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Abstract

We consider the group of pure welded braids (also known as loop braids) up to
(link-)homotopy. The pure welded braid group classically identifies, via the Artin
action, with the group of basis-conjugating automorphisms of the free group, also
known as the McCool group PΣn. It has been shown recently that its quotient
by the homotopy relation identifies with the group hPΣn of basis-conjugating
automorphisms of the reduced free group. In the present paper, we describe a
decomposition of this quotient as an iterated semi-direct product which allows
us to solve the Andreadakis problem for this group, and to give a presentation by
generators and relations. The Andreadakis equality can be understood, in this
context, as a statement about Milnor invariants; a discussion of this question for
classical braids up to homotopy is also included.

Introduction

The present paper is a contribution to the theory of loop braids (also called welded
braids), via the study of their finite-type invariants. Finite-type invariants were defined
by Vassiliev in 1990 [Vas90] and were much studied during the 90’s (see for instance
[Kon93, Gus94]), giving birth to a whole field of research, which is still very active
nowdays. Finite-type invariants of string-links and braids have been the focus of several
papers in the late 90’s, by Stanford [Sta96, Sta98], Mostovoy and Willerton [MW02],
and Habegger and Masbaum [HM00]. By then, finite-type invariants of braids were
fairly well-understood. Meanwhile, a generalization of finite-type invariants to virtual
knotted objects was introduced in [GPV00]. However, it was only much later that
this definition was used and studied for welded knotted objects [BND16, BND17]. In
the meantime, the interest for welded knotted objects had grown, as the link between
welded diagrams, four-dimensional topology and automorphisms of the free group had
become more apparent [FRR97, Sat00, BWC07]; see [Dam17] for a survey of welded
braids. In recent years, the study of these objects has been flourishing; see for instance
[Kam07, BB14, Aud16, NNSY18, MY19, Dam19]. In particular, link-homotopy for
these objects (corresponding to self-virtualization moves in welded diagrams) has been
the focus of several recent papers [ABMW17, AMW17, AM19].

The invariants under scrutiny in this paper appear naturally as filtrations on groups.
Precisely, suppose given a group G, whose elements are the objects one is interested
in. For example, these could be mapping classes of a manifold, automorphisms of a
group, (welded) braids up to isotopy, (welded) braids up to homotopy, etc. Suppose
also given a filtration of G by subgroups: G = G1 ⊇ G2 ⊇ · · · . Then one can
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consider the class [g]d of an element g ∈ G inside G/Gd+1 and hope to understand g
through its approximations [g]d, which become finer and finer as d grows to infinity.
These approximation are often easier to understand than g. For instance, [g]d could
be described by a finite family of integers (or other simple mathematical objects), that
we would call invariants of degree at most d.

With this point of view, the question of comparing different filtrations on the same
group (such as the Andreadakis problem – see §0.1) can be interpreted as a problem
of comparison between different kinds of invariants. Conversely, comparing different
notions of invariants on elements of a group can often be interpreted as a problem of
comparison between different filtrations on the group, provided that these invariants
are indexed by some kind of degree measuring their accuracy, and that they possess
some compatibility with the group structure. It is mainly the latter point of view that
we adopt below, working with filtrations on groups, with a rather algebraic point of
view, getting back to the language of invariants only to interpret our results. This is
motivated by the fact that the invariants we consider are strongly compatible with the
group structures: not only do they come from filtrations by subgroups, as described
above, but these filtrations are strongly central, a very nice property allowing us to
study them using Lie algebras. Moreover, all the filtrations we consider do have a
natural algebraic definition.

We consider mainly three kinds of filtrations (or invariants):

• Minor invariants correspond to Andreadakis-like filtrations (or the Johnson
filtration for the Mapping Class Group). These are defined for automorphism
groups of groups, and there subgroups.

• Finite-type (or Vassiliev) invariants with coefficients in a fixed commutative
ring k correspond to the dimension filtration Dk

∗G = G∩ (1+ I∗), where I is the
augmentation ideal of the group ring kG.

• The lower central series on G is the minimal strongly central filtration on G.

The minimality of the lower central series means that the corresponding invariants of
degree d contain as much information as possible for invariants possessing this com-
patibility with the group structure. Since the two other filtrations are also strongly
central, and the Milnor invariants are of finite type, the above list goes from the coars-
est invariants to the finest ones. Thus, although we will not always emphasize this
in the sequel, the reader should keep in mind that a statement of the form “Milnor
invariants of degree at most d distinguish classes of elements g ∈ G modulo Γd+1G”
implies that Milnor invariants of degree at most d are universal finite-type invariants of
degree at most d, and that finite-type invariants of degree at most d distinguish classes
of elements g ∈ G modulo Γd+1G.

Main results

We are interested in the group of pure welded braids (or pure welded string-links) up to
homotopy. This group identifies, through a version of the Artin action up to homotopy,
with the group hPΣn of (pure) basis-conjugating automorphisms of the reduced free
group RFn (see Def. 1.2). The key result of this paper is the decomposition theorem:

Theorem 3.1. There is a decomposition of hPΣn into a semi-direct product:

hPΣn ∼=

[(∏

i<n

N (xn)/xi

)
⋊ (RFn/xn)

]
⋊ hPΣn−1,
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where N (xn)/xi is the normal closure of xn inside RFn/xi, and the action of RFn/xn ∼=
RFn−1 on the product is the diagonal one. Moreover, the semi-direct product on the
right is an almost direct one.

The reduced free group is studied in §1. In particular, using the version of the
Magnus expansion for the reduced free groups introduced by Milnor, which takes values
in the reduced free algebra, we are able to show an analogue of Magnus’ theorem:

Theorem 1.12. The Lie ring of the reduced free group identifies with the reduced free
algebra on the same set of generators.

The restriction hPΣn ∩ A∗(RFn) of the Andreadakis filtration A∗(RFn) of RFn
encodes Milnor invariants of pure welded braids. We are able to determine the structure
of the associated graded Lie algebra in §2.1:

Theorem 2.9. The Lie algebra L (hPΣn ∩ A∗(RFn)) identifies, via the Johnson mor-
phism, to the algebra of tangential derivations of the reduced free algebra.

On the other hand, the decomposition of hPΣn (Theorem 3.1) induces a decompo-
sition of its lower central series, which in turn gives a decomposition of the associated
Lie algebra (Theorem 3.8). We are thus able to compare the lower central series and
the Andreadakis filtrations via a comparison of their associated graded Lie algebras,
getting the promised comparison result, which we also show for classical braids up to
homotopy:

Theorem 3.9. The Andreadakis equality holds for G = hPn and G = hPΣn:

G ∩A∗(RFn) = Γ∗G.

In other words, Milnor invariants of degree at most d classify braids up to homotopy
(resp. welded braids up to homotopy) up to elements of Γd+1(hPn) (resp. Γd+1(hPΣn)).

Remark that there is no obvious link between this theorem and its analogue up
to isotopy. On the one hand, for classical braids up to isotopy, the fact that Milnor
invariants can detect the lower central series has been known for a long time [MW02,
HM00], but the result up to homotopy is new, and cannot be deduced from the former
(as far as I know). On the other hand, for welded braid (that is, for basis-conjugating
automorphisms of the free group), the result up to isotopy is still opened. One feature
of hPn and hPΣn which makes them very different from Pn and PΣn (and in fact,
easier to handle) is their nilpotence, which is used throughout the paper.

Finally, we use our methods to give a presentation of the group hPΣn. A classi-
cal result of McCool [McC86] asserts that the group PΣn of (pure) basis-conjugating
automorphisms of the free group Fn is the group generated by generators χij (i 6= j)
submitted to the McCool relations :





[χikχjk, χij] = 1 for i, j, k pairwise distinct,

[χik, χjk] = 1 for i, j, k pairwise distinct,

[χij , χkl] = 1 if {i, j} ∩ {k, l} = ∅,

We show that we need to add three families of relation to get its quotient hPΣn:

3



Theorem 5.8. The pure loop braid group up to homotopy hPΣn is the group generated
by generators χij (i 6= j) submitted to the McCool relations on the χij, and the three
families of relations:

[χmi, w, χmi] = [χim, w, χjm] = [χim, w, χmi] = 1,

for i, j < m, i 6= j, and w ∈ 〈χmk〉k<m.

The method used for the group can be adapted to the Lie algebra associated to the
lower central series of hPΣn. We show in §5.3 that it admits a similar presentation.
We also give a presentation of the Lie algebra of hPn in corollary 3.12.

Acknowledgements: The author thanks warmly Jean-Baptiste Meilhan for having
brought to his attention the group under scrutiny here, and for numerous helpful
discussions about the topology involved. He thanks Sean Eberhard for his answer to
the question he asked on MathOverflow about finite presentations of nilpotent groups.
He also thanks Prof. T. Kohno for asking the question which lead to the results of §5.3.
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0 Reminders: strongly central series and Lie rings

We give here a short introduction to the theory of strongly central filtrations and their
associated Lie rings, whose foundations were laid by M. Lazard in [Laz54]. Details may
be found in [Dar19b, Dar19a].

0.1 A very short introduction to the Andreadakis problem

Let G be an arbitrary group. The left and right action of G on itself by conjugation are
denoted respectively by xy = y−1xy and yx = yxy−1. The commutator of two elements
x and y in G is [x, y] := xyx−1y−1. If A and B are subsets of G, we denote by [A,B]
the subgroup generated by all commutators [a, b] with (a, b) ∈ A× B. We denote the
abelianization of G by Gab := G/[G,G] and its lower central series by Γ∗(G), that is:

G = Γ1(G) ⊇ [G,G] = Γ2(G) ⊇ [G,Γ2(G)] = Γ3(G) ⊇ · · ·

The lower central series is a fundamental example of a strongly central filtration (or
N-series) on a group G:

Definition 0.1. A strongly central filtration G∗ on a group G is a nested sequence of
subgroups G = G1 ⊇ G2 ⊇ G3 · · · such that [Gi, Gj] ⊆ Gi+j for all i, j > 1.

In fact, the lower central series is the minimal such filtration on a given group G,
as is easily shown by induction.

Recall that when G∗ is a strongly central filtration, the quotients Li(G∗) := Gi/Gi+1

are abelian groups, and the whole graded abelian group L(G∗) :=
⊕

Gi/Gi+1 is a Lie
ring (i.e. a Lie algebra over Z), where Lie brackets are induced by group commutators.
The lower central series of a group is usually difficult to understand, but we are often
helped by the fact that its associated Lie algebra is always generated in degree one.

Convention 0.2. If g is an element of a group G endowed with a (strongly central)
filtration G∗, the degree of g with respect to G∗ is the minimal integer d such that
g ∈ Gd − Gd+1. Since most of the filtrations we consider satisfy

⋂
Gi = {1}, this is

well-defined (if not, we could just say that d = ∞ for elements of
⋂
Gi). We often

speak of the class g of g in the Lie algebra L(G∗), by which we mean the only non-
trivial one, in Ld(G∗) = Gd/Gd+1, where d is the degree of g with respect to G∗, unless
a fixed degree is specified.

When G∗ is a strongly central filtration on G = G1, there is a universal way of
defining a strongly central filtration on a group of automorphisms of G. Precisely, we
get a strongly central filtration on a subgroup of Aut(G∗), the latter being the group
of automorphisms of G preserving the filtration G∗:

Aj(G∗) := { σ ∈ Aut(G∗) | ∀i > 1, [σ,Gi] ⊆ Gi+j } . (0.2.1)

The commutator is computed in G ⋊ Aut(G), which means that for σ ∈ Aut(G) and
g ∈ G, [σ, g] = σ(g)g−1. Thus, Aj(G∗) is the group of automorphisms of G∗ acting
trivially on the quotients Gi/Gi+j (i > 1). For instance, A1(G∗) is the group of
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automorphisms of G∗ acting trivially on L(G∗). When G∗ is the lower central series
of a group G, then L(G) := L(Γ∗(G)) is generated (as a Lie ring) by L1(G) = Gab, so
that A1(G) identifies with the group IAG of automorphisms of G acting trivially on its
abelianization Gab. Thus A∗(G) := A∗(Γ∗(G)) is a strongly central filtration on IAG,
and we can try to understand how it compares to the minimal such filtration on IAG,
which is its lower central series:

Problem 1 (Andreadakis). For a given group G, how close is the inclusion of Γ∗(IAG)
into A∗(G) to be an equality ?

One way to attack this problem is to restrict to subgroups of IAG. Precisely, if
K ⊆ IAG is a subgroup, we can consider the following three strongly central filtrations
on K:

Γ∗(K) ⊆ K ∩ Γ∗(IAG) ⊆ K ∩A∗(G).

Definition 0.3. We say that the Andreadakis equality holds for a subgroup K of IAG
when Γ∗(K) = K ∩ A∗(G).

Our three main tools in calculating Lie algebras are the following:

Lazard’s theorem [Laz54, Th. 3.1] (see also [Dar19b, Th. 1.36]): if A is a
filtered ring (that is, A is filtered by ideals A = A0 ⊇ A1 ⊇ A2 ⊇ · · · such that
AiAj ⊆ Ai+j), the subgroup A× ∩ (1 + A1) of A

× inherits a strongly central filtration
A×

∗ := A× ∩ (1 + A∗) whose Lie ring embeds into the graded ring gr(A∗), via:

{
L (A×

∗ ) −֒→ gr(A∗)

x 7−→ x− 1.

If G is any group endowed with a morphism α : G→ A×, then we can pull the filtration
A×

∗ back to G, and L(α−1(A×
∗ )) embeds into L(A×

∗ ), thus into gr(A∗).

Semi-direct product decompositions [Dar19a, §3.1]: If G∗ is a strongly central
filtration, G∗ = H∗ ⋊K∗ is a semi-direct product of strongly central filtrations if Gi =
Hi ⋊ Ki is a semi-direct product of groups for all i, and [Ki, Hj] ⊆ Hi+j for all i, j.
Then the strong centrality of G∗ implies that H∗ and K∗ must be strongly central. This
kind of decomposition is useful because it induces a decomposition of Lie algebras:

L(G∗) = L(H∗)⋊ L(K∗).

