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ABSTRACT

Context. The recent claims of g-mode detection have restarted the search for these potentially extremely important modes. The
claimed detection of g modes was obtained from the analysis of the power spectrum of the time series of round-trip travel time of p
modes.
Aims. The goal of this paper is to reproduce these results on which the claims are based for confirming or invalidating the detection
of g modes with the method used to make the claims.
Methods. We computed the time series of round-trip travel time using the procedure given in Fossat et al. (2017, A&A, 604, A40),
and used different variations of the times series for comparison. We used the recently calibrated GOLF data (published in Paper I)
with different sampling, different photomultipliers, different length of data for reproducing the analysis. We also correlated the power
spectrum with an asymptotic model of g-mode frequencies in a similar manner to Fossat and Schmider (2018, A&A, 612, L1). We
devised a scheme for optimising the correlation both for pure noise and for the GOLF data.
Results. We confirm the analysis performed in Fossat et al. (2017) but draw different conclusions. Their claims of detection of g
modes cannot be confirmed when changing parameters such as sampling interval, length of time series, or photomultipliers. Other
instrument such as GONG and BiSON do not confirm their detection. We also confirm the analysis performed in Fossat and Schmider
(2018), but again draw different conclusions. For GOLF, the correlation of the power spectrum with the asymptotic model of g-mode
frequencies for l = 1 and l = 2 show a high correlation at lag=0 and at lag corresponding to the rotational splitting νl, but the same
occurs for pure noise due to the large number of peaks present in the model. In addition, other very different parameters defining the
asymptotic model also provide a high correlation at these lags. We conclude that the detection performed in Fossat and Schmider
(2018) is an artefact of the methodology.
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1. Introduction

The detection of gmodes remains a major quest of helioseismol-
ogy. The benefit of detecting these modes would be to obtain the
structureanddynamicsoftheveryinnercoreoftheSun.Therehave
been several claims of g-mode detection (see Appourchaux et al.
2010). Since this review, the detection claims of García et al.
(2007) using the asymptotic properties of g-mode periods were
not confirmed by Broomhall et al. (2010) who used a Bayesian
approach for detecting the gmodes on multiple time series.

Fossat et al. (2017, hereafter F17), using the propagation time
of the p-mode wave packet, claimed to have detected the signa-
ture of gmodes. Very recently, Schunker et al. (2018) showed that
using different fitting procedures or using different start times, or
cadence different than 4 h or different smoothing, the prominent
peaks at 210 nHz and its acolytes would smear out or even disap-
pear. In Appourchaux et al. (2018), we also showed that the use of
different sampling time (i.e. 60 s instead of 80 s) would also affect
the detection level of the peaks shown in Fig. 10 of F17, which is
the basis for the g-mode detection claim.

Fossat & Schmider (2018, hereafter FS18) pushed the anal-
ysis done in F17 further by matching an asymptotic model of

g-mode periods to the original spectrum obtained in F17. They
extended their claims of g-mode detection to spherical harmonic
degrees of l = 3 and l = 4. The detection of higher degrees
was a surprise because these modes are believed to be even more
damped through the convection zone than modes of lower degrees
(Appourchaux et al. 2010). On the other hand, the observables
used for the detection in FS18 are not sensitive to displacements
on the solar surface, but to displacements below the convection
zone. The reason for the modulation of the convection zone by
the g modes is believed to be related to displacement of the bot-
tom part of the convection zone induced by the g modes.

In order to test the detection claims of F17, we made longer
data sets using a new calibration strategy for the GOLF data
(Appourchaux et al. 2018, hereafter Paper I) in which we revis-
ited the calibration of the GOLF instrument. The present F17s
the second part, which aims to test the solar g-mode detection of
F17 and FS18 with our newly calibrated GOLF time series.

This paper is organised as follows. In Sect. 1 we study the
g-mode detection claim of F17 using the new calibrated GOLF
time series for the same observation duration but for a differ-
ent sampling time, different photomultipliers, and different sub-
series; and also for a longer time series of 22 years. We also used
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other helioseismic time series for testing the claimed detection.
In Sect. 2 we study the g-mode detection claim of FS18 using
the same GOLF times series as in their F17. In Sect. 3 we then
finally discuss the data and draw our conclusions.

