
HAL Id: hal-02105291
https://hal.science/hal-02105291

Submitted on 20 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance Geometry in Linearizable Norms
Claudia d’Ambrosio, Leo Liberti

To cite this version:
Claudia d’Ambrosio, Leo Liberti. Distance Geometry in Linearizable Norms. Geometric Science of In-
formation Third International Conference, GSI 2017, Paris, France, November 7-9, 2017, Proceedings,
pp.830-837, 2017, 978-3-319-68444-4. �10.1007/978-3-319-68445-1_95�. �hal-02105291�

https://hal.science/hal-02105291
https://hal.archives-ouvertes.fr


Distance geometry in linearizable norms

Claudia D’Ambrosio1 and Leo Liberti1?

LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau, France
{dambrosio,liberti}@lix.polytechnique.fr

Abstract. Distance Geometry puts the concept of distance at its center.
The basic problem in distance geometry could be described as drawing
an edge-weighted undirected graph in RK for some given K such that
the positions for adjacent vertices have distance which is equal to the
corresponding edge weight. As we are unaware of any work in this field
using any other norm but `2, we move some first steps using the `1
and `∞ norms: we discuss worst-case complexity, propose mixed-integer
linear programming formulations, and sketch a few heuristic ideas.
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1 Introduction

We discuss the following basic problem in Distance Geometry (DG)

Distance Geometry Problem (DGP). Given an integer K > 0 and
a simple, edge-weighted, undirected graph G = (V,E, d), where d : E →
R+, determine whether there exists a realization function x : V → RK

such that:
∀{i, j} ∈ E ‖xi − xj‖ = dij , (1)

where ‖ · ‖ is either the `1 or the `∞ norm. We assume all along that, without
loss of generality, G is connected, otherwise it suffices to realize the disconnected
components independently. Moreover, given a realization x ∈ RK providing the
solution of a DGP instance with any norm, any congruence (i.e., rotation, trans-
lation, reflection) of x in RK is also a solution.

Most existing work concerning the DGP focuses on the `2 (or Euclidean)
norm. In this paper, we move some first steps in the direction of the `1 and `∞
norms, which we call linearizable norms, since their unit spheres are polyhedral.

DG in the `2 norm recently received a lot of attention [13, 6] due to its
widespread use in engineering and science applications, such as, for example,
finding the structure of proteins from Nuclear Magnetic Resonance (NMR) inter-
atomic distances [19] and many others. It was shown in [17] that the DGP (with
the Euclidean norm and K = 1) is NP-hard, by reduction from Partition.

The lack of attention to DG in other norms stems from a scarcity of ap-
plications. Yet, recently, we were made aware of applications for both of the
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linearizable norms. The DGP with the `1 norm arises in the positioning of mo-
bile sensors in urban areas [2]. The DGP with the `∞ or with the `1 can be used
in order to fill a hypercube with a pre-fixed number of “well-distributed” points,
which is relevant in the design of experiments [4, 18].

The rest of this paper is organized as follows. We recall some notions relating
to linearizable norms in Sect. 2. We propose two new formulations for linearizable
norms in Sect. 3, and prove that the DGP in linearizable norms is NP-complete
for any K. Lastly, we sketch some new ideas for solving the linearizable norm
DGP using heuristics in Sect. 4.

2 Known results for `1 and `∞ norms

Complexity: Since the `1, `2, `∞ norms coincide for K = 1, the reduction from
the Partition problem given in [17] shows that the DGP is NP-complete for
these three norms in K = 1. Since a realization in one dimension can be em-
bedded isometrically in any number of dimensions, this shows by inclusion that
the DGP is NP-hard for these three norms. We show in Thm. 2 that the `1 and
`∞ norm variants are also NP-complete for K > 1. This strikes a remarkable
difference with the Euclidean norm DGP, for which the status of membership in
NP is currently unknown [1].
Isometric embeddings: For the `∞ norm, the isometric embedding problem
can be solved in a very elegant way [9]: any finite metric (X, d) with X =
{x1, . . . , xn} can be embedded in Rn using the `∞ norm by means of the Fréchet
embedding: ∀i, j ≤ n T (xi) = (d(xi, x1), . . . , d(xi, xn)).The proof is short and
to the point: for any i, j ≤ n we have:

‖T (xi)− T (xj)‖∞ = max
k≤n
|d(xi, xk)− d(xj , xk)| ≤ max

k≤n
d(xi, xj) = d(xi, xj)

by the triangle inequality on the given metric d. Moreover, the maximum over
k of |d(xi, xk) − d(xj , xk)| is obviously achieved when k ∈ {i, j}, in which case
|d(xi, xk) − d(xj , xk)| = d(xi, xj). So we have ‖T (xi) − T (xj)‖∞ = d(xi, xj) as
claimed. We remark that (X, d) need not be given explicitly: the distance matrix
is enough. We also remark that a Fréchet embedding can be constructed for any
given square symmetric matrix A: if the Fréchet embedding of A is infeasible
w.r.t. A, it means that A is not a valid distance matrix.

For the `1 norm there no such general result is known. It is known that `2
metric spaces consisting n points can be embedded in a vector space of O(n)
dimensions in `1 norm almost isometrically [15, §2.5] (the “almost” refers to a
multiplicative distortion measure of the form: (1 − ε)‖x‖2 ≤ ‖T (x)‖1 ≤ (1 +
ε)‖x‖2 for some ε ∈ (0, 1)).

3 MILP formulations for linearizable norms

The DGP is a nonlinear feasibility problem. As such, it can be modelled by means
of Mathematical Programming (MP), which is a formal language for describing



optimization problems. When the norm is linearizable, it is possible to replace
nonlinear functions by piecewise linear forms, which are routinely modelled in
MP using binary variables and linear forms. This yields MPs of the Mixed-Integer
Linear Programming (MILP) class. A convenient feature of MILP is that solution
technology is very advanced — MILP solvers are currently at the forefront for
their generality and empirical efficiency. To the best of our knowledge, no MILP
formulations have ever been proposed for the DGP in linearizable norms. We
give here two MILP formulations for `1 and `∞ norms.

We first re-write Eq. (1) as follows: min
x

∑
{i,j}∈E

| ‖xi − xj‖p − dij |, for p ∈

{1,∞}. Obviously, even if the equation above always has a feasible solution, it
has global optimal value zero if and only if the global optimum is a solution
of Eq. (1). The MILP formulations below can be solved using any off-the-shelf
MILP solver, such as, e.g., CPLEX [12].

The `1 norm. For p = 1 we write:

min
x

∑
{i,j}∈E

∣∣∣∣∣∣
∑
k≤K

|xik − xjk| − dij

∣∣∣∣∣∣ . (2)

The MILP reformulation we propose is the following:

min
x,s,t,z

∑
{i,j}∈E

sij

∀{i, j} ∈ E −sij ≤
∑

k≤K
(t+ijk + t−ijk)− dij ≤ sij

∀k ≤ K, {i, j} ∈ E t+ijk − t−ijk = xik − xjk

∀k ≤ K, {i, j} ∈ E t+ijk ≤ dijzijk
∀k ≤ K, {i, j} ∈ E t−ijk ≤ dij(1− zijk)

∀k ≤ K
∑
i∈V

xik = 0

∀{i, j} ∈ E sij ∈ [0, dij ]
∀k ≤ K, {i, j} ∈ E t+ijk, t

−
ijk ∈ [0, dij ]

∀k ≤ K, {i, j} ∈ E zijk ∈ {0, 1}.



(3)

Additional variables sij ≥ 0, for each {i, j} ∈ E, are non-negative decision
variables sij ≥ 0 that represent the outermost absolute value of (2) thanks to

the well known fact that min |f | is equivalent to min
f̂≥0

f̂ subject to −f̂ ≤ f ≤

f̂ . Moreover, additional slack and surplus variables t+, t− were introduced to
reformulate the innermost absolute value terms. In order to do this, they are
subject to complementarity constraints t+ijk t

−
ijk = 0, ∀k ≤ K, {i, j} ∈ E, that

in (3) were linearized by adding binary variables z and the two sets of standard
“big-M” constraints that links the t and the z variables.