Now, if G = H ⋊ K is any semi-direct product of groups, then its lower central
series decomposes into a semi-direct product Γ∗(G) = ΓK∗ (H) ⋊ Γ∗(K) of strongly
central filtrations, where ΓG∗ (H) is defined by:

H = ΓK1 (H) ⊇ [G,H ] = ΓK2 (H) ⊇ [G,ΓK2 (H)] = ΓK3 (H) ⊇ · · ·

When the semi-direct product is an almost-direct one, which means thatK acts trivially
on Hab, then ΓK∗ (H) = Γ∗(H), so that is this case:

L(H ⋊K) = L(H)⋊ L(K).
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The Johnson morphism [Dar19b, §1.4]: A very useful tool to study a filtration of
the form A∗(G∗) is the Johnson morphism, which encodes the fact that the associated
graded Lie algebra L(Aj(G∗)) acts faithfully on the graded Lie algebra L(G∗). It is
defined by:

τ :

{
L (A∗(G∗)) −֒→ Der (L(G∗))

σ 7−→ [σ,−],

which means that it is induced by σ 7→ (x 7→ σ(x)x−1). Its injectivity comes from the
universality of the filtration A∗(G∗).

If we want to compare the filtration A∗(G∗) with another one, we can do it using
comparison morphisms. For example, if K is a subgroup of Aut(G∗), the inclusion
of Γ∗K into K ∩ A∗(G∗) induces a morphism i∗ : L(K) → L(K ∩ A∗(G∗)) which is
injective if and only if Γ∗K = K∩A∗(G∗). Thus we can show the Andreadakis equality
by showing the injectivity of the morphism τ ′ := τ ◦ i∗ (τ ′ is also sometimes called the
Johnson morphism).

0.2 The case of the free group

Before beginning our study of the Andreadakis problem for the reduced free group, it
may be useful to recall some basic facts about the free group case. Here Fn denotes
the free group on n generators x1, ..., xn.

Magnus expansions: The assignment xi 7→ 1+Xi defines an embedding of Fn into
the group of invertible power series on n non-commuting indeterminates X1, ..., Xn

with integral coefficients. In fact, it is easy to see that it defines a morphism to
1 + (X1, ..., Xn), and that this induces (using universal properties) an isomorphism of
completed rings:

ẐFn ∼= T̂ [n],

where the group ring ZFn is completed with respect to the filtration by the powers of its
augmentation ideal, and the tensor algebra T [n] on n generatorsX1, ..., Xn is completed
with respect to the usual valuation. One shows that the above morphism from Fn to
this ring is injective by showing directly that the image of a reduced non-trivial word
must be non-trivial.

Magnus’ theorem: Using Lazard’s theorem, we can get a surjection of L(Fn) onto

the Lie ring generated in degree one inside gr
(
T̂ [n]

)
∼= T [n], which is the free Lie ring

L[n] on n generators. Using freeness, one shows that this surjection has to be injective
as well:

L(Fn) ∼= L[n].

The Andreadakis problem and the Johnson morphism: In the case of the free
group, the Johnson morphism defines an embedding of L(A∗(Fn)) into the Lie ring of
derivations of the free Lie ring.

The Andreadakis problem for automorphisms of free groups is a difficult problem.
The two filtrations were first conjectured to be equal [And65, p. 253]. This was dis-
proved very recently [Bar16], but the methods used do not give a good understanding of
what is going on. The Andreadakis equality is known to hold for certain well-behaved
subgroups, such as the pure braid group Pn [Sat17, Dar19a]. However, the problem
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stays largely open in general. In particular, it is open for the group PΣn of basis-
conjugating automorphisms (that is, for the group of pure welded braids), of which our
group hPΣn is a simpler version.

1 The reduced free group and its Lie algebra

In this first section, we introduce and study the reduced free group, which was first
introduced by Milnor [Mil54] as the link group of the trivial link with n components.
Using the Magnus expansion defined in [Mil54], we determine its Lie ring.

Notation 1.1. Several of our constructions are functors on the category of sets. For
such a functor Φ, we denote by Φ[X ] its value at a set X . When X is finite with n
elements, we will often denote Φ[X ] by Φ[n], or by Φn.

1.1 The reduced free group

Definition 1.2. The reduced free group on a set X is the group defined by the following
presentation:

RF [X ] := 〈X | ∀x ∈ X, ∀w ∈ F [X ], [x, xw] = 1〉.

This means that it is the largest group generated by X such that each element of X
commutes with all its conjugates.

Since any x commutes with itself, the relations [x, xw] of Definition 1.2 can also be
written [x, [x, w]]. The next result and its proof are taken from [HL90, Lem. 1.3]:

Proposition 1.3. For any integer n, the group RFn is n-nilpotent. For any set X,
the group RF [X ] is residually nilpotent.

Proof. We use the fact that RF [−] is a functor on pointed sets. First, for a finite set
X , we show by induction on n = |X| that RFn = RF [X ] is n-nilpotent. This is obvious
for n = 1, because RF1

∼= Z. Suppose that RFn−1 is (n− 1)-nilpotent. If x ∈ X , the
normal subgroup N (x) of RF [X ] generated by x is the kernel of the projection px from
RF [X ] to RF [X − {x}] sending x to 1. We have an exact sequence:

1
⋂
x∈X

N (x) RF [X ]
∏
x∈X

RF [X − {x}].
p=(px)

Since the group on the right is (n−1)-nilpotent by induction hypothesis, the morphism
pmust send Γn(RF [X ]) to 1, so that Γn(RF [X ]) is inside the kernel

⋂
N (x). Moreover,

by definition of the reduced free group, for every x ∈ X , all elements of N (x) commute
with x. Thus, an element of

⋂
N (x) commutes with all x ∈ X , so it is in the center

Z(RF [X ]). As a conclusion, Γn(RF [X ]) ⊆ Z(RF [X ]), which means exactly that
RF [X ] is n-nilpotent.

Suppose now X infinite. Let w be an element of RF [X ]. It can be written as a
product of a finite number of elements of X and their inverses. Denote be W such a
finite subset of X . Then w is inside the image of the canonical injection RF [W ] →֒
RF [X ], which is split by the projection from RF [X ] to RF [W ] sending X −W to 1.
Since RF [W ] is |W |-nilpotent, this construction provides a nilpotent quotient of RF [X ]
in which the image of w is non-trivial, whence the residual nilpotence of RF [X ].
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1.2 The reduced free algebra

Definition 1.4. Let Y be a set. If s > 2 is an integer, let us define ∆s(Y ) by:

∆s(Y ) := {(yi) ∈ Y s | ∃i 6= j, yi = yj}.

The reduced free algebra on Y is the unitary associative ring defined by the following
presentation:

A[Y ] := 〈Y | ∀s, ∀(yi) ∈ ∆s(Y ), y1 · · · ys = 0〉.

For short, we often forget the mention of Y when it is clear from the context, and
write only A for A[Y ].

Fact 1.5. The algebra A[Y ] is graded by the degree of monomials. As a Z-module,
A[Y ] is a direct factor of the tensor algebra T [Y ]; a (finite) basis of A[Y ] is given by
monomials without repetition on the generators y ∈ Y , which are monomials of the
form y1 · · · ys with (yi) /∈ ∆s(Y ).

Proof. Let R be the (free) Z-submodule of T [Y ] generated by the y1 · · · ys such that
(yi) ∈ ∆s(Y ) (monomials with repetition). This module is clearly a homogeneous ideal
of T [Y ]. As a consequence, A = T/R. Moreover, if we denote by S the (free) Z-
submodule of T generated by monomials without repetition, then T = S ⊕ R as a
Z-module, so that A ∼= S.

Definition 1.6. Let Y be a set. The reduced free Lie algebra on Y is the Lie algebra
defined by the following presentation:

RL[Y ] := 〈Y | ∀s, ∀(yi) ∈ ∆s(Y ), [y1, ..., ys] = 0〉,

where [y1, ..., ys] denotes [y1, [y2, [· · · [ys−1, ys]] · · · ].

The following result uses some of the combinatorics of the free Lie ring recalled in
the appendix:

Proposition 1.7. The Lie subalgebra of A[Y ] generated by Y identifies with RL[Y ].

Proof. We need to prove that the intersection of the ideal R of relations defining A[Y ]
and the free Lie algebra L[Y ] ⊂ T [Y ] is exactly the module S of relations defining
RL[Y ]. The inclusion of S into R is clear: when we decompose a relation in S on
the basis of TV , only monomials with exactly the same letters appears, counting rep-
etitions. For the converse, let us first remark that thanks to Lemma 6.14, S is the
submodule of L[Y ] generated by all Lie monomials with repetition. Let p 6= 0 be an
element of R∩L[Y ], and let us consider its decomposition p =

∑
λwPw on the Lyndon

basis of L[Y ]. Let w be the smaller Lyndon word such that λw 6= 0. It follows from
Lemma 6.7 that λw must be the coefficient of w in the decomposition of p into a linear
combination of monomials of TV . Since p ∈ R, the word w must be with repetition,
so that Pw ∈ S. Then p− λwPw ∈ R∩L[Y ] has less terms than p in its decomposition
on the Lyndon basis, giving us the result by induction.

Remark 1.8. When Y is a finite set with n elements, we can extract finite presenta-
tions from the above presentations. Indeed, the ideal R and the Lie ideal S are both
generated in degrees at most n+ 1, since Rn+1 = T [n]n+1 and Sn+1 = L[n]n+1 (a word
of length n + 1 must possess at least a repetition). As a consequence, the relations of
degree at most n+ 1 are enough do describe A[n] (resp. RL[n]), and there are finitely
many of them.
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Proposition 1.9. Lyndon monomials without repetition on the yi are a basis of RL[Y ].
The rank of the degree-k part RL[n]k of RL[n] is (k − 1)!

(
n

k

)
.

Proof. Lemma 6.14 implies that the module S in the proof of Prop. 1.7 is the submod-
ule generated by all Lyndon monomials with repetition, which are thus a basis of S.
As a consequence, Lyndon monomials without repetition give a basis of the quotient
RL[Y ] = L[Y ]/S.

In order to determine the ranks, we need to count Lyndon words without repetition
of length k in y1, ..., yn. A word without repetition is Lyndon if and only if its first
letter is the smallest one. Such a word is determined by the choice of k letters, and
a choice of ordering of the (k − 1) letters left when the smallest one is removed. This
gives (k − 1)!

(
n

k

)
such words, as announced.

Proposition 1.10. In A[Y ]×, each element of 1+Y commutes with all its conjugates.

Proof. Let y be an element of Y . From the relation y2 = 0, we deduce that 1 + y is
invertible, with 1− y as its inverse. Let u ∈ A×. Then u(1+ y)u−1 = 1+ uyu−1. Since
yAy = 0, we can write:

(1 + y)(1 + uyu−1) = 1 + y + uyu−1 = (1 + uyu−1)(1 + y),

which is the desired conclusion.

Notation 1.11. From now on, we denote by X and Y two sets endowed with a
bijection X ∼= Y that we will denote by xi 7→ yi (we consider both X and Y indexed
by a bijection from a set of indices I). This notation will allow us to distinguish between
the group-theoretic world and its algebraic counterpart.

From Proposition 1.10, we get a well-defined morphism, which is an analogue of
the Magnus expansion, and was introduced by Milnor [Mil54, §4]:

µ :

{
RF [X ] −→ A[Y ]×

xi 7−→ 1 + yi.
(1.11.1)

From Lazard’s theorem [Laz54, Th. 3.1] (see also [Dar19b, Th. 1.36]), we get an asso-
ciated morphism between graded Lie algebras:

µ :

{
L(RF [X ]) −→ gr(A[Y ]) ∼= A[Y ]

x̄i 7−→ yi.
(1.11.2)

From this we deduce our first main theorem:

Theorem 1.12. The above morphism (1.11.2) induces a canonical isomorphism be-
tween the Lie algebra of the reduced free group and the reduced free algebra:

L(RF [X ]) ∼= RL[Y ].

Proof. Since L(RF [X ]) is generated in degree 1 [Dar19b, Prop. 1.19] (that is, generated
by the x̄i), the morphism (1.11.2) defines a surjection from L(RF [X ]) onto the Lie
subalgebra of A generated by Y , which is RL[Y ] (Proposition 1.7). But L(RF [X ]) is
a reduced Lie algebra on X , by which we mean that the relations on the yi defining
RL[Y ] are true for the classes x̄i. Indeed, in RF [X ], the normal closure N (x) of a
generator x ∈ X is commutative. As a consequence, if u is any element of N (x), then
[x, u] = 1. Applying this to u = [xr+1, ..., xs, x, w] ∈ N (x) (where our notation for
iterated commutators is the same as above for iterated brackets in Lie algebras), we
see that any [x1, ..., xr, x, xr+1, ..., xs, x, w] is trivial in the group, hence so is its class
in the Lie algebra. Thus yi 7→ xi defines a section of our surjection, which has to be
injective.
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Corollary 1.13. The morphism µ : xi 7→ 1 + yi (1.11.1) from RF [X ] to A[Y ]× is
injective.

Proof. Let w be an element of ker(µ). If w 6= 1, then, by residual nilpotence of RF [X ]
(Proposition 1.3), there exists an integer k such that w ∈ Γk − Γk+1. Thus, w̄ is a
non-trivial element of Lk(RF [X ]), sent to 0 by µ. But µ is an isomorphism (Theorem
1.12), so this is not possible: our element w must be trivial.

Some remarks on finite presentations of nilpotent groups

Every nilpotent group of finite type admits a finite presentation. This fact is easy
to prove, by induction on the nilpotency class, using that finitely generated abelian
groups are finitely presented, and that an extension of finitely presented groups is
finitely presented. As a consequence, the reduced free group RFn on x1, ..., xn must
admit a finite presentation. Can we find a simple one ? Considering that we have
a finite presentation of the associated Lie algebra, the problem does not seem to be
difficult at first. Indeed, let Gn is the group admitting the same finite presentation as
RLn (see Remark 1.8), where brackets are replaced by commutators. These relations
are true in RFn (see the proof of Prop. 1.12), thus there is a map π from Gn onto RFn,
which must induce an isomorphism at the level of Lie rings. However, we can deduce
that π is an isomorphism only if we know that both these groups are nilpotent. Which
raises the question: do the relations defining Gn imply that it is nilpotent ?