2. Reproducing the analysis of F17

In this section, we focus on comparing the results obtained in
F17 with their Figs. 10 and 16. These two figures focus our
attention because this is the main basis for their g-mode detec-
tion claim. The remaining part of the analysis done in F17 has
been done more deeply in their FS18, which is the subject of
the next section. The procedure used in this paper for repro-
ducing Figs. 10 and 16 of F17 is the same as in their paper
apart from the smoothing that needed to be corrected as noted
by Schunker et al. (2018). For reproducing, Fig. 16 of F17, we
also used the p-mode mean rotational splitting Ωp = 0.432 µHz
as in F17. For each Fig. 10 or 16, we deduce the rms fluctua-
tions (σ). For the autocorrelation (Fig. 10), the number of inde-
pendent bins nind is given by the number of bins present in the
window of 3.5 µHz width divided by 6 (since the power spec-
trum is smoothed over 6 bins). The number of independent bins
in the sum of the correlation (Fig. 16) is given by the number of
g-mode rotation bins (2000) divided by 6 (since the power spec-
trum is smoothed over 6 bins). For either diagram, the statistics
are Gaussian. Therefore the 10% level xcut in units of σ is given
by solving the following equation:

0.1
nind
≈

1
√

2π

∫ ∞

xcut

e−
x2
2 dx, (1)

where x is the normalised random variable of mean 0 and of rms
1 (see also Appourchaux et al. 2000). The 10% level corresponds
to a probability of the null hypothesis (H0) to be true of at least
38% of the time (see Sellke et al. 2001).

The procedure was applied to the new GOLF time series for
two observation duration: 16.5 years as in F17 and the longest
time series of 22 years obtained in Paper I. For the 16.5-year
time series, we check the detection with: different sampling time
(20 s, 60 s, 80 s), and different photomultipliers (PM1, PM2). For
the longest time series sampled at 80 s, we also used two different
sub-series of 11 years.

2.1. Sampling time

The original GOLF time series is sampled at 10 s. This short
cadence allowed the compensation for the timing errors of the
GOLF instrument, induced by the loss of the On Board Time as
shown in Paper I. From this original cadence, we generated a cal-
ibrated cadence of 20 s, from which sampling at 60 s and 80 s can
easily be deduced. Neither F17 nor Schunker et al. (2018) stud-
ied the impact of the different sampling time upon the g-mode
detection claim. Given the fact that the travel time is computed
with a sampling of 4 h, the original cadence of the data should
not have any influence on the detection. Here we used the newly
calibrated GOLF data averaged over the two photomultipliers
with the same observation duration as in Paper I. Figure 1 shows
the results for three different sampling times.

We can see that the mean correlation drops with the square
root of the sampling time. This is due to the fact that the noise per
sample also drops with the same scaling. On the other hand, the
rms of the fluctuations is the same for all three sampling because it
does not depend upon the sampling time but only on the observa-
tion time. The peak at 210 nHz in the correlation is above the 10%

threshold for the 20 s and 80 s sampling. The peak in the correla-
tion at 630 nHz is above the 10% line only for the 80 s sampling.
Here we note that the peaks at 210 nHz and 630 nHz are both above
the threshold level while in F17 only the peak at 210 nHz was. In
the sum of the correlation, we also note that the peak at 1280 nHz
is higher than in F17. Finally, we note that there is no detection in
the 60 s sampling. The detection made in F17 is then confirmed
for the 80 s sampling but we cannot exclude that noise plays a sig-
nificant role in making the peaks in the correlation and the sum of
the correlation appear or disappear. This conclusion is not contra-
dicted by the fact that the null hypothesis is rejected at the 38%
level with the threshold level of 10%.

2.2. Different photomultipliers

The original claim in F17 was made using the average of the two
GOLF photomultipliers. Neither F17 nor Schunker et al. (2018)
studied the impact of the different photomultipliers upon the
g-mode detection claim. Here we used the newly calibrated
GOLF data of each photomultiplier with the same observation
duration as in Paper I. Figure 2 shows the results for the two dif-
ferent photomultipliers. There is no peak above the 10% thresh-
old in any panel. Since this work was not done in F17, we try
to forecast the signal-to-noise ratio in a single photomultiplier
from a time series two times shorter instead. F17 gave a signal-
to-noise ratio for an observation time of 8.25 years that is typ-
ically about 2.6σ either for the peak at 210 nHz, or the peak at
1280 nHz. From Fig. 2, it is clear that these peaks are nowhere
near this signal-to-noise ratio. Here we conclude that the g-mode
detection claim of F17 is not confirmed with either individual
GOLF photomultiplier. Although we show only the results for
the 60 s sampling, we confirm that there is no detection either
for the 20 s and 80 s sampling.