Note that, as each realization can be translated at will, constraint
∑

i∈V xi =
0 can be safely added. It means that we can, without loss of generality, impose
that the barycenter is zero and it is not necessary but useful in practice, see [5]



for detailed empirical results. Again for practical efficiency, we let U =
∑

{i,j}∈E
dij

and use it to bound x, so that for each i ∈ V and k ≤ K, we have xik ∈ [−U,U ].

Proposition 1. Eq. (3) is a valid formulation for the DGP using the `1 norm.

The proof is given in the Appendix.

The `∞ norm. For p =∞ we write: min
x

∑
{i,j}∈E

∣∣∣∣max
k≤K
|xik − xjk| − dij

∣∣∣∣.
The MILP reformulation that we propose is the following:

min
x,w,z,s,t

∑
{i,j}∈E

sij

∀{i, j} ∈ E, k ∈ K t+ijk + t−ijk − dij ≤ sij
∀{i, j} ∈ E, k ∈ K t+ijk + t−ijk + sij ≥ dijwijk

∀{i, j} ∈ E
∑

k≤K
wijk ≥ 1

∀k ≤ K, {i, j} ∈ E t+ijk − t−ijk = xik − xjk

∀k ≤ K, {i, j} ∈ E t+ijk ≤ dijzijk
∀k ≤ K, {i, j} ∈ E t−ijk ≤ dij(1− zijk)

∀k ≤ K
∑
i∈V

xik = 0

∀{i, j} ∈ E sij ∈ [0, dij ]
∀k ≤ K, {i, j} ∈ E t+ijk, t

−
ijk ∈ [0, dij ]

∀k ≤ K, {i, j} ∈ E wijk, zijk ∈ {0, 1}



(4)

where the outermost and the innermost absolute values are reformulated as
before and the barycenter constraint is added.

At this point similarities with the `1 norm stop. Note that the first three set of
constraints model the linearization of constraints −sij ≤ max

k≤K
(t+ijk + t−ijk)−dij ≤

sij , ∀{i, j} ∈ E. The center and right-hand-side can be reformulated as the
first set of constraints. The left-hand-side and the center is more complicated
as it corresponds to a non-convex constraint. For linearizing it, we need to add
auxiliary binary variables w and the second and third sets of constraints that
express the fact that at least one out of K components satisfies the constraint
(that component being the maximum, of course).

Proposition 2. Eq. (4) is a valid formulation for the DGP using the `∞ norm.

The proof is given in the Appendix.

The DGP with linearizable norms is in NP. Our MILP formulations make
it easy to prove the following.

Theorem 1. The DGP in linearizable norms is NP-complete.

Proof. It was already remarked in Sect. 2 that the DGP in linearizable norms is
NP-hard by reduction from Partition to the DGP in K = 1, where the three
norm `1, `2, `∞ coincide. Now by Prop. 3 and 4 we know that certificates to the



DGP in linearizable norms are rational for rational input, since the MP formu-
lations in (3) and (4) can be solved by a Branch-and-Bound (BB) algorithm,
each node of which involves the solution of a Linear Program (LP), which is
known to be in NP. Simple BB implementations will continue branching until
the incumbent, found by solving the LP at some node, is proven optimal. So the
certificate (solution) provided by the BB is polynomially sized, as claimed. ut

3.1 Computational results

Both formulations (Eq. (3) and (4)) belong to the MILP class, and can be solved
by several existing MILP solvers. We employ CPLEX 12.6.2 [12] on a MacBook
Pro mid-2015 running Darwin 15.5.0 on a (virtual) quad-core i7 at 3.1GHz with
16 GB RAM.

We generated a set of (feasible) random DGP instances in both norms as
follows: for each cardinality value n = |V | of the vertex set of G ranging over
{10, 15, 20, 25, 30, 35, 40} we sampled n points in the plane, bounded by a box.
We then added a Hamiltonian cycle to the edge set, in order to guarantee con-
nectedness. Lastly, we add the remaining edges with an Erdős-Rényi generation
process [7] having probability s ranging over {0.1, 0.2, 0.3, 0.5, 0.8}. This yields
35 instances per norm p ∈ {1,∞}.

We deployed CPLEX on these 70 instances with a time limit of 10 minutes
enforced on the “wall clock”, meaning the actual elapsed time. We used this
measure instead of the user time since CPLEX exploits all four processor cores,
which means that the system time taken for parallel execution tasks is essential.
Since the running time is limited, we do not always find feasible solutions. We
evaluate the error by employing two well known measures: the scaled Mean
Distance Error (MDE) and the scaled Largest Distance Error (LDE).