Thus we are led to ask ourselves: what finite set of relation is needed to ensure
that a group is nilpotent ? This question is strongly related to the following question:
can we give a simple finite presentation of the free nilpotent group of class c ? (where
“simple” is taken in some naive sense). This question is surprisingly difficult. The
reader can convince himself that killing commutators of the form [xi0 , ..., xic ] (or even
[x±i0 , ..., x

±
ic
]) does not seem to be enough, because the usual formulas of commutator

calculus seem not to allow one to reduce to commutators of this particular form and
length. Even killing all iterated commutators of length c + 1 of the generators is only
conjectured to be enough [Sim87, Jac08].

To get a presentation known to work in general, we must take a much larger one.
For instance, one can kill all iterated commutators of the generators of length between
c+ 1 and 2c. This can be improved slightly by killing only relations of the form [x, y],
where x, y are iterated commutators of the generators of length at most c, whose length
add up to at least c + 1. Indeed, all iterated commutators of length greater than c
can be written as a product of conjugates of iterated commutators of the generators
of length greater than c (by repeated use of the formulas [a, bc] = [a, b] · [a, c] · [[c, a], b]
and [a, b−1] = [b, a]b). And every such commutator has a sub-commutator of the given
form (to see that, it can help to think of commutator words as rooted planar binary
trees).

In order to avoid these problems, and to keep our presentations simple, we will only
give a presentation of RFn as a nilpotent group, that is, we assume that the group Gn

is the reasoning above is nilpotent, thus obtaining:

Proposition 1.14. The reduced free group RFn is the quotient of the free n-nilpotent
group on x1, ..., xn by the following finite set of relations:

∀s 6 n, ∀(xi) ∈ ∆s(X), [x1, ..., xs] = 1,

where [x1, ..., xs] denotes [x1, [x2, [· · · [xs−1, xs]] · · · ].
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The subtlety of this situation was not perceived in [Coh95], where it was assumed
that this presentation (with (n+1)-commutators included) would automatically define
a nilpotent group. Note that several results of the present paper give some insight on
the group-theoretic results of [Coh95], which were stated only in terms of the underlying
abelian groups, and become simpler when taking into account the Lie ring structure.

1.3 Centralizers

We will use corollary 1.13 to compute the centralizers of generators in RF [X ]. First,
we show a lemma about commutation relations in A[Y ]:

Lemma 1.15. Let y ∈ Y , and let λ be an integer. Define the λ-centralizer Cλ(y) of y
in A[Y ] to be:

Cλ(y) := {u ∈ A[Y ] | uy = λyu}.

If λ 6= 1, then Cλ(y) is exactly 〈y〉. If λ = 1, then Cλ(y) = Z ·1⊕〈y〉. As a consequence,
Z ·1⊕ 〈y〉 is the centralizer C(y) of y. Also, 〈y〉 is the annihilator Ann(y) of y, and it
is also the set of elements u satisfying uy = −yu.

Proof. If u is an element of 〈y〉, then uy = λyu = 0. Moreover, obviously, 1 ∈ C1(y).
This proves one inclusion. Let us prove the converse. Let u be an element of C(y). Let
us decompose u as a sum of monomials without repetition

∑
λαmα in A, and consider a

monomial mα 6= 1 not containing y. Then λα is the coefficient of mαy in 0 = uy−λyu,
so it must be zero. Also, if µ is the coefficient of 1 in m, then the coefficient of y in
uy − λyu is (1 − λ)µ, hence µ = 0 if λ 6= 1. Thus all the monomials appearing in the
decomposition of u (except possibly 1 if λ = 1) must contain y, so that u belongs to
〈y〉 (resp. to Z⊕〈y〉 if λ = 1).

The next lemma is [HL90, Lem. 1.10]:

Lemma 1.16. Let x ∈ X. Let C(x) be the centralizer of x in RF [X ]. Then C(x) is
exactly the normal closure N (x) of x.

Proof. The inclusion N (x) ⊆ C(x) follows from the definition of RF [X ]. Let us
prove the converse. From Corollary 1.13, we know that C(x) = C(1 + y) ∩ RF [X ] =
(Z⊕〈y〉)∩RF [X ]. Moreover, RF [X ] →֒ A[Y ] takes values in 1+A[Y ] (where A is the
augmentation ideal of A, that is, the set of polynomials with no constant term). As a
consequence, this intersection is (1 + 〈y〉) ∩ RF [X ]. But 1 + 〈y〉 is exactly the set of
elements sent to 1 by the projection A[Y ] ։ A[Y − {y}]. This projection induces the
projection from RF [X ] to RF [X − {x}], whose kernel is N (x), whence the result.

Lemma 1.17. Let y ∈ Y . Let CL(y) be the centralizer of y in RL[Y ]. Then CL(y) is
exactly the Lie ideal 〈y〉 generated by y.

Proof. If we now denote by 〈y〉A the ideal generated by y in A (denoted by 〈y〉 above),
we have that CL(y) = C1(y) ∩ RL[Y ] = 〈y〉A ∩ RL[Y ] is the submodule of RL[Y ]
generated by Lie monomials in which y appears, which is exactly 〈y〉.

Proposition 1.18. The center of RFn is the intersection of the N (xi), and also coin-
cide with Γn(RFn) ; it is free abelian of rank (n− 1)!
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Proof. The inclusions Γn(RFn) ⊆
⋂

N (xi) ⊆ Z(RFn) were already established in the
proof of Proposition 1.3. Let w be a non-trivial element of Z(RFn). Since RFn is
nilpotent, w ∈ Γk − Γk+1 for some k, and w is a non-trivial element in the center of
L(RFn) ∼= RLn (see Theorem 1.12). From Lemma 1.17, we deduce that w is in the
Lie ideal 〈y1〉 ∩ ... ∩ 〈yn〉. As a consequence, all yi appear at least once in each Lie
monomial of the decomposition of w̄. Thus its degree must be at least n, which means
that w ∈ Γn(RFn).

Moreover, Γn(RFn) = Γn(RFn)/Γn+1(RFn) = Ln(RFn) identifies with the degree-n
part RL[n]n of RL[n], which is free abelian of rank (n− 1)! by Lemma 1.9.

2 Derivations and the Johnson morphism

In order to tackle the Andreadakis problem for RFn, we need to understand the as-
sociated Johnson morphism, whose target is the algebra of derivations of the reduced
free Lie algebra.

2.1 Derivations

We begin our study of derivations by those of A[Y ], which are quite easy to handle.

Proposition 2.1. Any derivation d of A[Y ] sends each element y of Y to an element
of the ideal 〈y〉. Conversely, any application dY : Y → A[Y ] sending each y into 〈y〉
extends uniquely to a derivation of A[Y ].

Proof. First, given a derivation d, we can apply it to the relation y2 = 0. We get that
(dy)y + y(dy) = 0. Thus dy ∈ C−1(y), which means that dy ∈ 〈y〉 by Lemma 1.15.

Suppose now that we are given a map dY : Y → A[Y ] sending each y into 〈y〉.
Then dY extends uniquely to a derivation dT from T [Y ] to A[Y ] (the latter being a
T [Y ]-bimodule in the obvious sense) in the usual way:

dT (yi1 · · · yil) :=
l∑

j=1

yi1 · · · yij−1
· dY (yij) · yij−1

· · · yil.

From the hypothesis on dY , we deduce that d vanished on the monomials with repetition
(the sum on the left being a sum of monomials with repetition in this case), so that
it induces a well defined derivation d : A[Y ] → A[Y ] extending dY . Unicity is obvious
from the fact that Y generate the ring A[Y ].

We now turn to the study of derivations of RL[Y ]. We consider only derivations
(strictly) increasing the degree, that is, sending Y into RL[Y ]>2, . In fact, we will
mostly be concerned with homogeneous such derivations (which raise the degree by
a fixed amount), but we will see that this distinction is not important for RL[Y ]
(Cor. 2.3).

Proposition 2.2. Let d be a derivation of RL[Y ]. Then for any y ∈ Y :

dy ∈ 〈y〉+
⋂

y′ 6=y

〈y′〉 =: Jy,

where 〈y〉 is the Lie ideal generated by y. Conversely, any map from Y to RL[Y ]>2

satisfying this condition can be extended uniquely to a derivation of RL[Y ].
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Let us remark that the homogeneous ideal Jy differs from 〈y〉 only in degree |Y | −
1 (in particular, only when Y is finite), since the second term is generated by Lie
monomials without repetition where all y′ appear, save possibly y. Moreover, one
easily sees that, for |Y | = n, the ideal Jy contains all of RL[n]n−1.

Proof of Prop. 2.2. For |Y | = 2, remark that RL[Y ]2 ⊂ 〈y1〉∩〈y2〉 and RL[Y ]>3 = {0}.
As a consequence, any linear map raising the degree satisfies the condition and defines
a derivation, so we have nothing to show.

Let us suppose that Y has at least three elements. Let d be a derivation of RL[Y ],
and let y ∈ Y . Take z ∈ Y − {y}, and consider the relation 0 = d([y, z, y]) =
[dy, z, y] + [y, z, dy]. Let us decompose dy as a sum of monomials in A[Y ]. Let m
be a monomial which contains neither y nor z, and let λ be the coefficient of m in
dy. Then the monomial mzy appears with coefficient 2λ in the decomposition of
[dy, z, y] + [y, z, dy], so λ must be trivial. Since this is true for any z 6= y, the only
monomials without repetition not containing y that can appear in dy are the ones
containing every element of Y save y, which are exactly the generators of Jy modulo
〈y〉. This shows that dy ∈ Jy.

To show the converse, we can restrict to homogeneous maps, since any map from Y
to → RL[Y ]>2 is a sum of homogeneous ones, and a sum of derivations is a derivation.
Suppose that we are given a homogeneous map dY : Y → RL[Y ]>2 sending each y into
Jy. If dY is not of degree |Y | − 2, this condition amounts to dY (y) ∈ 〈y〉. This Lie
ideal stands inside the associative ideal 〈y〉 ⊂ A[Y ]. We can thus use Proposition 2.1
to extend this map to a derivation of A[Y ]. This derivation sends Y into RL[Y ], hence
it preserves RL[Y ] ⊂ A[Y ]. As a consequence, it restricts to a derivation of RL[Y ]
extending dY .

We are left to study the case when Y has n elements and dY is of degree n−2. Then
the conditions on the elements dY (y) are empty. We can still extend dY to a derivation
from T [Y ] to A[Y ], as in the proof of Proposition 2.1, but it does not vanish on the
relations defining A[Y ]. However, the induced Lie derivation from L[Y ] to RL[Y ] does
vanish on the Lie monomials with repetition. Indeed, it vanishes on all elements of
degree at least 3 (sent to RL[Y ]>n+1 = {0}), and there are no such monomials in degree
2, since the elements [y, y] are already trivial in L[Y ]. As a consequence, it induces a
well-defined derivation from RL[Y ] to itself. This derivation extends dy and is the only
one to do so, since RL[Y ] is generated by Y .

Corollary 2.3. Any derivation of RLn is the sum of homogeneous components:

Der (Ln) ∼=
⊕

k>1

Derk (RLn) .

Proof. If d is such a derivation, Proposition 2.2 shows that the homogeneous compo-
nents of its restriction to Y extend uniquely to derivations of RLn, whose sum coincide
with d on Y , hence everywhere. Note that it makes sense to speak of this sum, be-
cause Y is finite, so that the number of non-trivial homogeneous components of d|Y is
finite.

The following theorem is an analogue of [Dar19b, Prop. 2.41], replacing free nilpo-
tent groups by reduced free groups.

Theorem 2.4. Let n > 2 be an integer. The Johnson morphism is an isomorphism:

L (A∗(RFn)) ∼= Der(RLn).
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Proof. Take |X| = |Y | = n. Let d be a derivation of RL[Y ], of degree k. We need to
lift it to an automorphism ϕ of RF [X ]. We first suppose that k 6= n− 2. Since d(yi) ∈
〈yi〉 ∩ RLk+1[Y ] (Proposition 2.2), we can write each d(yi) as a linear combination of
Lie monomials of length k + 1 containing yi. The corresponding product of brackets
in RF [X ] lifts d(yi) to an element wi of Γk+1(RF [X ]) ∩ N (xi). The element wixi
belongs to N (xi), so it commutes with all its conjugates. As a consequence, xi 7→ wixi
defines an endomorphism ϕ of RF [X ]. Since ϕ acts trivially on the abelianization of
RF [X ], which is nilpotent, it is an automorphism [Dar19b, Lem. 2.38]. Moreover, by
construction, we have τ(ϕ̄) = d.

Suppose now that k = n− 2. Then d(yi) can be any element of RLn−1[Y ]. Choose
any lift wi ∈ Γn−1(RF [X ]) of d(yi). Using the usual formulas of commutator calcu-
lus, we see that for any w ∈ RF [X ], [wixi, w, wixi] ≡ [xi, w, xi] (mod Γn+1). Since
[xi, w, xi] = 1 and Γn+1(RFn) = {1}, we conclude that [wixi, w, wixi] = 1, which means
exactly that wixi commutes with all its conjugate. The same construction as in the
first case then gives an automorphism ϕ ∈ An−2 such that τ(ϕ̄) = d.

2.2 Tangential derivations

Definition 2.5. A tangential derivation of RL[Y ] is a derivation sending each y ∈ Y
to an element of the form [y, wy] (for some wy ∈ RL[Y ]).

Fact 2.6. The subset Derτ (RL[Y ]) of tangential derivations is a Lie subalgebra of
Der(RL[Y ]).

Proof. Let d : y 7→ [y, wy] and d
′ : y 7→ [y, w′

y]. Then an elementary calculation gives:

[d, d′](y) = [y, [wy, w
′
y] + d(w′

y)− d′(wy)], (2.6.1)

whence the result.