2.3. Different sub-series

The original claim in F17 was made using an observation time
of 16.5 years. F17 reported that the signal-to-noise ratio of the
210 nHz peak and of the 1280 nHz peak increase with the obser-
vation time. With our new calibration (Paper I) we could extend
the observation time to 22 years, and to two independent time
series of 11 years. Figure 3 shows the results for the three dif-
ferent time series. With a time series of 11 years, F17 reported a
signal-to-noise ratio of 3.5σ for the 210 nHz and 1280 nHz peak.
In comparison, in Fig. 3 the signal-to-noise ratio is twice smaller
for the 210 nHz peak, but still increases with the longer time
series even though it remains below the 10% line. On average the
signal-to-noise ratio is also twice smaller for the 1280 nHz peak
but also increases with the longer times series to be above the
10% line. On the other hand, another peak shows up at 900 nHz
in the sum of the correlation that was not mentioned in F17. The
signal-to-noise ratio of the 900 nHz peak is also higher for the
longer times series. We conclude that the signal-to-noise ratio
of the peaks mentioned in F17 increases with the observation
time but that we cannot confirm detection in the 11-year long
sub-series, and that only the peak at 630 nHz is detected in the
longest times series.

2.4. Different instruments

We used data from other instruments such as the Global Oscil-
lation Network Group1 and the Birmingham Solar Oscillation

1 GONG, see Harvey et al. (1996).
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Fig. 1. Left panel: autocorrelation of the power spectrum as obtained by Fossat et al. (2017) as a function of frequency lag for three different
time series of the average of photomultipliers PM1 and PM2 of GOLF sampled at 20 s (top), 60 s (middle) and 80 s (bottom); the bottom panel is
comparable to Fig. 10 of Fossat et al. (2017). The green vertical lines correspond to frequencies of 210 nHz, 630 nHz and 1260 nHz. The black
line indicates the mean value of the autocorrelation, while the orange line indicates the 10% probability level that there is at least one peak due
to noise in the window; the level is 3.41σ. Right panel: sum of the correlation for l = 1, and l = 2 modes as obtained by Fossat et al. (2017) as a
function of rotation frequency for three different time series sampled at 20 s (top), 60 s (middle) and 80 s (bottom); the bottom panel is comparable
to Fig. 16 of Fossat et al. (2017). The black line indicates the mean value, while the orange line indicates the 10% probability level that there is at
least one peak in the window due to noise; the level is 3.43σ.

Network2. For GONG we used the full-disk integrated velocity
with a start date of May 1st, 1996 lasting 21.3 years. For BiSON,
we used the performance-check data3 truncated to starting on
May 1st, 1996 lasting 20 years. Figure 4 gives the result for the
GONG and BiSON instruments. There is no confirmation of the

2 BiSON, see Chaplin et al. (1996).
3 Data available on bison.ph.bham.ac.uk/

g-mode detection of F17 at a 10% level (>38% for the posterior
probability of H0).

2.5. Summary

In addition to the work presented here, we also checked the
results found by Schunker et al. (2018) for the change of the
start time. We also found that the detection cannot be confirmed
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Fig. 2. Left panel: autocorrelation of the power spectrum as obtained by Fossat et al. (2017) as a function of frequency lag for the two different
GOLF photomultipliers sampled at 20 s for PM1 (top) and PM2 (bottom). The green vertical lines correspond to frequencies at 210 nHz, 630 nHz
and 1260 nHz. The black line indicates the mean value, while the orange line indicates the 10% probability level that there is at least one peak due
to noise in the window; the level is 3.41σ. Right panel: sum of the correlation for l = 1, and l = 2 modes as obtained by Fossat et al. (2017) as
a function of rotation frequency for the two different photomultipliers of GOLF sampled at 20 s for PM1 (top) and PM2 (bottom). The black line
indicates the mean value, while the orange line indicates the 10% probability level that there is at least one peak due to noise in the window; the
level is 3.43σ.

when shifting the start date by 2 h, and that there is a pseudo-
periodicity of 4 h due to the construction of the time series hav-
ing a 4 h sampling. We also used a different fitting strategy of
the p-mode peak at 4.1 h to derive that the best fit minimising
the rms scatter of the round-trip travel time was indeed a 2nd-
order polynomial. Here we give a short summary of the impact
of various parameter on the g-mode detection claim of F17:

– Shifted starting time: as also found by Schunker et al. (2018),
a shift of 2 h suppresses the g-mode detection.