MDE(x) =
1

|E|
∑
{i,j}∈E

|‖xi − xj‖p − dij |
dij

, LDE(x) = max
{i,j}∈E

|‖xi − xj‖p − dij |
dij

.

Intuitively, the scaled MDE gives an idea of the percentual average discrepancy
of the given realization from the given data. The scaled LDE gives an idea of the
percentual average worst error over all edges. Obviously, the LDE is generally
higher than the MDE.

The detailed results are shown in Table 1 of the Appendix. Each row of the
table reports the instance statistics, followed by scaled MDE and LDE scores,
as well as by the wall clock CPU time taken by CPLEX running on Eq. (3) and
Eq. (4).

It appears clear that DGP instances for linearizable norms can be solved in
practice up to at least n = 40, though the densest instances are more difficult
with the `∞ norm. A good `1 norm solution (with MDE and LDE smaller than
10−4) has been obtained using CPLEX on Eq. (3) for a 50 vertex instance with
s = 0.8 in just over 304s of wall clock time, but no solution was obtained within
10 minutes of wall clock time for a 60 vertex instance and s = 0.8. This seems
to indicate the need for heuristic methods (discussed below) to address larger
instance sizes.



4 Heuristic ideas

In this section we provide some ideas to design heuristic methods for the DGP
problem with `∞ and `1 norm and report computational results.

4.1 Solving the DMCP in the `∞ norm

A problem related to DGP, the Distance Matrix Completion Problem
(DMCP), asks whether a partially defined matrix can be completed to a (full)
distance matrix in a specified norm. Although a solution of the DMCP is a
distance matrix, finding the missing distance values usually entails finding a
realization that is consistent with the given values: this realization is then used to
compute the missing entries in the given partial matrix. In this sense, realizations
provide certificates for both DGP and DMCP. In the DMCP, however, differently
from the DGP, the dimensionality K of the embedding space is not given —
realizations into RK for any K > 0 will provide a feasibility certificate for DMCP
instances.

In the following we propose a heuristic for DMCP that will be the starting
point for a heuristic for DGP. Our first proposal concerns the exploitation of the
Fréchet embedding to “approximately solve” the DMCP (rather than the DGP)
in the `∞ norm. Our algorithm works as follows:

1. let A′ be the n×n weighted adjacency matrix of G, where off-diagonal zeros
are to be considered as “unspecified entries”

2. complete A′ to a full symmetric matrix A using the Floyd-Warshall all-
shortest-paths algorithm [16]

3. output the realization x : V → Rn given by the Fréchet embedding xi = Ai

for each i ∈ V .

By “approximately solve” we mean that the output realization x is generally
not going to be a valid certificate for the given DMCP instance, but that its
MDE and LDE error measures are hopefully going to be low enough. The worst-
case complexity of this heuristic is dominated by the Floyd-Warshall algorithm,
which is generally O(n3). Experimentally, we found that this heuristic is useless
for sparse graphs (where the reconstruction of A′ has the highest chances of
being wrong), but is both fast and successful for dense graphs, notably those
with s = 0.8, which represented the hardest instances in the tests. Thus, in
Table 2 of the Appendix, we only report results on instances with s = 0.8 and n
varying in {5 + 5` | 1 ≤ ` ≤ 17}. This heuristic took 2.42s to find all realizations
for 17 random graphs. The cumulative scaled MDE over all instances is 0.019,
with cumulative scaled LDE at 9.61 mostly due to one bad outlier. Overall, it
found MDE and LDE smaller than 10−4 for 11 over 17 instances. In conclusion,
it is both fast and effective.

4.2 Solving the DGP in the `∞ norm

The second idea turns the above heuristic into a method for solving DGP in
`∞ norm for a given dimensionality K: it consists in selecting the K columns



from the realization x ∈ Rn obtained in Sect. 4.1 which best match the given
distances. For this purpose, we solve the following MILP (based on Eq. (4)):

min
w,y,s

∑
{i,j}∈E

sij

∀{i, j} ∈ E, k ≤ n |xik − xjk|yk − sij ≤ dij
∀{i, j} ∈ E, k ≤ n |xik − xjk|yk + sij ≥ dijwijk

∀{i, j} ∈ E
∑

k≤K
wijk ≥ 1∑

k≤n
yk = K

∀{i, j} ∈ E sij ∈ [0, dij ]
∀k ≤ K, {i, j} ∈ E wijk, yk ∈ {0, 1}.