Proposition 2.7. Let n > 2 be an integer. The Lie subalgebra of Der(RLn) generated
in degree 1 is the subalgebra Derτ (RLn) of tangential derivations.

Proof. Consider the derivation dij sending yi to [yi, yj] and all the other yk to 0. From
Lemma 2.2, we know that these generate the module of derivations of degree 1. They
are tangential derivations, so the Lie subalgebra they generate is inside Derτ (RL[Y ]).
Consider the set Di of tangential derivations sending all yk to 0, save the i-th one.
Such derivations vanish on all monomials which are not in 〈yi〉, and preserve 〈yi〉.
Since elements of 〈yi〉 commute with yi, formula (2.6.1) implies that the following map
is a morphism:

ci :

{
RL[Y ] −→ Di

t 7−→ (yi 7→ [yi, t])).

It is obviously surjective, so that Di is a Lie subalgebra of Derτ (RL[Y ]). Moreover,
its kernel is 〈yi〉 (Lemma 1.17), so that Di

∼= RL[Y ]/yi is in fact the free reduced Lie
algebra on the ci(yj) = dij (for j 6= i). Since Derτ (RL[Y ]) is the (linear) finite direct
sum of the Di, it is indeed generated (as a Lie algebra) by the dij.

Recall that the McCool group PΣX is the group of automorphisms of the free group
F [X ] on a set X fixing the conjugacy class of each generator x ∈ X .

Definition 2.8. The reduced McCool group hPΣX is the subgroup of Aut(RF [X ])
preserving the conjugacy class of each generator x ∈ X of RF [X ].
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This group hPΣX is also called AutC(RFX), but we prefer to think of it as version
of PΣX up to homotopy (this terminology will be explained in §4). When X is finite,
we denote its elements by x1, ..., xn and hPΣX by hPΣn.

Consider the filtration A∗(RFn) on Aut(RFn). It restricts to a filtration hPΣn ∩
A∗(RFn) on hPΣX . Moreover, since A∗(RFn) is strongly central on the subgroup
A1(RFn) of automorphisms acting trivially on RF ab

n , and hPΣn ⊂ A1(RFn), this
induced filtration is strongly central on hPΣn.

Theorem 2.9. Let n > 2 be an integer. The Johnson morphism induces an isomor-
phism:

L (hPΣn ∩A∗(RFn)) ∼= Derτ (RLn)

Proof. Let ϕ : xi 7→ xwi

i be a basis-conjugating automorphism belonging to Ak−Ak+1.
Then τ(ϕ)(yi) = [yi, w̄i] (where w̄i is the class of wi in Γk/Γk+1), so the Johnson
morphism sends L(hPΣn ∩A∗(RFn)) into Derτ . Moreover, it is injective by Theorem
2.4, and since τ(χij) = dij, Proposition 2.7 implies that it is surjective.

Theorem 2.9, together with Proposition 2.7, have an interesting consequence: the
group hPΣn is maximal among subgroups of Aut(RFn) for which the An-
dreadakis equality can be true. Indeed, let hPΣn ( G ⊆ Aut(RFn), and consider
the comparison morphism i∗ : L(G) → L(G ∩ A∗) obtained from the inclusion of Γ∗G
into G∩A∗. On the one hand, the Lie algebra L(G∩A∗) contains L(hPΣn ∩A∗), and
this inclusion must be strict, otherwise we could argue as in the proof of Lemma 5.3
to show that G = hPΣn. On the other hand, L(G) is generated in degree 1, so that
i∗(L(G)) ⊆ L(hPΣn∩A∗), the latter being the subalgebra of L (A∗(RFn)) ∼= Der(RLn)
generated by its degree one. As a consequence, i∗ cannot be surjective, whence the
conclusion.

Here is another consequence of these theorems:

Corollary 2.10. The group hPΣn is generated by the χij (i 6= j), and hPΣabn identifies
with the free abelian group generated by the χij.

In particular, the canonical morphism from PΣn to hPΣn is surjective. This means
that that when it comes to basis-conjugating automorphisms, all automorphisms ofRFn
are tame. This is in striking contrast with the case of free nilpotent groups [Dar19b,
§2.6]. This fact is in fact obvious from the geometrical interpretation (recalled in §4),
but we give an algebraic proof here, using much less machinery.

Proof of cor. 2.10. Thanks to Proposition 2.7 and Theorem 2.9, we know that the
classes of the χij in L(A∗ ∩ hPΣn) generate this Lie ring. By applying Lemma 5.3 to
the finite filtration A∗ ∩ hPΣn, we deduce that the χij generate hPΣn.

As a consequence, the χij generate its abelianization. Moreover, the Johnson mor-
phism from hPΣabn to Der1(RLn) sends the χij to the linearly independant elements
dij of Der1(RLn). Thus the χij are a basis of hPΣabn .

We can also use the proof of Proposition 2.7 to compute the Hirsch rank of the
nilpotent group hPΣn (which is the rank of any associated Lie algebra). We recover
the formula from [AMW17, Rk. 4.9]:

Corollary 2.11. The Hirsch rank of the reduced McCool group is:

rk(hPΣn) = rk(Derτ (RLn)) = n · rk(RLn−1) =

n−1∑

k=1

n!

(n− k − 1)! · k
·
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Proof. The first equality is a direct consequence of Theorem 2.9. The second one stems
from the proof of Proposition 2.7, where we have shown that Derτ (RLn) is (linearly) a
direct sum of n copies Di of RLn−1. The last one is a direct application of Proposition
1.9.

3 The Andreadakis problem

The McCool group PΣn is generated by the elements χij : xi 7→ x
xj
i (χij fixed all the

other xt). The following relations, called the McCool relations, are known to define
a presentation of the McCool group PΣn [McC86]. The reader can easily check that
they are satisfied in PΣn:





[χikχjk, χij] = 1 for i, j, k pairwise distinct,

[χik, χjk] = 1 for i, j, k pairwise distinct,

[χij , χkl] = 1 if {i, j} ∩ {k, l} = ∅,

Thanks to Corollary 2.10, we know that hPΣn is naturally a quotient of PΣn. We
will give in §5 three families of relations that need to be added to a presentation of
PΣn in order to get a presentation of PΣn. This will rely on the semi-direct product
decomposition that we now describe.

3.1 A semi-direct product decomposition

The following decomposition theorem is the central result of the present paper. From
it we will deduce the Andreadakis equality for hPΣn (§3.3) and a presentation of this
group and of its Lie ring (§5):

Theorem 3.1. There is a decomposition of hPΣn as a semi-direct product:

hPΣn ∼=

[(∏

i<n

N (xn)/xi

)
⋊ (RFn/xn)

]
⋊ hPΣn−1,

where N (xn)/xi is the normal closure of xn inside RFn/xi, and the action of RFn/xn ∼=
RFn−1 on the product is the diagonal one. Moreover, the semi-direct product on the
right is an almost direct one.

We will prove this theorem in three steps. First, we show that hPΣn decomposes
into a semi-direct product Kn ⋊ hPΣn−1. Then we investigate the structure of Kn,
which decomposes as K′

n ⋊RFn−1. Finally, we investigate the structure of K′
n, which

is abelian and decomposes as the direct product of the N (xn)/xi.

Step 1: decomposition of hPΣn

Elements of hPΣn preserve the conjugacy class of xn, so they preserve its normal
closure N (xn). As a consequence, any of these automorphisms induce a well-defined
automorphism of RFn/N (xn) ∼= RFn−1. In other words, the projection xn 7→ 1 from
RFn onto RFn−1 induces a well-defined morphism pn from hPΣn to hPΣn−1. Moreover,
this morphism is a split projection, a splitting sn being the map extending automor-
phisms by making them fix xn. Let us denote by Kn the kernel of pn. We thus get our
first decomposition:

hPΣn ∼= Kn ⋊ hPΣn−1 (3.1.1)
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Moreover, it will follow from Lemma 3.3 that this is indeed an almost direct product:
Kab
n is generated by the classes of the χin and the χni. From corollary 2.10, we know

that these are sent to a linearly independant family in hPΣabn , so that they freely
generate Kab

n . We thus get a direct product decomposition hPΣabn
∼= Kab

n ⊕ hPΣabn−1, as
announced.

Step 2: structure of Kn

We first state an easy result on generators of factors in semi-direct products.

Lemma 3.2. Let G = H ⋊ K be a semi-direct product of groups. Suppose given
a family (hi) of elements of H, and a family (kj) of elements of K such that their
reunion generate G. Then K is generated by the kj, and H is generated by the hki , for
k ∈ K.

Proof. Take an element g ∈ G and write it as a product of h±1
i and k±1

j . Then use the

formula kh = (kh)k to push the kj to the right. We obtain a decomposition g = h′k,
where h′ ∈ H is a product of conjugates of the h±1

i by elements of K, and k ∈ K is a
product of the k±1

j . This decomposition has to be the unique decomposition of g into a
product of an element of H followed by and element of K. As a consequence, if g ∈ H ,
then g = h′, whereas if g ∈ K, then g = k, proving our claim.

We can apply Lemma 3.2 to the χij in hPΣn ∼= Kn⋊ hPΣn−1. Indeed, the χin and
the χni are in Kn, and that the other χij belong to hPΣn−1. Hence, Kn is generated by
the conjugates of the χin and the χni by products of the other χij and their inverses.
In fact, more is true:

Lemma 3.3. The group Kn is generated by the χin and the χni.

Proof. We use the above relations to show that the subgroup H of Kn generated by
the χin and the χni is normal in hPΣn, that is: [hPΣn, H ] ⊆ H .

The bracket [χin, χαβ ] is obviously in H if α = n or β = n. Otherwise, it is trivial,
except possibly when α = i or β = i. In the first case (since χnβ and χiβ commute):

1 = [χin, χnβχiβ] = [χin, χnβ](
χnβ[χin, χiβ]),

whence [χin, χiβ] ∈ H. In the second case:

1 = [χinχαn, χαi] = (χin[χαn, χαi])[χin, χαi],

so, using the first case: [χin, χαi] ∈ H .
In a similar fashion, the bracket [χni, χαβ ] belongs to G if α = n or β = n. Other-

wise, it is trivial, except when α = i. But in this case:

1 = [χni, χiβχnβ] = [χni, χiβ](
χnβ[χin, χnβ]),

so that [χni, χiβ] ∈ H . Thus, H is stable under conjugation by all generators of hPΣn,
so it is normal in hPΣn.

Remark 3.4. We have used only the McCool relations here, so the analogue of Lemma
3.3 is also true in PΣn.
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By looking at how elements of Kn act on xn, we get a split projection qn from Kn

onto RFn−1. Namely, if ϕ ∈ Kn is an automorphism sending each xi to x
wi

i , qn sends
ϕ onto the class wn ∈ RFn/xn ∼= RFn−1. This is well-defined, because of Lemma 1.16:

xvn = xwn ⇔ xvw
−1

n = 1 ⇔ vw−1 ∈ C(xn) = N (xn) ⇔ v = w.

Moreover, this defines a morphism. Indeed, if ϕ and ψ send xn respectively to xwn
n and

xvnn , then:

ψϕ(xn) = ψ(xwn

n ) = xvnψ(wn)
n ,

and since ψ ∈ Kn, we have ψ(wn) = wn, whence:

qn(ψϕ) = vnψ(wn) = vnwn = qn(ψ)qn(ϕ).

This morphism qn is a retraction of the inclusion tn of RFn−1
∼= RFn/xn into Kn

sending w ∈ RFn to the automorphism fixing all xi save xn, which is sent to xwn . If we
call K′

n the kernel of qn, we thus get a decomposition:

Kn = K′
n ⋊ RFn−1. (3.4.1)

Lemma 3.5. The above decomposition is hPΣn−1-equivariant, with respect to the ac-
tion of hPΣn−1 on Kn (and on K′

n ⊂ Kn) coming from conjugation in hPΣn, and to the
canonical action of hPΣn−1 on RFn−1. Precisely, qn and tn are hPΣn−1-equivariant
morphisms.

Proof. If ϕ ∈ Kn sends xi to x
wi

i as above, and χ ∈ hPΣn−1, then χϕχ
−1 sends xn to

x
χ(wn)
n , so that:

qn(χϕχ
−1) = χ(wn) = χ(wn) = χ(qn(ϕ)).

As for the equivariance of tn, if w ∈ RFn−1, both χ · tn(w) · χ−1 and tn(χ(w)) fix all xi
save xn, the latter being sent to x

χ(w)
n , hence they are equal.

Remark 3.6. A similar decomposition holds in hPΣn, replacing RFn−1 by Fn−1. The
same proof works, replacing the equality C(xn) = N (xn) (which is not true in this
case) by the inclusion C(xn) ⊂ N (xn).

Step 3: structure of K′
n

So far, we have not really used the fact that that we consider welded braids up to
homotopy (that is, automorphisms of RFn, not of Fn). In fact, the analogues of the
decomposition results above are true in the group PΣn of welded braids (see Remarks
3.4 and 3.6). We now come to the part where the homotopy relation plays a crucial
role. That is, we are going to use the relations defining RFn in a crucial way. These
relations, saying that each element xi of the fixed basis commutes with its conjugates,
can be re-written as:

∀i 6 n, ∀s, t ∈ RFn, xsxiti = xsti .

In other words, for w ∈ RFn, x
w
i depends only on the class of w modulo xi (that is,

modulo the normal closure of xi). These relations allow us us to say more about the
above decomposition of Kn:
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Lemma 3.7. The kernel K′
n of the projection qn : Kn ։ RFn−1 is an abelian group,

isomorphic to the product of the N (xn)/xi, where N (xn)/xi is the normal closure of
xn inside RFn/xi ∼= RFn−1. Precisely, the identification of N (xn)/xi with a factor of
K′
n is induced by the map:

ci :





N (xn) −→ K′
n

u 7−→

(
xj 7→

{
xui if j = i,

xj else.

)

which is a well-defined group morphism. Furthermore, ci is RFn−1-equivariant, where
RFn−1

∼= 〈χnj〉j acts via automorphisms on the source, and via conjugation on the
target.