– Cadence: Schunker et al. (2018) reported that a cadence differ-
ent than 4 h (3 h to 5 h) also suppresses the g-mode detection.

– Different fit function: as also found by Schunker et al.
(2018), other function, such as a Gaussian would also impact
the g-mode detection

– Power spectrum smoothing: Schunker et al. (2018) reported
that the smoothing window also impacts the g-mode detection

– Sampling: might affect the detection as the heights of the
3 peaks in the correlation (210 nHz, 630 nHz, 1260 nHz)
depend upon the sampling. The peak at 1280 nHz in the sum
of the correlation is less dependent upon the sampling

– Photomultipliers: no confirmed detection from either photo-
multiplier

– Sub-series: detection confirmed for the same 16.5 years time
series as F17. None of the two 11 yr long time series con-
firms the detection, while the 22 yr long time series con-

firmed detection of some peaks but not of the main 210 nHz
peak. An additional peak shows up in the sum of the correla-
tion at 900 nHz

– Instruments: no confirmed detection in other instruments
(GONG, BiSON) measuring solar radial velocities.

Although the detection claimed in F17 is not always repro-
ducible, we must point out that it is quite remarkable to have
obtained 2 peaks above the 10% threshold in Fig. 1, which was
not obtained in F17. It clearly shows that the levels of these 2
peaks are very sensitive to the details of the procedure.

3. Reproducing the analysis of FS18

3.1. g-mode asymptotic model

In FS18, the analysis done in F17 was pushed further by
correlating an asymptotic model of g-mode periods with the
power spectrum of the time series of round-trip travel time.
The asymptotic model of g-mode period Pn,l can be found in
Provost & Berthomieu (1986) as:

Pn,l =
P0

√
l(l + 1)

(
n +

l
2
−

1
4
− θ

)
+

P2
0

Pn,l

l(l + 1)V1 + V2

l(l + 1)
, (2)

where n is the order of the mode, l is the degree of the mode, and
P0, V1, V2 and θ are all related to the solar model. Equation (2)
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Fig. 3. Left panel: correlation of the power spectrum as obtained by Fossat et al. (2017) as a function of frequency lag for three different time series
of the average of photomultipliers PM1 and PM2 of GOLF sampled at 80 s for an observation time of 11 years starting April 1st 1996 (top), for
an observation of 11 years starting April 1st 2007 (middle) and an observation time of 22 years (bottom). The green vertical lines correspond to
frequencies at 210 nHz, 630 nHz and 1260 nHz. The black line indicates the mean value, while the orange line indicates the 10% probability level
that there is at least one peak due to noise in the window; the level is 3.29σ for 11 years, and 3.48σ for 22 years. Right panel: sum of the correlation
for l = 1, and l = 2 modes as obtained by Fossat et al. (2017) as a function of rotation frequency three different time series of the average of
photomultipliers PM1 and PM2 of GOLF sampled at 80 s for an observation time of 11 years starting April 1st 1996 (top), for an observation of
11 years starting April 1st 2007 (middle) and an observation time of 22 years (bottom). The black line indicates the mean value, while the orange
line indicates the 10% probability level that there is at least one peak due to noise in the window; the level is 3.4σ

can be solved for Pn,l and can then be rewritten as:

Pn,l =
P0

√
l(l + 1)

(n +
l
2
−

1
4
− θ

)
+

(l(l + 1)V1 + V2)
(n + l

2 −
1
4 − θ)

+O
(

1
n3

)
,

(3)

where O
(

1
n3

)
is a quantity of order 1

n3 . Assuming that n � 1, we
can then rewrite Pn,l as:

Pn,l = Pn0,l + Pl (n − n0) + α

(
1
n
−

1
n0

)
+ O

(
1
n3

)
, (4)

where Pl =
P0√
l(l+1)

is the asymptotic periodicity of the modes of
degree l, n0 is an arbitrary value of g-mode order andα is given by:

α = Pl(l(l + 1)V1 + V2) (5)
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Fig. 4. Left panel: autocorrelation of the power spectrum as obtained by Fossat et al. (2017) as a function of frequency lag for the GONG instru-
ment (top) and the BiSON instrument (bottom). The green vertical lines correspond to frequencies at 210 nHz, 630 nHz and 1260 nHz. The black
line indicates the mean value, while the orange line indicates the 10% probability level that there is at least one peak due to noise in the win-
dow; the level is 3.46σ for GONG, and 3.48σ for BiSON. Right panel: sum of the correlation for l = 1, and l = 2 modes as obtained by
Fossat et al. (2017) as a function of rotation frequency for the GONG instrument (top) and the BiSON instrument (bottom). The black line indi-
cates the mean value, while the orange line indicates the 10% probability level that there is at least one peak due to noise in the window; the level
is 3.43σ.

Finally, we can rewrite Eq. (3) as:

Pn,l ≈ Pmin,l + Pl (n − n0) +
α

n
. (6)

This equation is the same as Eq. (14) in F17 except that α in our
formula is directly related to Pl while in F17 it is taken as a free
parameter αl. In F17, the model of the g-mode frequency is then
given by:

νn,l,m = 1/Pn,l + mνl, (7)

where νl is the rotational mode splitting for modes of degree l
assumed to be independent of n and m. In addition, each mode
of tesseral order m , 0 of a given l is assumed to be observed
with a weight wl,m less than 1. In summary, for l = 1 there are five
independent parameters defining the model: P1, Pmin,1, α1, ν1 and
w1,1; while for l = 2, there are six independent parameters defining
the model: P2, Pmin,2, α2, ν2, w2,1 and w2,2. Here we note that F17
assumed that the parameters so defined are independent of each
other, while as shown by Eq. (5) the Pl and α depend upon P0.
Here in order to reproduce, the findings of FS18 we followed the
prescription of F17 for the independence of the parameters.

3.2. Optimisation of the correlation

The model given by Eqs. (6) and (7) is then correlated with
the smoothed power spectrum of time series of round-trip travel

time. Here we note that the power spectrum is smoothed over 2
bins in FS18 rather than the 6 bins of F17. The computed cor-
relation is made symmetrical by adding a flipped version of the
correlation to itself. Then in FS18, the correlation value at 0 and
at the splitting lag are optimised or fine tuned by adjusting all 5
parameters for l = 1 and all 6 parameters for l = 2. The opti-
misation procedure in FS18 is not detailed but done by hand
(Fossat, priv. comm., 2018). In the course of the investigation,
it appeared that the finding of a maximum could not be made
possible by any simple optimisation routine mainly because the
shape of the correlation as a function of the free parameters was
not following a simple paraboloid shape. In order, to have the
highest correlation possible, we decided to automate the optimi-
sation procedure. The brute force procedure that we used for the
optimisation is as follows:
1. Shoot at random the 5 (or 6) parameters within a given hyper-

sphere
2. Compute the symmetrical correlation of the model spectrum

with the smoothed power spectrum
3. Compute the sum of the correlation at lag=0 and at lag=νl

4. Keep shooting until the sum does not increase by more than
0.5% (make sure there are at least 105 shots). Reduce hyper-
sphere by 10%, each time a higher sum is found

5. Repeat at most 5 millions times Step 1 to 4 (unless the con-
dition in Step 4 is obtained).
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Fig. 5. Correlation of the g-mode model spectrum with the power spectrum of a simulated time series of round-trip travel time. Top panel: for l = 1
only (similar to Fig. 1 in FS18). The black line is for the result after optimisation while the green it is before optimisation; middle panel: for l = 2
only. The black line is for the result after optimisation while the green it is before optimisation; bottom panel: for l = 1 and l = 2 (similar to Fig. 2
in FS18). Left panel: for the median value of the sum of the correlations at lag=0 and lag=ν1 obtained over the 2000+ simulations. Right panel:
for the maximum value of the sum of the correlations at lag=0 and lag=ν1 obtained over the 2000+ simulations.

