H.: Business rules. Wirtschaftsinformatik 35(4), 386–390 (1993)
13. IBM: ILOG CPLEX 12.2 User’s Manual. IBM (2010)



15

14. IBM: Operational Decision Manager 8.8 (2015)
15. Kolber, A., et al.: Defining business rules - what are they really? Project Report 3,

The Business Rules Group (2000)
16. Liberti, L., Marinelli, F.: Mathematical programming: Turing completeness and

applications to software analysis. Journal of Combinatorial Optimization 28(1),
82–104 (2014)

17. Liu, T.Y.: Learning to rank for information retrieval. Foundations and Trends in
Information Retrieval 3(3), 225–331 (2009)

18. Lucas, P., Gaag, L.V.D.: Principles of Expert Systems. Addison-Wesley, Boston,
MA (1991)

19. Malioutov, D.M., Varshney, K.R.: Exact rule learning via boolean compressed sens-
ing. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning (ICML ’13). JMLR: Workshop and Conference
Proceedings, vol. 28, pp. 765–773. JMLR, Brookline, MA (2013)

20. Newell, A.: Production systems: Models of control structures. In: Chase, W. (ed.)
Visual Information Processing. Proceedings of the Eighth Annual Carnegie Sym-
posium on Cognition. pp. 463–526. Academic Press, New York, NY (1973)

21. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Upper Saddle River,
NJ (1972)

22. OpenRules, Inc., Monroe, NJ: OpenRules User Manual (2015)
23. Paschke, A., Hallmark, G., De Sainte Marie, C.: RIF production

rule dialect (second edition). W3C recommendation, W3C (2013),
http://www.w3.org/TR/2013/REC-rif-prd-20130205/

24. Ross, R.: Principles of the Business Rule Approach. Addison-Wesley, Boston, MA
(2003)

25. Scott, A., Bennett, J., Peairs, M.: The EMYCIN Manual. Department of Computer
Science, Stanford University, Stanford, CA (1981)

26. Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin-Madison (2009)

27. Shortcliffe, E.: Computer-Based Medical Consultations: MYCIN. Elsevier, New
York, NY (1976)

28. Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New York,
NY (1995)

29. Wang, O., Ke, C., Liberti, L., de Sainte Marie, C.: The learnability of business
rules. In: International Workshop on Machine Learning, Optimization, and Big
Data (MOD 2016) (2016)

30. Wang, O., Liberti, L., D’Ambrosio, C., De Sainte Marie, C., Ke, C.: Controlling
the average behaviour of business rules programs. In: Alferes, J., Bertossi, L.,
Governatori, G., Fodor, P., Roman, D. (eds.) Rule Technologies. Research, Tools,
and Applications (RuleML2016). LNCS, vol. 9718, pp. 83–96. Springer, Berlin,
Germany (2016)


	Controlling some statistical properties of Business Rules programs