Proof. We identify elements w ∈ RFn−1 with their image by tn : RFn−1 → Kn, that is,
we denote by w the automorphism fixing all xi save xn, which is sent to xwn . Applying
Lemma 3.2 to the semi-direct product decomposition (3.4.1), we see that K′

n is gener-
ated by the elements χwin, which we now compute. The automorphism χwin fixes xα if
α /∈ {i, n}. On xi and xn, using that χin(w) ≡ w (mod xn), we compute:

χwin :

{
xi 7−→ xi 7−→ xxni 7−→ x

xwn
i ,

xn 7−→ wxn 7−→ χin(w)xn = wxn 7−→ xn.

From this calculation, we see that all χ = χwin commutes with every χ′ = χvjn, showing
that K′

n is indeed abelian. If j 6= i, this is a consequence of the fact that these
automorphisms act trivially modulo xn:

χ′(x
xwn
i ) = xx

χ′(w)
n

i = x
xwn
i .

For i = j, it follows from the fact that the conjugates of xn commute.
Consider now Ni the subgroup generated by the χwin, for w ∈ RFn−1. All the

elements of Ni are automorphisms fixing all xj save xi, and sending xi to an element
xui , for some u ∈ N (xn). As a consequence, the map ci is a surjection from N (xn) onto
Ni. Since, by definition of the reduced free group, xsxiti = xsti for all s, t ∈ RFn, we see
that ci(v) depends only on the class v of v in RFn−1/xi. We use this to show that ci is
a morphism:

ci(u)ci(v) : xi 7→ ci(u)(x
v
i ) = (xui )

ci(u)(v) = xuvi = ci(uv)(xi).

Now, the kernel of ci is C(xi) ∩ N (xn) = N (xi) ∩ N (xn) (using Lemma 1.16). It thus
induces an isomorphism between N (xn)/(N (xi) ∩ N (xn)) and Ni. Moreover, since it
is the image of N (xn) in RFn/N (xi), this group identifies with the normal closure of
xn inside RFn/xi ∼= RFn−1.

We are left to show that ci is RFn−1-equivariant. It is enough to show that it
commutes with the actions of the generators. If ϕ ∈ 〈χnj〉j 6=i, then xi does not appear
in ϕ(xn), so that:

ci(u)
ϕ :

{
xi 7−→ xi 7−→ xui 7−→ x

ϕ(u)
i ,

xn 7−→ ϕ(xn) 7−→ ϕ(xn) 7−→ xn,

showing that ci(u)
ϕ = ci(ϕ(u)). It remains to check that ci(u)

χni = ci(χni(u)).
ci(χni(u)) identifies with ci(u), since χni acts trivially modulo xi. We thus need to
check that χni commute with all ci(u) (which are all elements in Ni). This comes from

the two relations xxin = x
xui
n (because u ∈ N (xn)) and x

χni(u)
i = xui (because χni acts

trivially modulo xi).
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3.2 The Lie algebra of the reduced McCool group

The decomposition of hPΣn described in Theorem 3.1 induces a decomposition of its
Lie algebra:

Theorem 3.8. The Lie algebra L(hPΣn) decomposes into a semi-direct product:

L(hPΣn) ∼=

[(∏

i<n

〈yi〉

)
⋊ RLn−1

]
⋊ L(hPΣn−1),

where 〈yi〉 is the ideal generated by yi inside RLn−1, and the action of RLn−1 on the
product is the diagonal one.

Proof. From the almost-direct product decomposition hPΣn ∼= Kn ⋊ hPΣn−1, comes
a decomposition of the Lie algebra L(hPΣn) ∼= L(Kn) ⋊ L(hPΣn−1). In the decom-
position of Kn described above (3.4.1), we can replace the normal closure N (xn)/xi of
xn in RFn/xi by the normal closure N (xi)/xn of xi in RFn/xn ∼= RFn−1. Indeed, the
automorphism of RFn exchanging xi and xn induces an isomorphism between these
two, which is RFn−1-equivariant, since xi acts trivially on both of them. We thus have
to compute:

L(Kn) ∼= L

[(∏

i<n

N (xi)

)
⋊RFn−1

]
.

Since this is not a decomposition into an almost direct product, we have to use [Dar19a,

§3.1]: we need to compute Γ
RFn−1
∗ (

∏
N (xi)), which is the product

∏
Γ
RFn−1
∗ (N (xi)),

since RFn−1 acts diagonally. In order to do this, consider the split short exact sequence
of groups:

N (xi) →֒ RFn−1 ։ RFn−1/xi ∼= RFn−2.

From [Dar19a, Prop. 3.4], this gives rise to a decomposition of Γ∗(RFn−1) into a semi-

direct product Γ
RFn−2
∗ (N (xi))⋊ Γ∗(RFn−2), where Γ

RFn−2
∗ (N (xi)) is defined by taking

commutators with N (xi)⋊RFn−2
∼= RFn−1 at each step, so is equal to Γ

RFn−1
∗ (N (xi)).

As a consequence, N∗(xi) := Γ
RFn−1
∗ (N (xi)) is the intersection of Γ∗(RFn−1) with

N (xi). Its associated Lie algebra fits into the short exact sequence:

L(N∗(xi)) →֒ L(RFn−1) ։ L(RFn−2).

Theorem 1.12 ensures that the projection on the right identifies with the projection of
RLn−1 onto RLn−2 sending yi to 0, whose kernel is 〈yi〉. Thus L(N∗(xi)) ∼= 〈yi〉, and
L(N (xi) ⋊ RFn−1) ∼= L(N∗(xi))⋊ L(RFn−1) ∼= 〈yi〉 ⋊ RLn−1, ending the proof of the
theorem.

3.3 The Andreadakis equality

Theorem 3.8 gives a complete description of the graded Lie ring associated to Γ∗(hPΣn).
On the other hand, Theorem 2.9 describes the Lie ring associated with the Andreadakis
filtration hPΣn ∩ A∗(RFn). Using these two results, we are now able to show:

Theorem 3.9. The Andreadakis equality holds for hPΣn.
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Proof. We want to show that the Johnson morphism τ ′ : L(hPΣn) → Der(RLn) is
injective (see the end of §0.1). We make use of the following the commutative diagrams:

L(Kn) L(hPΣn) L(hPΣn−1)

• Derτ (RLn) Derτ (RLn−1),

τ ′ τ ′ τ ′

Where the bottom projection is the one induced by yn 7→ 0. By induction (beginning
at n = 2), using the snake lemma, we only have to prove that the left map is injective,
that is, that τ ′ : L(Kn) → Der(RLn) is. Take an element

ϕ = ((wi), wn) ∈ Γj(Kn) =

(∏

j<n

(Γj(RFn) ∩ N (xn)) /xi

)
⋊ Γj(RFn−1),

meaning that ϕ is the automorphism conjugating xn by wn ∈ Γj(RFn−1) and xi by
wi ∈ Γj(RFn) ∩ N (xn) for i < n, which depends only on the class of each wi modulo
N (xi). Then τ ′j(ϕ) sends each yi (i 6 n) to [yi, wi] ∈ Lj+1(RFn). As a consequence,
the equality τ ′j(ϕ) = 0 would mean that each wi commutes with yi in L(RFn) ∼= RLn.
However, by Lemma 1.17, this would imply that wi ∈ 〈yi〉. However, in the course of
the proof of Theorem 3.8, we have shown that 〈yi〉 = L (Γ∗(RFn) ∩ N (xi)). Thus there
exists vi in Γj(RFn) ∩ N (xi) such that vi = wi, that is, wi ≡ vi (mod Γj+1(RFn)).
But we can replace wi by wiv

−1
i without changing ϕ, so that all the wi can be chosen

to be in Γj+1(RFn). This implies that ϕ ∈ Γj+1(hPΣn), which means that ϕ = 0 in
Lj(hPΣn). This ends the proof that the kernel of τ ′ is trivial, and the proof of the
Theorem.

3.4 Braids up to homotopy

Consider the (classical) pure braid group Pn. It can be embedded into the monoid of
string-links on n strands. These string-links can be considered up to (link-)homotopy,
which means that one adds to the isotopy relation the possibility for each strand to
cross itself. This relation is obviously compatible with the monoid structure, and since
every string-link is in fact homotopic to a braid, this quotient is a quotient of the pure
braid group, called the group of braids up to homotopy, denoted by hPn.

3.4.1 Decomposition and Lie algebra

In [Gol74], Goldsmith described hPn as a quotient of Pn by a finite set of relations.
These relations say exactly that for j < k, the generators Ajk commute with their
conjugates by elements of 〈Aik〉i<k ∼= Fk−1. This means exactly that the free factors in
the decomposition of Pn are replaced by reduced free groups:

hPn+1
∼= RFn ⋊ hPn.

This decomposition first appeared explicitly in [HL90], where a more topological proof
is described.

Such a decomposition is compatible with the decomposition of the (classical) pure
braid group, which means that the canonical projections give a morphism of semi-direct

22



products:

Fn Pn+1 Pn

RFn hPn+1 hPn.

(3.9.1)

Since Goldsmith’s relations are commutation relations, the projection from Pn+1

onto hPn+1 induces an isomorphism between P ab
n+1 onto hP ab

n+1. As a consequence,
since the decomposition Pn+1

∼= Fn ⋊ Pn is an almost-direct product decomposition,
the decomposition hPn+1

∼= RFn ⋊ hPn also is. It thus induces a decomposition of
the lower central series and of the corresponding Lie ring. Precisely, we get iterated
semi-direct product decompositions:

Γj(hPn+1) = Γj(RFn)⋊ Γj(hPn), (3.9.2)

which induces such decompositions on the associated graded Lie rings. Thus we get:

Proposition 3.10. The group hPn+1 is n-nilpotent, and its Lie algebra decomposes as
an iterated semi-direct product of reduced free Lie algebras:

L(hPn+1) ∼= L(RFn)⋊ L(hPn) ∼= RLn ⋊ L(hPn).

From this, we can deduce the Hirsch rank of hPn, recovering Milnor’s formula, as
quoted in [HL90, Section 3]:

Corollary 3.11. The group hPn has no torsion and its Hirsch rank is:

rk(hPn) =

n−1∑

k=1

(k − 1)!

(
n

k + 1

)
.

Proof. That it has no torsion (even no torsion in its lower central series) comes from
the fact that the RL[m] do not, according to Proposition 1.9. The same proposition
gives us the ranks of the RL[m]k, allowing us to compute:

rk (Lk(hPn)) =
n−1∑

m=1

rk (RL[m]k) = (k − 1)!

n−1∑

m=1

(
m

k

)
= (k − 1)!

(
n

k + 1

)
,

the last equality being obtained by iterating Pascal’s formula, or by a combinatorial
proof (replacing the choice of k elements t1, ..., tk among m elements, with m ranging
from k to n−1, by the choice of k+1 elements t1, ..., tk, m+1 among n elements).

Let us also mention that we can deduce from the decomposition of L(hPn) de-
scribed in Proposition 3.10 and from the usual presentation of the pure braid group a
presentation of this Lie ring, which is a quotient of the Drinfeld-Kohno Lie ring L(Pn)
of infinitesimal braids (whose rational version was introduced in [Koh85]).

Corollary 3.12. The Lie ring of hPn is generated by tij (1 6 i, j 6 n), under the
Drinfeld-Kohno relations:





tij = tji, tii = 0 ∀i, j,

[tij , tik + tkj ] = 0 ∀i, j, k,

[tij , tkl] = 0 if {i, j} ∩ {k, l} = ∅,

to which are added, for each m, the vanishing of Lie monomials in the tim (i < m)
with repetition.
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Proof. The proof in the classical case (see for instance to the appendix of [Dar19a])
adapts verbatim, by considering reduced free Lie rings instead of free Lie rings.

Remark that as in the definition of the reduced free Lie ring (Definition 1.6 – see
also Remark 1.8), one can give a simpler finite presentation by considering, for each
m, only linear Lie monomials in the tim (i < m) of length at most m.

3.4.2 The Andreadakis problem

The semi-direct product RFn ⋊ hPn described above is the same thing as an action of
hPn on RFn, also described by a morphism from hPn to Aut(RFn). This is the homo-
topy Artin action, that we now study, using the fact that it is encoded by conjugation
inside Pn+1 = RFn ⋊ hPn.

First, remark that this action is by basis-conjugating automorphisms. In fact, the
compatibility diagram (3.9.1) gives rise to a commutative diagram:

Pn AutC(Fn)

hPn AutC(RFn),

the morphism on the left being surjective by 2.10. The top map, which is the Artin
action, is injective (the action is faithful) and its image is exactly the subgroup of
basis-conjugating automorphisms fixing the boundary element x1 · · ·xn [Bir75, Th. 1.9].
Habegger and Lin have shown that the analogous statements are true for hPn [HL90,
Th. 1.7]: the homotopy Artin action induces an isomorphism between hPn and the
group Aut∂C(RFn) of basis-conjugating automorphisms of RFn preserving the product
x1 · · ·xn. In their proof, they show that this group admits the same decomposition as
hPn, and the pieces of these decompositions identify under the Artin morphism. We
will recover the faithfulness of the homotopy Artin action as part of our answer to the
Andreadakis problem for hPn ⊂ AutC(RFn) (see Cor. 3.14 below).

Theorem 3.13. The Andreadakis equality holds for hPn, embedded into Aut(RFn) via
the Artin action.

Proof. We adapt the proof for Pn given in [Dar19a]. Let w ∈ hPn, and suppose that
w acts on RFn as an element of Aj. We want to show that it belongs to Γj(hPn). Our
hypothesis can be written as:

[w,RFn] ⊆ Γj+1(RFn),

where the bracket is computed in RFn ⋊ hPn, which is exactly hPn+1. Moreover, from
the decomposition of the lower central series of hPn+1 described above (§3.4.1), we
deduce that Γj(hPn) = hPn ∩ Γj(hPn+1), so that the conclusion we seek is in fact
w ∈ Γj(hPn+1). Let us comb w: we write w = βn · · ·β2 ∈ RFn−1 ⋊ (RFn−2 ⋊ (· · · ⋊
RF1) = hPn. Again, because of the decomposition of the lower central series of hPn,
we need to show that each βi is in Γj(Pn+1). In the rest of the proof, we often write Γk
for Γk(hPn+1), its intersection with the subgroups we consider being their own lower
central series, because of (3.9.2).