3.3. Noise

In order to understand the correlation results, we applied the
procedure described above to pure noise. We generated 36 132
data points sampled at 4 h for simulating the time series of 16.5
years of data of F17. Under the null hypothesis, we assumed a
white noise with Gaussian statistics with a mean of 0 and rms of
52 s from which we deduced after Fourier transform the power
spectrum. For the simulation, we then generated a bit more than
2000 power spectra to which we applied the optimisation proce-
dure described above. For the search, the parameters used for the
optimisation were generated in a hypersphere given in Table 1

and Table 2. The optimisation of the correlation with the model
spectrum is done only for l = 1 for comparison with Fig. 1 in
FS18. Then we optimise for l = 2, and add half of the model
spectrum of l = 2 to the model spectrum of l = 1 for getting
the correlation shown in Fig. 2 in FS18 (the weighting used in
F17 is 0.43 instead of half). The optimised parameters follow a
Gaussian distribution. The optimised parameters resulting from
the search are also given in Tables 1 and 2; these parameters are
close to the values given in FS18. The optimised parameters are
typically the same as the input guess apart from the fact that the
rms values are about 1.7–2 times smaller than the input rms val-
ues. Figure 5 gives two typical examples optimised correlation
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Table 1. Guess parameters and parameters optimising the correlation for l = 1 for a white Gaussian noise.

Case P0 (in s) Pmin,1 (in s) α1 (in s) ν1 (in µHz) w1,1

Guess 2042± 30 33 252± 1000 1339± 30 0.209± 0.05 0.60± 0.40
Optimised 2041± 17 33 250± 560 1339± 20 0.209± 0.03 0.60± 0.20

Notes. The first column gives the asymptotic period, the second column gives the minimal period, the third column gives the deviation from the
asymptotic formula; the fourth column gives the splitting and the fifth column gives the amplitude ratio of m = 1 to m = 0.

Table 2. Guess parameters and parameters optimising the correlation for l = 2 for a white Gaussian noise.

Case P0 (in s) Pmin,2 (in s) α2 (in s) ν2 (in µHz) w2,1 w2,2

Guess 2040± 30 31 884± 1000 1319± 30 0.628± 0.05 0.60± 0.40 0.30± 0.40
Optimised 2040± 17 31 880± 570 1320± 20 0.629± 0.03 0.65± 0.20 0.34± 0.20

Notes. The first column gives the asymptotic period, the second column gives the minimal period, the third column gives the deviation from the
asymptotic formula; the fourth columns gives the splitting, the last two column give the amplitude ratio of m = 1 to m = 0, and of m = 2 to m = 0.

Fig. 6. Histogram of the correlation at lag=0 before optimisation (left) and after optimisation (right) for l = 1.

to compare with Figs. 1 and 2 in FS18; the two typical examples
are the median and the maximum of the sum of the correlations
(obtained in Step 3 above).

Figure 6 provides the measured distribution of the correla-
tion for lag=0 before and after optimisation for l = 1. We can
also derive from the simulation the distribution of the correla-
tion for lag,0 which is a Gaussian with a mean value of 0,
and rms of 0.017. In FS18, they use this rms value as a mea-
surement of the rms value of the fluctuation of the correlation
at lag=0, then they gave a signal-to-noise ratio of about 8 for
lag=0. As a matter of fact, as shown by Fig. 6, due to the optimi-
sation, the signal-to-noise ratio is bound to be on average 6.2
when using the 0.017 figure (6.2 = 0.106/0.017); and 10%
of the simulation gives a value higher than 7.3σ. In addition,
the rms value used in FS18 is derived for lag,0 while the rms
value at lag=0 is higher as shown in Fig. 6 (0.024 instead of
0.017); such that our figures for the average and the 10% per-
centile should be lower by 1.4. The cross-correlation between
the model spectrum and the observed (or simulated) power spec-
trum being the Fourier transform of the cross power spectrum, it
is expected that the variance at lag=0 should be twice the vari-
ance at lag,0. Of course, our figures cannot be directly com-
pared with FS18 because the noise simulated here under the null
hypothesis is a white noise, which is not the case of the true
data. Nevertheless, we can draw three conclusions from these
simulations:

– White noise can provide correlation similar to Figs. 1 and 2
in FS18 (contradicting the findings of that paper)

– The statistics of the correlation at lag=0 after optimisation
has different mean and rms value than those of the statistics
of the correlation at lag,0

– The statistics of the correlation at lag=0 can not be compared
to the statistics of the correlation at lag,0.

3.4. GOLF signal

3.4.1. Same parameters as in FS18

We then used the optimisation procedure above for finding the
best set of parameters for the GOLF data, starting with parameter
values similar to those of the FS18. The results are shown in
Fig. 7. We show that we can reproduce the results of FS18 that
they obtained in their Figs. 1 and 2.