(5)

In Eq. (5), note that x are no longer decision variables, but constants (output
of the Fréchet heuristic for the DMCP). The new decision variables y ∈ {0, 1}n
decide whether coordinate k should be in the realization in RK or not. Since
solving MILP takes exponential time, and we would like the heuristic to be fast,
we set a 120s time limit on CPLEX. The results, for instances up to n = 70
with s fixed at 0.8, are presented in Table 2 in the Appendix. The average scaled
MDE error is non-negligible but still acceptable (around 0.18) while the average
scaled LDE is disappointingly close to 0.9. However, this heuristic allows us to
solve instances which the MP formulations of Sect. 3 cannot solve.

4.3 Solving the DGP in the `1 norm

At first, we tested a Variable Neighbourhood Search (VNS) [11] type algorithm
with neighbourhoods defined by centers given by infeasible realization x′, and
radii given by the maximum number of coordinates of x′ that are allowed to
change during a BB search. This constraint is enforced by a Local Branching
(LB) [8] mechanism added to Eq. (3). The centers are computed using the prob-
abilistic constructive heuristic proposed in [14], which extends the concept of
Fréchet embeddings to sets. Unfortunately, this idea yielded very poor results,
both quality-wise and in terms of CPU time. We only report it to prevent other
researchers from pursuing this same direction.

The second idea we tested is based on alternating solutions between two
continuous reformulations of Eq. (2), denoted A (Eq. (2) with | · | replaced
by
√

(·)2 + ε) and B ((3) with nonlinear complementarity constraints): we ran-
domly sample an infeasible realization as a starting point for A, then use A’s
solution as a starting point to B. We repeat this loop, updating the “best solu-
tion found so far”, until a CPU time-based termination condition (set to 600s)
becomes true. We used SNOPT [10] to solve A and IPOPT [3] to solve B. The
results, obtained on 85 instances with n ∈ {10, 15, 20, . . . , 90} of any density
s ∈ {0.1, 0.2, 0.3, 0.5, 0.8}, count 13 failures (generally instances with high den-
sity where SNOPT had convergence issues) and 8 feasible realizations (scaled
MDE/LDE scores < 10−4). We report in Table 3 of the Appendix only the re-
sults for the instances ended with no failures. Overall, this heuristic displayed
average scaled MDE and LDE of 0.13 and 1.16.



References

1. N. Beeker, S. Gaubert, C. Glusa, and L. Liberti. Is the distance geometry problem
in NP? In A. Mucherino, C. Lavor, L. Liberti, and N. Maculan, editors, Distance
Geometry: Theory, Methods, and Applications. Springer, New York, 2013.

2. W.-Y. Chiu and B.-S. Chen. Mobile positioning problem in Manhattan-like urban
areas: Uniqueness of solution, optimal deployment of BSs, and fuzzy implementa-
tion. IEEE Transactions on Signal Processing, 57(12):4918–4929, 2009.

3. COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and
using IPOPT, 2006.

4. C. D’Ambrosio, G. Nannicini, and G. Sartor. MILP models for the selection of a
small set of well-distributed points. working paper.

5. C. D’Ambrosio, K. Vu, C. Lavor, L. Liberti, and N. Maculan. New error measures
and methods for realizing protein graphs from distance data. Technical Report
submit-1604830, arXiv, 2016.
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A Proofs

Proposition 3. Eq. (3) is a valid formulation for the DGP using the `1 norm.

Proof. Assume there exists x∗, s∗, t∗, z∗ feasible and optimal in Eq. (3). Then,
by suitably projecting these sets of variables on the subspace spanned by the
x coordinates, one finds that x∗ is a valid solution to Eq. (2), and hence also
to the DGP instance, which therefore must be feasible. Conversely, assume that
the DGP instance is feasible: then there must be a certificate x∗ which satisfies
Eq. (2); by carrying out the steps of the reformulation as detailed above, we can
construct s∗, t∗, z∗ satisfying Eq. (3). ut

Proposition 4. Eq. (4) is a valid formulation for the DGP using the `∞ norm.