Let us suppose that w /∈ Γj(hPn+1). Then w ∈ Γk − Γk+1 for some k < j. Let i be
maximal such that βi /∈ Γk+1. On the one hand, the generator Ai,n+1 ∈ RFn commutes
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with all βk with k < i, so that [w,Ai,n+1] ≡ [βi, Ai,n+1] (mod Γk+2). Moreover, by
hypothesis, [w,Ai,n+1] ∈ Γj+1 ⊆ Γk+2, so that [βi, Ai,n+1] ∈ Γk+2. Since βi has degree k
and Ai,n+1 has degree 1 in the lower central series, this means that [βi, Ai,n+1] = 0 in
the Lie algebra. On the other hand, βi and Ai,n+1 belong to another copy of RFn inside

hPn+1, namely 〈A1,i, ..., Ai−1,i, Ai,i+1, ...Ai,n+1〉. We denote this copy by R̃Fn. Remark

that the equality Γ∗(R̃Fn) = R̃Fn ∩ Γ∗(hPn+1) is also true for this copy of RFn, as one
sees by switching the strands i and n + 1 in the reasoning above. But then we can
apply Lemma 1.17: since βi commutes with the generator Ai,n+1 of L(R̃Fn) ∼= RLn, it

must belong to the Lie ideal of L(R̃Fn) generated by Ai,n+1. But this is impossible: by
definition of βi, the generator Ai,n+1 cannot appear in βi. We thus get a contradiction,
and our conclusion.

From this, we can recover the injectivity part of the result of Habegger and Lin:

Corollary 3.14. [HL90, Th. 1.7]. The homotopy Artin action is faithful.

Proof. If w ∈ hPn acts trivially on RFn, then w ∈ {1} = An(RFn), so that w ∈
Γn(hPn) = 1.

This injectivity of hPn → hPΣn is weaker than our statement, which says that the
lower central series are compatible, since they both are the trace of the Andreadakis
filtration A∗(RFn):

Corollary 3.15. For all n, hPn ∩ Γ∗(hPΣn) = Γ∗(hPn).

Proof. Combine Theorems 3.13 and 3.9.

4 Topological interpretation

Consider the group Pn of pure braids. Via the decomposition Pn+1
∼= Fn ⋊ Pn, we get

and action of Pn on the free group Fn, which is the classical Artin action. Geometrically,
it is best understood as the action of Pn, which is the motion group of n points in a
plane, on the fundamental group of the plane with n points removed. As mentioned
above (§3.4.2), this action is faithful, giving an embedding of Pn into Aut(Fn), whose
image is exactly the subgroup Aut∂C(Fn) of automorphisms fixing the conjugacy class
of each generator xi, and preserving the boundary element x1 · · ·xn [Bir75, Th. 1.9].

An analogous statement is true for the group PΣn of pure welded braids. This
group is a group of tube-shaped braids in R4, and can also be seen as the (pure)
motion group of n unknotted circles in the three-dimensional space (see [Dam17] on
the different definitions on this group). It acts on the fundamental group of R3 with n
unknotted circles removed, which is again the free group Fn. This Artin action is again
faithful, and its image is exactly the subgroup AutC(Fn) of automorphisms fixing the
conjugacy class of each generator xi [Gol81].

The same statements are true up to (link-)homotopy. These have been recalled for
braids in §3.4. For welded braids, link-homotopy of string links also makes sense (in
the four-dimensional space), and for welded diagrams (which are another point of view
on these objects), this relation correspond to virtualization of self-crossings. It has
been shown in [ABMW17, Th. 2.34] that the group of welded braids up to homotopy
is isomorphic to the group AutC(RFn) = hPΣn of automorphisms or RFn fixing the
conjugacy class of each generator xi.
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We sum up the situation in the following table:

Up to isotopy Up to homotopy

Pn Aut∂C(Fn)

PΣn AutC(Fn).

∼=

∼=

hPn Aut∂C(RFn)

hPΣn AutC(RFn).

∼=

∼=

(4.0.1)

4.1 Milnor invariants

Here we interpret our work in terms of Milnor invariants of welded braids up to ho-
motopy. Milnor invariants were first defined in [Mil57] for links, as integers with some
indeterminacy. It appeared later that they were more naturally defined for string links,
for which they are proper integers, the indeterminacy previously observed correspond-
ing exactly to a choice of presentation of a link as the closure of a string-link. Here we
focus on their definition for braids, which is not a restrictive choice when working up
to homotopy.

If β is a pure braid, we can look at its image via the Artin action, which is a
basis-conjugating automorphism xi 7→ xwi

i . The element wi is well-defined up to left
multiplication by x±1

i , so it is well-defined if we suppose that xi does not appear in
the class wi ∈ F ab

n . For each i, one can look at the image of the element wi ∈ Fn by

the Magnus expansion µ : Fn →֒ T̂ [n], getting an element of the completion of the

free associative ring T̂ [n] on n generators X1, ..., Xn, which can be seen as the ring of
non-commutative power series on these generators. Recall that the Magnus expansion

is defined by xi 7→ 1+Xi, and it is is an injection of the free group Fn into T̂ [n]
×

. Then
the Milnor invariants are the coefficients of the µ(wi). Precisely, if i 6 n is an integer,
and I = (i1, ..., id) is any list of positive integer, then µI,i(β) is the coefficient of the
monomial Xi1 · · ·Xid in µ(wi). Moreover, we call d the degree of the Milnor invariant
µI,i.

The first non-trivial Milnor invariants of β can also be obtained through the Johnson
morphism. Namely, let d be the greatest integer such that β ∈ Ad(Fn) (we identify β
with its image via the Artin action). By definition of wi, xi does not appear in the
class wi ∈ F ab

n . Thus, we deduce from [Dar19a, Lem. 6.3] that for all j > 1, [xi, wi] ∈
Γj+1(Fn) ⇔ wi ∈ Γd(Fn). This implies that d is maximal such that all wi belong to
Γj(Fn). The image of β ∈ Ad/Ad+1 by the Johnson morphism is the derivation of the
free Lie algebra L[n] given by xi 7→ [xi, wi], where wi ∈ Γd/Γd+1(Fn) ∼= L[n]d is the
class of wi, possibly trivial (but non-trivial for at least one i).

Now, we can watch the element wi as being inside T [n]d, and the inclusion of L[n]
into T [n] is exactly the graded map induces by the Magnus expansion µ. Precisely, if

we call T̂ d1 the ideal of T [n] defined by elements of valuation at least d (the valuation of
a power series being the total degree of its least nontrivial monomial), then Γd(Fn) =

µ−1(1 + T̂ d1 ), and the induced map µ : Γd/Γd+1(Fn) →֒ T̂ d1 /T̂
d+1
1 identifies with the

canonical inclusion of L[n]d into T [n]d. As a consequence, the class wi is the degree-d
part of µ(wi), which has valuation at least d. We sum this up in the following:

Proposition 4.1. The group Ad(Fn) ∩ Pn is the set of braids with vanishing Milnor
invariants of degree at most d − 1. Moreover, Milnor invariants of degree d of these
braids can be recovered from their image by the Johnson morphism τ : Ad/Ad+1 →֒
Derd(L[n]).
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Obviously, since we have not used anywhere that the automorphism β preserves
the boundary element, these constructions work for all welded braids (that is, for all
basis-conjugating automorphisms of Fn).

Let us now explain how to define Milnor invariants for (welded) braids up to ho-
motopy. First, we need to replace Fn by RFn. Then we can assume that xi does not
appear in wi (since x

uxiv
i = xuvi in the reduced free group). The Magnus expansion

must be replaced by the morphism (1.11.1), and we get only Milnor invariants without
repetitions (that is, I must be without repetition in order to define a non-trivial µI,i).
Everything works as described above (using the work done in §1.2), so that Ad(Fn)
is exactly the subgroup where invariants of degree at most d − 1 vanish. So we can
reformulate our theorems 3.9 and 3.13 as:

Theorem 4.2. Homotopy Milnor invariants of degree at most d classify braids up to
homotopy (resp. welded braids up to homotopy) up to elements of Γd+1(hPn) (resp. up
to elements of Γd+1(hPΣn)).

Remark 4.3. The group Γd+1(hPn) can also be seen as the set of braids which are
homotopic to elements of Γd+1(Pn).

4.2 Arrow calculus

We now explain briefly the precise link between our work and the work of Meilhan and
Yasuara in [MY19]. We will not give any definition here; the reader is referred to their
paper for basic definitions and details.

Our understanding of the link between our work and theirs relies on the following
remark: Ccalculus of arrows and w-trees is the same thing as commutator
calculus in the welded braid group PΣn. Precisely, when attaching a tree T to a
diagram D, one has to select the points where the root and leaves of T are attached.
If we consider a little arc around each of these points, we see that doing so consists
in choosing n strands (which inherit there orientation from D). Then the data of T
describes an element of the braid group on these strands, and doing the surgery along
T is exactly the same as inserting the braid described by T at the chosen spot on D,
to get the new diagram DT . Namely, a single arrow from a strand j to a strand i
describes the insertion of the braid χij, and a tree with root at i describes the insertion
of a commutator between the χij , for varying j (note that any number of strands can
be added).

In the light of this remark, we can see that many relations they describe corre-
spond to algebraic relations written in the present paper. Also, two diagrams are
wk-equivalent if and only if they can be obtained from one another by inserting braids
in Γk(Pn) (for varying n). And we can in fact deduce our Andreadakis equality (Theo-
rem 4.2) from their classification theorem of welded string links up to homotopy [MY19,
Th. 9.4]. They fell short of doing so, stating only their weaker corollary 9.5. In fact,
they did not look for the precise identification between trees and commutator calculus
that I have described here. They only knew that something of the sort should be true,
but were interested in other matters at the time.

5 A presentation of the homotopy loop braid group

In [Gol74], Goldsmith gave a presentation of the braid group up to homotopy (see also
§3.4). She proved that, to a presentation of the pure braid group with generators Aij ,
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one has to add the family of relations making each 〈A1k, ..., A(k−1)k〉 into a reduced
free group. The goal of the present section is to give a similar presentation of the loop
braid group up to homotopy. The situation here it more intricate: to a presentation of
PΣn with generators χij , we have to add three families of relations:

(R1) The relations saying that for all m, 〈χmk〉k<m is reduced.

(R2) [χim, w, χjm] = 1, for i, j < m and w ∈ 〈χmk〉k<m.

(R3) [χim, w, χmi] = 1, for i < m and w ∈ 〈χmk〉k<m,k 6=i.

Remark that because of the symmetry with respect to the generators of RFn, these
relations are still true if we replace each symbol ” < ” by a symbol ” 6= ”, which would
give a more symmetric set of relations.

Remark 5.1. These relations also describe the quotient of the group wBn of all welded
braids by the homotopy relation. Indeed, performing a homotopy cannot move end-
points of string links, so that the subgroup of relations must be a subgroup of the pure
welded braid group, like in the classical setting [Gol74, Lem. 1].

5.1 Generators of nilpotent groups

One key argument in the determination of a presentation of hPΣn consists in lifting
generators from Lie rings to groups. Such generators will be obtained from combina-
torics in the free Lie ring (see our appendix), and their lifting will use the nilpotence
of the groups involved.

Convention 5.2. By a finite filtration, we always mean a separating one: a strongly
central series G∗ is finite if their exists a i > 1 such that Gi = {1}. In particular, if
there exists a finite strongly central series on G, then G must be nilpotent (recall that
Gi ⊇ ΓiG).

Lemma 5.3. Let G∗ be a finite strongly central filtration on a (nilpotent) group G.
Suppose that the xα are elements of G such that their classes xα generate the Lie ring
L(G∗). Then the xα generate G.

Proof. Consider the subgroup K of G generated by the xα. The canonical morphism
from L(G∗∩K) to L(G∗) comes from an injection between filtrations, so it is injective.
By hypothesis, it is also surjective. By induction (using the five-lemma), we deduce
that K/(Gj ∩ K) = G/Gj, for all j. Since there exists j such that Gj = {1}, this
proves that K = G, whence the conclusion.

The definition of the Lyndon monomials Pw (§6.B) makes sense in any group, if we
interpret letters as elements of the group, and brackets as commutators.

Proposition 5.4. Let G be a nilpotent group generated by a set X, and x ∈ X. Then
the normal closure N (x) of x in G is generated by Lyndon monomials Pw, for Lyndon
words w ∈ X∗ containing x.

Proof. By taking images in G, it is enough to show this for the free nilpotent group
Fj[X ] := F [X ]/Γj+1. In this case, N (x) is the kernel of the canonical projection from
from Fj[X ] to Fj [X − {x}]]. Setting N∗(x) := N (x) ∩ Γ∗(Fj [X ]), we get a short exact
sequence of filtrations translating into a short exact sequence of Lie rings:

L(N∗(x)) L(Fj [X ]) L(Fj[X − {x}]).
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Since L(Fj[X ]) is the j-th truncation of the free Lie algebra on Y = X , and the projec-
tion p is the canonical one (sending y = x to 0), the subring L(N∗(x)) identifies with
the j-th truncation of the ideal 〈y〉 of L[Y ]. This ideal is linearly generated by Lyndon
Lie monomials on Y containing y. Since these are the classes of the corresponding
monomials in the group Fj [X ], Lemma 5.3 gives the desired conclusion.

Corollary 5.5. Let X be a set, and x ∈ X. The normal closure N (x) of x in RF [X ] is
free abelian on the Lyndon monomials Pw, for Lyndon words without repetition w ∈ X∗

containing x.

Proof. It is enough to show this for X finite. Then RF [X ] is nilpotent, and we can
apply Proposition 5.4 to show that Lyndon monomials without repetition containing x
generate N (x). Indeed, in RF [X ], the only non-trivial Lyndon monomials in elements
of X are those without repetition. Moreover, N (x) is abelian, by definition of RF [X ].
We are thus left with proving that these elements are linearly independent. But any
non-trivial linear relation between them would give a non-trivial linear relation between
Lyndon polynomials without repetition in L(RF [X ]) (take l to be the minimal length
of the monomials involves, and project the relation into Γl/Γl+1). Such a relation
cannot hold (Proposition 1.9), so this proves the corollary.