3.4.2. Different parameters from FS18

We also applied the optimisation procedure to three different ini-
tial guesses of parameter values. The parameters differed from
the starting set of FS18 as follows:

– Pmin,1 increased by 721 s, and Pmin,2 increased by 416 s.
– P0 increased by 25%.
– P0 increased by 50%.
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Fig. 7. Same set of parameters as FS18. Correlation of the g-mode
model spectra with the power spectrum of round-trip travel time for
l = 1 (top; similar to Fig. 1 in FS18) and for l = 1 and l = 2 (bottom;
similar to Fig. 2 in FS18)

Fig. 8. Different Pmin,l from FS18. Correlation of the g-mode model
spectra with the power spectrum of round-trip travel time for l = 1 (top;
similar to Fig. 1 in FS18) and for l = 1 and l = 2 (bottom; similar to
Fig. 2 in FS18)

These parameters were chosen such that the location of the
g-mode periods are completely independent from the periods
obtained by FS18. The first set is rather drastic since it shifts
all g-mode periods by a few hundreds seconds. For orders close
to n0, it simply shifts the mode period in between the n0 and the
n0 + 1 of the parameters set of FS18. The two other sets are just
pertinent for different kinds of stellar models, even though these
P0 values are unrealistic for a solar model. These different val-
ues of P0 are unrealistic for a solar model as typical ranges are
about a few % from the solar standard model.

The results are shown in Figs. 8–10. We can clearly see high
correlation at lag=0 and at lag=νs but for very different values
of P0 and different values of Pmin,1 and Pmin,2 similar to those of
Figs. 7 and 5.

3.5. Summary

Here we give a short summary of our study of the g-mode detec-
tion claims of FS18:

Fig. 9. P0 increased by 25% from FS18. Correlation of the g-mode
model spectra with the power spectrum of the time series of round-trip
travel time for l = 1 (top; similar to Fig. 1 in FS18) and for l = 1 and
l = 2 (bottom; similar to Fig. 2 in FS18)

Fig. 10. P0 increased by 50% from FS18. Correlation of the g-mode
model spectra with the power spectrum of the time series of round-trip
travel time for l = 1 (top; similar to Fig. 1 in FS18) and for l = 1 and
l = 2 (bottom; similar to Fig. 2 in FS18)

– Proper optimisation of the parameters is key for obtaining
high correlation values at a given lag.

– Correlation mimicking g-mode detection is obtained with
pure white Gaussian noise for l = 1 and l = 2.

– Correlation mimicking g-mode detection is obtained with the
GOLF data with a very different set of parameters (Pmin,l, P0)
for l = 1 and l = 2.

There were no tests performed for the g-mode detection claim
for l = 3 and l = 4. This is discussed in the next section.

4. Discussion

In Sect. 2, we confirmed the fragility, as coined by Schunker et al.
(2018), of the g-mode detection in F17. Different photomulti-
pliers, shorter sub-series and to some extent sampling different
from 80 s do not support the g-mode detection of F17. In addi-
tion, the change of the original cadence of 4 h and the shift-
ing of the start time provides the same lack of reproduction
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Table 3. Guess parameters and parameters optimising the correlation for for l = 1 for 4 different cases applied to the GOLF data.

Case P0 (in s) Pmin,1 (in s) α1 (in s) ν1 (in µHz) w1,1

Same set as FS18
Guess 2042± 30 33 252± 1000 1339± 30 0.209± 0.05 0.60± 0.40
Best 2028.05 32 979.85 1341.56 0.267 0.736

Pmin,1 different from FS18
Guess 2042± 30 33 973± 1000 1339± 30 0.209± 0.05 0.60± 0.40
Best 2028.10 32 982.67 1311.48 0.267 0.703

P0 increased by 25% from FS18
Guess 2552± 30 33 252± 1000 1339± 30 0.209± 0.05 0.60± 0.40
Best 2567.39 32562.60 1346.59 0.278 0.625

P0 increased by 50% from FS18
Guess 3063± 30 33 252± 1000 1339± 30 0.209± 0.05 0.60± 0.40
Best 3056.68 32560.09 1355.11 0.142 0.692

Notes. The first column gives the asymptotic period, the second column gives the minimal period, the third column gives the deviation from the
asymptotic formula; the fourth columns gives the splitting and the fifth column gives the amplitude ratio of m = 1 to m = 0. The parameters
differing from F17 and II are shown in bold.