Proof. The proof of Prop. 4 has the same structure as the proof of Prop. 3. The
only detail worthy of note is that, at the optimum, the binary wijk variables select
for each edge {i, j} ∈ E at least one component k such that |xik − xjk| ≥ dij :
and if one component has that property, the component of maximum value must
also have that property, which establishes the correctness of the non-convex part
of the `∞ norm constraint (∗). ut

Theorem 2. The DGP in linearizable norms is NP-complete.

The proof is given in the Appendix.

Proof. It was already remarked in Sect. 2 that the DGP in linearizable norms is
NP-hard by reduction from Partition to the DGP in K = 1, where the three
norm `1, `2, `∞ coincide. Now by Prop. 3 and 4 we know that certificates to the
DGP in linearizable norms are rational for rational input, since the MP formu-
lations in (3) and (4) can be solved by a Branch-and-Bound (BB) algorithm,
each node of which involves the solution of a Linear Program (LP), which is
known to be in NP. Simple BB implementations will continue branching until
the incumbent, found by solving the LP at some node, is proven optimal. So the
certificate (solution) provided by the BB is polynomially sized, as claimed. ut

B Detailed Tables



Instance `1 norm `∞ norm
n s MDE LDE CPU t MDE LDE CPU t

10 0.1 6.66E-17 1.83E-16 0.06 2.98E-17 1.63E-16 0.12
10 0.2 8.19E-08 1.09E-06 0.07 4.94E-08 6.91E-07 0.07
10 0.3 6.93E-07 5.15E-06 0.11 7.64E-07 6.99E-06 0.14
10 0.5 5.58E-07 4.75E-06 0.3 6.25E-07 5.70E-06 0.28
10 0.8 1.50E-06 1.21E-05 0.36 1.52E-06 8.52E-06 1.48
15 0.1 8.17E-17 4.22E-16 0.05 1.85E-17 2.07E-16 0.06
15 0.2 6.05E-07 7.18E-06 1.8 1.71E-07 3.66E-06 1.6
15 0.3 7.01E-07 5.52E-06 1.61 1.86E-06 1.73E-05 1.89
15 0.5 1.52E-06 1.35E-05 0.65 1.87E-06 1.29E-05 5.94
15 0.8 1.85E-06 1.16E-05 1.86 1.86E-06 8.09E-06 5.64
20 0.1 5.62E-07 4.75E-06 5.71 1.70E-08 6.63E-07 4.31
20 0.2 1.23E-06 1.84E-05 2.07 1.23E-06 1.95E-05 13.05
20 0.3 1.20E-06 9.28E-06 5.27 1.95E-06 1.17E-05 14.05
20 0.5 1.86E-06 1.92E-05 2.32 2.63E-06 1.97E-05 9.88
20 0.8 2.06E-06 1.55E-05 5.54 2.72E-06 1.08E-05 53.63
25 0.1 8.52E-07 9.48E-06 4.37 7.47E-07 1.04E-05 4.4
25 0.2 1.88E-06 3.24E-05 5.97 8.10E-07 7.67E-06 16.39
25 0.3 1.84E-06 1.54E-05 6.53 1.77E-06 9.37E-06 46.54
25 0.5 1.88E-06 1.33E-05 15.89 2.67E-06 1.68E-05 63.48
25 0.8 2.19E-06 1.65E-05 14.68 7.36E-04 3.45E-02 600.09
30 0.1 1.23E-06 1.90E-05 11.29 9.61E-07 3.50E-05 25.59
30 0.2 1.74E-06 4.19E-05 8.76 1.34E-06 1.20E-05 79.36
30 0.3 1.45E-06 1.64E-05 5.51 2.17E-06 1.13E-05 42.43
30 0.5 2.70E-06 2.32E-05 22.22 2.79E-06 1.80E-05 51.67
30 0.8 2.42E-06 3.91E-05 19.67 0.0824708 0.925715 600.33
35 0.1 6.37E-07 1.07E-05 35.54 9.50E-07 1.85E-05 504.89
35 0.2 1.83E-06 1.28E-05 23.34 1.77E-06 1.07E-05 17.87
35 0.3 1.90E-06 1.83E-05 32.55 2.56E-06 1.99E-05 36.82
35 0.5 2.44E-06 1.49E-05 33.24 3.32E-06 1.62E-05 358.36
35 0.8 3.03E-06 4.81E-05 13.57 0.137722 1 600.33
40 0.1 1.45E-06 1.71E-05 33.97 1.06E-06 1.09E-05 566.18
40 0.2 2.35E-06 4.23E-05 25.49 2.24E-06 6.62E-05 172.54
40 0.3 1.93E-06 1.99E-05 21.74 2.40E-06 1.81E-05 79.45
40 0.5 2.05E-06 4.16E-05 64.74 2.54E-06 5.90E-05 600.11
40 0.8 3.08E-06 1.70E-04 80.86 0.312365 1 600.15