If g, g1, ..., gm are elements of a group, let us denote by Lynd(g; g1, ..., gm) the fam-
ily of Lyndon monomials (Pw), where w runs through Lyndon words without repeti-
tion on the letters g, g1, ..., gm which contain g. When considering these sets, we will
choose an order on the letters making all gi greater than g. In that case, elements of
Lynd(g; g1, ..., gm) are of the form [[g, Pv], Pw], where neither v nor w contains g. As
usual, we denote by (g1, ..., ĝi, ..., gm) the (m − 1)-tuple obtained from (g1, ..., gm) by
removing the i-th component.

We now use Cor. 5.5 in order to get a basis of the group K′
n introduced in §3 from

the decomposition obtained in Lemma 3.7.

Lemma 5.6. A basis of the abelian group K′
n is given by:

⋃

i

Lynd(χin;χn1, ..., χ̂ni, ..., χn,n−1).

Proof. We use notations from the proof of Lemma 3.7. Equivariance of the isomor-
phism ci ensures that c−1

i sends the set Lynd(χin;χn1, ..., χ̂ni, ..., χn,n−1) to the set
B := Lynd(xn;χn1, ..., χ̂ni, ..., χn,n−1), the latter brackets being computed in the semi-
direct product (N(xn)/xi)⋊〈χnj〉j . If v ∈ RFn−1, we denote by χv the automorphism of
RFn sending xn to xvn and fixing all other generators (χv was denoted by tn(v) above).
Elements of B are of the form [[xn, χv], χw], where χv and χw are Lyndon monomials
in the χnj (j 6= i), which means exactly that v and w are Lyndon monomials in the
xj (j 6= i, n), since tn : v 7→ χv is a morphism. Recall that the class of χv in the Lie
algebra L(A∗(RFn)) acts on the Lie algebra RLn via the tangential derivation τ(χv)
induced by [χv,−], sending xn to [xn, v] and all other xi to 0. As a consequence, the
class of [[xn, χv], χw] in the Lie algebra L(N∗(xn)/xi) ⊂ RLn is:

τ(χw)τ(χv)(xn) = τ(χw)([v, xn]) = [v, [w, xn]] = [[xn, w], v],

since the derivation τ(χw) vanishes on v. As a consequence, the family B is another
lift of the basis of L(N∗(xn)/xi) considered above, and the same proof as the proof of
corollary 5.5 (in RFn/xi ∼= RFn−1) shows that it is a basis of N (xn)/xi, whence the
result.

29



Remark 5.7. In the semi-direct product (N(xn)/xi) ⋊ 〈χnj〉j which appears in the
proof; the group 〈χnj〉j is isomorphic to RFn−1 but its action is not the conjugation
action.

5.2 The presentation

Let us recall the relations on the χij that will give a presentation of hPΣn:

(R0) The McCool relations on the χij (see the Introduction).

(R1) [χmi, w, χmi] = 1, for i < m, and w ∈ 〈χmk〉k<m.

(R2) [χim, w, χjm] = 1, for i, j < m and w ∈ 〈χmk〉k<m.

(R3) [χim, w, χmi] = 1, for i < m and w ∈ 〈χmk〉k<m,k 6=i.

We now show that they indeed give the presentation that we were looking for:

Theorem 5.8. The pure loop braid group up to homotopy hPΣn is the quotient of PΣn
by relations (R1), (R2) and (R3). As a consequence, it admits the presentation:

hPΣn ∼= 〈χij (i 6= j) | (R0), (R1), (R2), (R3)〉

Proof. Let Gn be the group defined by the presentation of the theorem. The χij in
hPΣn satisfy the above relations. As a consequence, there is and obvious morphism π
from Gn to hPΣn. Since the χij generate hPΣn (Cor. 2.10), this morphism is surjective.
We need to show that it is an isomorphism. We will do that by showing that Gn admits
a decomposition similar to that of hPΣn, and that the pieces in the two decompositions
are isomorphic via π. We do this in three steps, parallel to the proof of Theorem 3.1.

Step 1. We define a projection p̃n from Gn to Gn−1 by sending χij to χij if n /∈ {i, j},
and χin and χnj to 1. This morphism is well defined (from the presentations), and so
is its obvious section s̃n : Gn−1 →֒ Gn. If we denote by K̃n the kernel of p̃n, we get a
semi-direct product decomposition Gn = K̃n ⋊ Gn−1 that fits in the following diagram:

K̃n Gn Gn−1

Kn hPΣn hPΣn−1

p̃n

π π

s̃n

pn

sn

By induction (using the five-lemma), beginning with the isomorphism G2
∼= hPΣ2

∼= Z2

(which is the group 〈χ12, χ21〉 of inner automorphisms of RF2), we only need to show
that the induced morphism between the kernels are isomorphisms.

Step 2. We can apply Lemma 3.2 to the above decomposition of Gn; the proof of
Lemma 3.3 only used the McCool relations, so it carries over without change to show
that K̃n is generated by the χin together with the χnj. This shows directly that the
map from K̃n to Kn is surjective (this fact also comes from the snake lemma and the
induction hypothesis). Consider the map K̃n → Kn ։ RFn, where the second map is
the projection qn from Kn to RFn−1 defined in the proof of Theorem 3.1. This map
sends the χin to 1 and the χnj to the xj . From the relations (R1), we know that the
assignment xj 7→ χnj defines a section t̃n from RFn−1 to K̃n. This shows that the χnj
generate a reduced free group inside K̃n. If we denote by K̃′

n the kernel of q̃n = qn ◦ π,
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we get a semi-direct product decomposition K̃n = K̃′
n ⋊RFn−1, similar to (3.4.1), that

fits in the following diagram:

K̃′
n K̃n RFn−1

K′
n Kn RFn−1

q̃n

π ∼=

t̃n

qn

tn

Step 3. In order to show that the induced projection π : K̃′
n → K′

n is an isomor-
phism, we need to investigate the structure of K̃′

n. By Lemma 3.2, it is generated by
the χwin for w ∈ 〈χnj〉 ∼= RFn−1, and the relations (R2) say exactly that these commute
with each other. Thus K̃n is abelian. Let us fix i and denote by Ñi the subgroup gen-
erated by the χwin. It is the normal closure of χin in the subgroup M̃i generated by χin
and the χnj . Relations (R1) and (R2) imply that χin and the χnj commute with their
conjugates in Mi, which is thus a quotient of RFn. In particular, M̃i is nilpotent, and
we can apply Proposition 5.4 to get that Ñi is generated by Lyndon monomials in χin
and the χnj containing χin. We can even limit ourselves to the subset Lynd(χin; (χnj)j)
of monomials without repetitions, the other ones being trivial by the argument above.
Furthermore, the relations (R3) say exactly that among these, the ones containing χni
vanish. Thus, the abelian group Ñi is generated by Lynd(χin;χn1, ..., χ̂ni, ..., χn,n−1).
Because of Lemma 5.6, we know that these monomials are sent to linearly independant
elements in Ni (in fact, to a basis of this abelian group), so they must be a basis of
Ñi, and the projection π induced a isomorphism between Ñi and Ni. The projection
π : K̃′

n → K′
n, being the direct product of these isomorphisms, is thus an isomorphism,

which is the desired conclusion.

Remark 5.9. The same remarks made at the end of §1.2 for RFn holds true for hPΣn:
it is finitely generated and nilpotent (of class n − 1), so it has a finite presentation.
However, in order to write down such a finite presentation, we need a presentation
of the free (n − 1)-nilpotent group on n2 generators χij . We can then add to such a
presentation the relations relations similar to (R1), (R2) and (R3) that are iterated
brackets of the generators (of any shape) of length at most n−1 to get an explicit finite
presentation of hPΣn. In other words, the latter relations give a finite presentation of
hPΣn as a (n− 1)-nilpotent group.
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5.3 A presentation of the associated Lie ring

Using the above methods, one can also find a presentation of the Lie ring associated
to hPΣn, similar to the presentation of L(hPn) given in Corollary 3.12.

Proposition 5.10. The Lie ring of hPΣn is generated by xij (1 6 i 6= j 6 n), under
the relations: 




[xik + xjk, xij] = 0 for i, j, k pairwise distinct,

[xik, xjk] = 0 for i, j, k pairwise distinct,

[xij , xkl] = 0 if {i, j} ∩ {k, l} = ∅,

to which are added, for each m, the following families of relations:





[xim, [xmi, t]] = 0,

[xim, [xjm, t]] = 0,

[xim, [xmi, t]] = 0,

where, in each case, t describes Lie monomials in the xmk (k < m).

Proof. Since it is very similar to the proof of Theorem 5.8, we only outline the proof.
Let hpn be the Lie ring defined by the presentation of the theorem. The relations are
true for the classes of the χij in L(hPΣn) (as direct consequences of the relations in
the group hPΣn), so that xij 7→ χij defines a projection π from hpn onto L(hPΣn).
One shows that hpn admits a decomposition similar to the decomposition of L(hPΣn)
described in Theorem 3.8. Indeed, the morphism from hpn to hpn−1 sending xij on
xij if n /∈ {i, j} and to 0 else is a well-defined projection p, which is split. From the
relations, reasoning as in the proof of Lemma 3.3, one checks that the xin together with
the xni generate an ideal of hpn, which has to be the kernel kn of p. They one argues
exactly as in the proof of Theorem 5.8 to show (using the first family of relations) that
kn decomposes as a semi-direct product k′n ⋊ RLn−1. Moreover, the projection π is
compatible with the decompositions of hpn and L(hPΣn). Using the five lemma, we
see that we only have to check that π induces and isomorphism between k′n and

∏
〈yi〉.

Since we know a basis of the target, whose elements are Lie monomials on the χin and
χni, we are left with showing that the corresponding Lie monomials on the xin and xni
generate k′n. Like in the proof of Theorem 5.8, the last two families of relations ensure
exactly that, so that π is indeed an isomorphism.

Remark 5.11. In the presentation, one can consider only the relations where t is a
linear monomial of length at most m.

Remark 5.12. It is a difficult open question, very much related to the Andreadakis
problem for PΣn, to decide whether the first three relations (the linearize McCool
relations) define a presentation of the Lie ring of PΣn. It is only known to hold
rationally [BP09].
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6 Lyndon words and the free Lie algebra

For the comfort of the reader, we gather here some basic facts about Lyndon words.
These describe a basis of the free Lie algebra, and we give a self-contained proof of
this classical result involving as little machinery as possible. Our main sources for this
appendix were Serre’s Lecture Notes [Ser06] and Reutenauer’s book [Reu03, 5.1].

6.A Lyndon words

Let A be a set (called an alphabet) endowed with a fixed total order. We denote by
A∗ the free monoid generated by A. Elements of A∗ are words in A, that is, finite
sequence of elements of A. The set A∗ is endowed with the usual dictionary order
induced by the order on A.

The length of a word w is denoted by |w|. If v and w are words, v is a suffix (resp.
a prefix ) of w if there exists a word u such that w = uv (resp. w = vu). It is called
proper when it is nonempty and different from w.

Definition 6.1. The standard factorisation of a word w of length at least 2 is the
factorisation w = uv where v is the smallest proper suffix of w.

Definition 6.2. A Lyndon word is a nonempty word that is minimal among its
nonempty suffixes.

Lemma 6.3. If w = uv is a standard factorisation, then v is a Lyndon word, and if
w is Lyndon then so is u.

Proof. The fact that v is a Lyndon word is clear. Suppose that w is a Lyndon word.
Let x be any proper suffix of u. Since uv = w < xv, if x is not a prefix of u, then
u < x. Otherwise, u = xy for some nonempty y, but then xyv < xv implies yv < v,
which contradicts the definition of v.

The following proposition is the most basic result in the theory of Lyndon words:

Proposition 6.4. Every word w ∈ A∗ factorizes uniquely as a product l1 · · · ln where
n is an integer, the li are Lyndon words and l1 > l2 > ... > ln. We call this the Lyndon
factorization of w.

Proof. We first prove unicity, by proving that in a factorization w = l1 · · · ln into a
non-increasing product of Lyndon words, ln is the minimum nonempty suffix of w.
Indeed, let v be a suffix of w. Decompose v as ylk+1 · · · ln where y is a nonempty suffix
of lk (possibly equal to lk). Then v > y > lk > ln.

We show existence by induction on the length of w: take ln to be the smallest
nonempty suffix of w. Then w = w′ln, and ln is a Lyndon word. Moreover, a nonempty
suffix of w′ cannot be strictly smaller than ln. Indeed, if y is a nonempty suffix of w′

such that y < ln, then either y is a (proper) prefix of ln or yln < ln. The second case
contradicts the definition of ln. In the first case, by definition of ln, we get yln > ln = yu,
whence ln > u. Thus both cases contradict the definition of ln: we must have y > ln.
As a consequence, a factorisation of w′ satisfying the conditions of the proposition gives
such a factorisation for w, whence the conclusion.

Proposition 6.4 allows us to identify the abelian group ZA∗ with the symmetric
algebra S∗

Z(Lynd). Note that this linear identification does not preserve the ring struc-
ture, since the Lyndon factorization of a product uv need not be the product of the
Lyndon factorization of u with that of v.
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6.B The Lyndon basis of the free Lie algebra

In the sequel, V = Z{A} is the free abelian group generated by the alphabet A. We
denote by LV the free Lie algebra on V and by TV the free associative algebra on
V . Recall that their universal properties imply that TV is the enveloping algebra of
LV . We denote by ι : LV → TV the canonical Lie morphism between them. Remark
that we do not know a priori that this map is injective (we do not assume the PBW
theorem to be known).

Define an application w 7→ Pw from the set Lynd of Lyndon word on A to LV as
follows:

• Take Pa := a ∈ V for any letter a ∈ A;
• If w is a Lyndon word, consider its standard factorisation w = uv and define Pw
to be [Pu, Pv] ∈ LV ;

Lemma 6.5 (Standard factorization of a product of Lyndon words). Let u and v be
Lyndon words. Then uv is a Lyndon word if and only if u < v. Moreover, suppose that
u < v, and denote by u = xy be the standard factorization of u, if u is not a letter.
Then the standard factorization of uv is u · v if u is a letter or v 6 y, and x · yv if
v > y.