Table 1. Results on instances for the DGP in `1 and `∞ norms formulated as MILPs.

n MDE LDE CPU t

10 2.286187E-07 1.930254E-06 0.002
15 4.879686E-07 4.824712E-06 0.004
20 6.895810E-07 6.353593E-06 0.008
25 7.991818E-07 5.997201E-06 0.013
30 7.213860E-07 7.283439E-06 0.022
35 1.438231E-02 4.075396E+00 0.047
40 9.289797E-07 2.514727E-05 0.048
45 1.044442E-06 1.336336E-05 0.062
50 8.630696E-07 1.631295E-05 0.087
55 1.196788E-06 3.177958E-05 0.127
60 1.121936E-06 4.064804E-05 0.140
65 6.429619E-04 4.537939E-01 0.185
70 1.424837E-03 9.845047E-01 0.215
75 1.319162E-06 4.709088E-05 0.298
80 1.131649E-03 1.803801E+00 0.321
85 2.770027E-04 5.781805E-01 0.382
90 8.615075E-04 1.721325E+00 0.468

n MDE LDE CPU t

10 8.563691E-02 5.568593E-01 28.87
15 1.127657E-01 8.739597E-01 63.04
20 8.838678E-02 6.704091E-01 80.66
25 1.556823E-01 9.845021E-01 82.46
30 8.102230E-02 9.166102E-01 97.07
35 1.805664E-01 9.613564E-01 127.03
40 1.614281E-01 9.990920E-01 164.49
45 2.473848E-01 9.953499E-01 231.05
50 3.023465E-01 9.970702E-01 320.09
55 1.662879E-01 9.953521E-01 303.27
60 3.023465E-01 9.970702E-01 361.52
65 2.405345E-01 9.990544E-01 551.41
70 3.020851E-01 9.890115E-01 718.16

Table 2. Results on instances for the DMCP (left) and DGP (right) in `∞ norm:
heuristic approach.



n s MDE LDE CPU t CPU t best sol

10 0.1 0.000000E+00 0.000000E+00 0.30 0.30
10 0.2 1.290000E-02 1.329000E-01 120.49 0.07
10 0.3 4.400000E-03 5.660000E-02 120.64 111.55
10 0.5 1.800000E-02 1.765000E-01 120.72 0.80
10 0.8 2.770000E-02 2.758000E-01 120.00 2.00
15 0.1 0.000000E+00 0.000000E+00 3.84 3.84
15 0.2 4.640000E-02 3.172000E-01 120.36 116.72
15 0.3 6.340000E-02 4.219000E-01 120.75 1.59
15 0.5 8.300000E-02 1.000000E+00 120.79 86.81
15 0.8 3.740000E-02 2.314000E-01 120.06 95.06
20 0.1 3.670000E-02 6.148000E-01 120.90 28.48
20 0.2 1.009000E-01 9.554000E-01 120.07 1.65
20 0.3 1.297000E-01 9.995000E-01 120.30 1.99
20 0.5 1.506000E-01 1.907300E+00 120.86 1.25
20 0.8 3.530000E-01 1.000000E+00 121.25 1.01
25 0.1 7.980000E-02 1.000000E+00 120.07 110.30
25 0.2 1.596000E-01 8.961000E-01 120.93 1.23
25 0.3 1.813000E-01 1.011000E+00 120.70 5.41
25 0.5 7.000000E-04 2.040000E-02 120.30 106.30
25 0.8 3.380000E-01 1.000000E+00 121.40 7.75
30 0.1 1.111000E-01 9.917000E-01 120.66 20.26
30 0.2 1.983000E-01 1.000000E+00 121.14 15.01
30 0.3 1.990000E-01 1.000000E+00 120.72 106.70
30 0.5 1.110000E-02 2.233000E-01 120.38 13.21
35 0.1 1.126000E-01 1.000000E+00 120.92 2.64
35 0.2 2.055000E-01 1.070000E+00 120.43 51.05
35 0.3 2.296000E-01 2.163100E+00 120.71 23.29
35 0.5 2.402000E-01 8.525000E-01 120.91 3.89
35 0.8 9.000000E-03 2.702000E-01 121.61 71.38
40 0.1 1.864000E-01 9.790000E-01 120.78 1.25
40 0.2 2.557000E-01 2.302400E+00 120.58 20.97
40 0.3 1.430000E-01 1.000000E+00 120.78 4.64
40 0.5 1.270000E-02 5.133000E-01 120.15 15.24
40 0.8 4.025000E-01 9.899000E-01 121.08 33.50
45 0.1 1.973000E-01 1.000000E+00 602.41 141.86
45 0.2 2.101000E-01 1.000000E+00 602.91 7.66
45 0.3 1.642000E-01 9.063000E-01 14007.03 5.51
45 0.5 0.000000E+00 0.000000E+00 602.48 113.32
50 0.1 1.916000E-01 1.000000E+00 601.27 2.48
50 0.3 3.300000E-03 6.150000E-02 600.35 59.85
50 0.5 0.000000E+00 0.000000E+00 602.78 16.08
50 0.8 0.000000E+00 0.000000E+00 605.49 405.00
55 0.1 2.339000E-01 1.312800E+00 602.36 12.04
55 0.2 1.293000E-01 1.156500E+00 601.38 237.93
55 0.3 1.800000E-02 1.831000E-01 602.87 23.11
60 0.1 2.427000E-01 4.894700E+00 602.15 141.55
60 0.2 2.960000E-02 4.482000E-01 602.53 406.05
60 0.3 4.200000E-03 1.596000E-01 605.23 28.47
60 0.8 0.000000E+00 1.000000E-04 2363.12 2363.12
65 0.1 1.548000E-01 9.515000E-01 601.35 20.35
65 0.2 7.860000E-02 9.359000E-01 601.45 554.45
65 0.3 1.430000E-02 5.405000E-01 624.85 58.08
65 0.5 3.952000E-01 1.000000E+00 607.52 599.71
70 0.1 2.611000E-01 3.027700E+00 602.80 51.53
70 0.2 1.280000E-01 1.294800E+00 604.24 577.02
70 0.3 0.000000E+00 0.000000E+00 601.85 601.85
75 0.1 2.092000E-01 1.190300E+00 601.55 7.00
75 0.2 8.140000E-02 1.839200E+00 602.42 78.33
75 0.3 2.891000E-01 2.428910E+01 680.06 392.29
75 0.5 4.054000E-01 9.739000E-01 644.90 223.76
75 0.8 4.180000E-01 1.000000E+00 799.64 799.64
80 0.1 2.786000E-01 2.431000E+00 601.54 262.93
80 0.2 4.740000E-02 5.413000E-01 601.55 22.08
80 0.3 3.630000E-01 1.000000E+00 614.46 488.08
80 0.5 3.421000E-01 1.000000E+00 677.27 385.06
80 0.8 0.000000E+00 0.000000E+00 1238.01 1238.01
85 0.2 3.240000E-02 1.000000E+00 615.05 94.76
85 0.3 2.000000E-04 2.060000E-02 602.50 83.70
90 0.1 2.964000E-01 1.000000E+00 605.59 16.87
90 0.2 6.700000E-03 3.279000E-01 605.21 241.30
90 0.3 1.000000E-03 1.259000E-01 2553.13 2553.13
90 0.5 3.356000E-01 1.000000E+00 798.64 770.28

Table 3. Results on instances for the DGP in `1 norm: heuristic approach.