Proof. If uv is a Lyndon word, then u < uv < v. Conversely, suppose that u < v.
Then either uv < v or u is a prefix of v. But in this second case, v = uw, and v < w
implies that uv < uw = v, so in both cases uv < v. Now, take a proper suffix w of uv.
If w is a suffix of v, then w > v > uv. If not, then w = w′v with w′ a proper suffix of u.
Then u < w′ implies uv < w′v = w, finishing the proof that uv is a Lyndon word.

If u is a letter, then v is clearly the minimal proper suffix of uv. Suppose that v 6 y.
Take any proper suffix w of u. Since y is the smallest one, we have v 6 y 6 w < wv.
As a consequence, v has to be the minimal proper suffix of uv, whence the result in
this case. If v > y, then yv is a Lyndon word by the first part of the proof. Moreover,
if w is a proper suffix of u, then y 6 w, so that yv 6 wv. Hence yv is the smallest
suffix of uv, as needed.

The following proposition and its proof are adapted from [Ser06, Th. 5.3]. The
proof is arguably the most technical one in the present appendix:

Proposition 6.6. The Pw for w ∈ Lynd linearly generate LV .

Proof. We only need to show that the Z-module generated by the Pw is a Lie subalge-
bra. We show that if u and v are Lyndon words, then [Pu, Pv] is a linear combination of
Pw, with |w| = |u|+ |v| and w < max(u, v), by induction on |u|+ |v| and on max(u, v).
To begin with, if u and v are letters, then we can suppose that u < v (otherwise, use
the antisymmetry relation). Then [Pu, Pv] = Puv, and uv < v.

Now, take (u, v) such that |u| + |v| > 2, and suppose that our claim is proven for
every (u′, v′) such that |u′|+ |v′| < |u|+ |v|, or |u′|+ |v′| = |u|+ |v| and max(u′, v′) <
max(u, v). Using antisymmetry if needed, we can assume that u < v. We then use
Lemma 6.5. When u is not a letter, consider the standard factorization u = xy of
u. If u is a letter or y > v, then u · v is the standard factorization of uv, whence
[Pu, Pv] = Puv, and uv < v, proving our claim. Suppose that y < v. Then:

[Pu, Pv] = [[Px, Py], Pv] = [[Px, Pv], Py] = [Px, [Py, Pv]].

Since |x|, |y| < |u|, we can use the induction hypothesis to write [Px, Pv] (resp. [Py, Pv])
as a linear combination of Pw (resp. Pt) such that |w| = |x|+ |v| (resp. |t| = |y|+ |v|),
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and w < v (resp. t < v). Then, using that x, y < v (since x < xy = u < y < v), we
can apply the induction hypothesis to [Pw, Py] (resp. to [Px, Pt]) to prove our claim,
ending the proof of the proposition.

The application w 7→ Pw extends to a map from A∗ to TV defined as follows:

• Take Pa := a ∈ V for any letter a ∈ A;

• If w is a Lyndon word, consider its standard factorization w = uv and define Pw
to be [Pu, Pv] ∈ LV ;

• If w is any word, consider its Lyndon factorization w = l1 · · · ln. Define Pw to be
Pl1 · · ·Pln ∈ TV.

The next lemma [Reu03, Th. 5.1] will play a key role in what follows.

Lemma 6.7. For any word w, the polynomial Pw is the sum of w and a linear combi-
nation of greater words of the same length as w.

Proof. Remark that if l is a Lyndon word and l = uv with u and v nonempty, then
uv = l < v < vu.

We use this to show the lemma for Lyndon words, by induction on their length.
For letters, the result is obvious. Let l be a Lyndon word, and consider its standard
factorization l = uv. Then u and v are Lyndon word, and u < v (Lemmas 6.3 and 6.5).
If the result is true for u and v, then Pl = [Pu, Pv] is a linear combination of elements of
the form [s, t] = st− ts, where |s| = |u|, |t| = |v|, s > u and t > v. Then ts > vu > uv,
and st > uv, with equality if and only if s = u and t = v. Thus the word l = uv
appears with coefficient 1 in the decomposition of Pl, and Pl− l is a linear combination
of greater words, of the same length as l, which proves our claim.

Now, if w is any word, consider its Lyndon factorization w = l1 · · · ln. Then Pw :=
Pl1 · · ·Pln is a linear combination of x1 · · ·xn, where each xi is a word satisfying |xi| =
|li| and xi > li. As a consequence, |x1 · · ·xn| = |l1 · · · ln|, and x1 · · ·xn > l1 · · · ln, with
equality if and only if each xi is equal to li. This last case only appears with coefficient
1, so the lemma is proved.

The above application extends to a linear map P : ZA∗ → TV .

Proposition 6.8. The application P : ZA∗ → TV defined above is injective.

Proof. Let m be a linear combination of words in the kernel of P . Suppose that w is
such that no word smaller that w appears in m. Let λ be the coefficient of w in m.
Then by Lemma 6.7, λ is also the coefficient of w in Pm = 0, so it must be trivial.
Thus, by induction, all coefficients of m have to be trivial, whence m = 0 and P is
injective.

We can now sum this up as the main result of this appendix:

Theorem 6.9. The map P induces a graded linear isomorphism:

Z{Lynd} ∼= LV.

Otherwise said, the family (Pw)w∈Lynd is a linear basis of LV .

Proof. The Pw generate LV (Prop. 6.6) and, since their images in TV are linearly
independent (Prop. 6.6), they must be linearly independent.
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6.C Primitive elements and the Milnor-Moore theorem

In proving the previous result, we have only used basic linear algebra, and the com-
binatorics of Lyndon words. In order to convince the reader of how powerful these
techniques are, we will now recover the Milnor-Moore theorem for the algebra TV ,
using not much more machinery. The only additional tools we need are coalgebra
structures and primitive elements.

The free commutative ring on the free abelian group V is denoted by S∗(V ). It is
endowed with its usual Hopf algebra structure, whose coproduct is the only algebra
morphism ∆ : S∗(V ) → S∗(V )⊗ S∗(V ) sending each element v of V to v ⊗ 1 + 1⊗ v.
That is, it is the only bialgebra structure on S∗(V ) such that V consists of primitive
elements. In fact, these are the only primitive elements in S∗(V ) [Ser06, Th. 5.4]:

Proposition 6.10. The set of primitive elements of S∗(V ) is V .

Proof. By definition of the coproduct of S∗(V ), the subspace V is made of primitive
elements. To show the converse, it is helpful to see S∗(V ) as the algebra Z[Xi] of
polynomial in indeterminates Xi. Then S∗(V )⊗ S∗(V ) identifies with Z[X ′

i, X
′′
i ], and

the coproduct sends Xi to X ′
i + X ′′

i . Since it is an algebra morphism, it sends a
polynomial f(Xi) to f(X ′

i + X ′′
i ). Thus primitives elements are those f such that

f(X ′
i +X ′′

i ) = f(X ′
i) + f(X ′′

i ), i.e. additive ones. But since we work over Z, these are
only the linear ones, which is the desired conclusion.

The algebra TV is endowed with a Hopf structure defined exactly as the one for S∗V :
it is the unique bialgebra structure such that elements of V are primitive ones. Since
primitive elements are a Lie subalgebra, they contain the Lie subalgebra generated
by V (which is the image ι(LV ) of the canonical morphism ι : LV → TV ).

Recall that Proposition 6.4 allows us to identify ZA∗ with the symmetric algebra
S∗
Z(Lynd). We will show the following:

Theorem 6.11 (Milnor-Moore). The application P : S∗
Z(Lynd) → TV defined above

in §6.B is an isomorphism of coalgebras.

Proof. Injectivity has already been shown (Prop. 6.8). Let us first prove surjectivity.
Let p 6= 0 be a homogeneous element of TV . Let w be the smallest monomial appearing
in p, with coefficient λ. Then p − λPw is homogeneous and contains only monomials
greater than Pw (see Lemma 6.7). By repeating this process, we can write p as a linear
combination of Pw. Indeed, this process stops, since we consider only the finite set of
words of fixed length (equal to the degree of p) whose letters appear in some monomial
of p.

We are left to show that the application P : w 7→ Pw preserves the coproduct. We
first remark that if l is a Lyndon word, then l is primitive in S∗

Z(Lynd), and Pl ∈ ι(LV )
is primitive in TV . For any word w, consider its Lyndon factorization w = l1 · · · ln.
Then we can write:

∆(Pw) = ∆(Pl1) · · ·∆(Pln)

= (Pl1 ⊗ 1 + 1⊗ Pl1) · · · (Pln ⊗ 1 + 1⊗ Pln)

=
∑

n=X⊔Y

Plx1 · · ·Plxp ⊗ Ply1 · · ·Plyq ,
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where the sum is over all partitions of the set n = {1, ..., n} into subsets X = {x1 <
· · · < xp} and Y = {y1 < · · · < yq}. As a consequence:

∆(Pw) =
∑

n=X⊔Y

Plx1 ···lxp ⊗ Ply1 ···lyq

= (P ⊗ P )


 ∑

n=X⊔Y

lx1 · · · lxp ⊗ ly1 · · · lyq




= (P ⊗ P )(∆(l1) · · ·∆(ln)) = (P ⊗ P )(∆(w)),

which ends the proof of the theorem.

Corollary 6.12. The canonical map ι : LV → TV identify LV with the Lie algebra
of primitive elements in TV .

Proof. Thanks to Theorem 6.11 and Theorem 6.9, this map identifies with Z{Lynd} →
S∗
Z(Lynd). But Proposition 6.10 ensures that the set of primitive elements of the

coalgebra S∗
Z(Lynd) is exactly Z{Lynd}, whence the result.

Remark 6.13. Neither our identification of the free abelian group Z{Lynd} with the
primitives of TV nor our proof of Theorem 6.11 requires the use of the fact that Lyndon
words generate LV (Prop. 6.6) : we only used that they are linearly independent
(Prop. 6.8) for that. The full strength of Th. 6.9 is only used to see that P : ZA∗ →֒ TV
coincides with ι : LV → TV (whence Cor. 6.12).

6.D Linear trees

The free Lie algebra can be seen as a quotient of the free abelian group ZM(A) on
the free magma M(A) on A by antisymmetry and the Jacobi identity. Elements of the
free magma can be seen as parenthesized words in A, or as finite rooted planar binary
trees, whose leaves are indexed by elements of A. The images of elements of the free
magma in LV are called Lie monomials.

Lyndon words encode a family of rooted binary trees whose leaves are indexed by
letters. Precisely, if w is a Lyndon word, the tree T (w) is just one leaf indexed by w,
if w is a letter. If not, take the standard factorization w = uv. Then T (w) is given by
a root, a left son T (u) and a right son T (v):

T (uv) =
Tu Tv

The Lyndon basis of the free Lie algebras are the Lie monomials Pw obtained from
such trees by interpreting nodes as Lie brackets. We call these Lyndon monomials

One can consider another family of Lie monomials, called linear Lie monomials,
given by linear trees, that is, monomials which are letters or of the form [y1, ..., yn]
(= [y1, [y2, [...[yn−1, yn]...]]). It is easy to see, by induction, using the Jacobi identity,
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that these generate LV . In fact, the Jacobi identity can be written as:

A B

C
=

A

B C

−
B

A C

. (6.13.1)

Using this as a rewriting rule (from left to write), one can write any tree (that is, any
Lie monomial) as a linear combination of trees whose left son is a leaf. Applying the
induction hypothesis to the right sons, one gets a linear combination of linear trees.

There are n! linear Lie monomials in degree n, which is clearly strictly greater than
the number of Lyndon words of length n, so they must be linearly dependent. It is
the need to control this redundancy that leads to consider Lyndon words (or, more
generally, Hall sets).

Lemma 6.14. Any Lie monomial is a linear combination of linear Lie monomials with
the same letters (counted with repetitions). Also, it is a linear combination of Lyndon
monomials with the same letters.

Proof. The first part follows from the rewriting process that we have just described.
The second one is a bit trickier: although we know that a decomposition into a linear
combination of Lyndon monomials exists (Prop 6.6), we did not give an algorithm to
compute it. However, we can use a homogeneity argument, as follows: ZM(A) is
N{A}-graded, the degree of an element of the free magma M(A) being its image in
the free commutative monoid N{A} (which counts the number of appearance of each
letter in a given non-associative word). Moreover, the antisymmetry and the Jacobi
relations are homogeneous with respect to this degree, so that the quotient L[A] is
again a graded abelian group with respect to this degree. As a consequence, if we
write a Lie monomial m of degree d as a linear combination of Lyndon monomials,
taking the homogeneous component of degree d results in an expression of m as a
linear combination of Lyndon monomials of degree d ∈ N{A}, as claimed.

Remark that the expression of m obtained in the proof by taking the homogeneous
component must in fact must be the same as the first one, because of Theorem 6.9.

Linear trees can be used to define a basis of the reduced free Lie ring RL[n] which
could be used to replace the Lyndon basis in all our work (this is in fact the point of
view used in [MY19]):

Lemma 6.15. For all integer k > 2, a basis of RL[n]k is given by Lie monomials
which are letters or of the form [yi1 , ..., yik ] where the ij 6 n are pairwise distinct and
satisfy ik = max

j
(ij).

Proof. Using antisymmetry, one sees that up to a sign, any Lie monomial without
repetition is equal to a Lie monomial with the same letter where the right-most factor
(the right-most leaf of the corresponding tree) bears the maximal index. Then we can
use the re-writing rule (6.13.1) to get a linear combination of linear trees, and the
right-most leaf stays the same throughout the process, as does the set of letters used.
This shows that Lie monomials of the form described in the lemma generate the abelian
group RL[n]k. Moreover, there are (k−1)!

(
n

k

)
such monomials, which is already known

to be the rank of RL[n]k (Prop. 1.9), hence this family must be a basis of RL[n]k.
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