Table 4. Guess parameters and parameters optimising the correlation for l = 2 for 4 different cases applied to the GOLF data.

Case P0 (in s) Pmin,2 (in s) α2 (in s) ν2 (in µHz) w2,1 w2,2

Same set as FS18
Guess 2040± 30 31 884± 1000 1319± 30 0.628± 0.05 0.60± 0.40 0.30± 0.40
Best 2039.45 31901.31 1339.39 0.630 0.655 0.528

Pmin,2 different from as FS18
Guess 2040± 30 32 300± 1000 1319± 30 0.628± 0.05 0.60± 0.40 0.30± 0.40
Best 2043.86 32 657.81 1316.32 0.622 0.890 0.568

P0 increased by 25% from FS18
Guess 2549± 30 31 884± 1000 1319± 30 0.628± 0.05 0.60± 0.40 0.30± 0.40
Best 2528.79 32359.56 1294.83 0.578 0.749 0.516

P0 increased by 50% from FS18
Guess 3060± 30 31 884± 1000 1319± 30 0.628± 0.05 0.60± 0.40 0.30± 0.40
Best 3058.91 31614.12 1307.81 0.621 0.707 0.480

Notes. The first column gives the asymptotic period, the second column gives the minimal period, the third column gives the deviation from the
asymptotic formula; the fourth columns gives the splitting, and the last two columns give the amplitude ratio of m = 1 to m = 0, and of m = 2 to
m = 0. The parameters differing from F17 and II are shown in bold.

(Schunker et al. 2018). The impact of changes in the sampling
(less than 80 s), the changes in the cadence (3 h–5 h), and the start
time (shifted by less than 2 h) are all in a time domain that should
not affect the detection of the g modes having periodicity rang-
ing from 8 h to 40 h. The 20 s sampling affects much less the fold-
ing of high frequencies above the Nyquist frequency than for the
60 s and 80 s samplings. The detection is also not confirmed for
the 60 s sampling while there is an indication of detection for the
other 2 samplings. In addition, the fact that the detection of F17
is not confirmed when shifting the start of the time series or with
different photomultipliers is an indication that we might suspect
noise noise mimicking what at first look appears to be signifi-
cant signal. Would the signal had been really present in GOLF,
it would have showed up irrespective of the sampling, the cadence
or the photomultipliers. Last but not least, the detection of F17
could not be confirmed with other instruments such as BiSON
or GONG.

We must also point out two problems with the asymptotic
formula used in F17 and FS18. First, Eq. (5) gives the formula
used in F17 for which α can also be derived from the asymptotic
formula of Provost & Berthomieu (1986) as α = Pl(l(l + 1)V1 +
V2). Using the values given in Provost & Berthomieu (1986) for
V1 and V2, we can derive for l = 1 and l = 2, α1 = 9466 s, and
α2 = 687 s. These two values are about a factor 5 to 7 larger
than those inferred in F17 (for l = 1) and in FS18 (for l = 1
and l = 2). Since α is directly related to P0, there is an incon-
sistency in getting two Pl (for l = 1 and l = 2) consistent with
a common P0, while having the α’s not consistent with P0. Of
course, there could be a solar model leading to V1 and V2 val-
ues able to match such a low value of α , but this model remains
to be found. Second, the asymptotic formula used in F17 is the
same as Eq. (6). Unfortunately, Eq. (6) is an approximation of
Eq. (4) that differs by O(1/n3). The resulting difference in mode
frequency is larger than several resolution bins for dozens of low
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order modes both for l = 1 and l = 2. As a matter of fact, the
difference can be somehow compensated by the factor α/n but at
the expense of introducing a bias to α. This second defect may
not affect that much the detection since only about 10% of the
modes are affected by this inaccuracy. Of course, we note that
the asymptotic formula derived under the Cowling approxima-
tion and with θ constant may itself provide some errors when
compared to a solar model (Provost & Berthomieu 1986).

In Sect. 3, we could not confirm the detection of g modes as
reported in FS18, nor could we confirm the fact that noise can-
not produce such correlation. Rather, it is clear that noise can
reproduce the correlation found in FS18 for l = 1 and l = 2, but
in addition any guess parameter can also reproduce high corre-
lation (even higher correlation) using the GOLF data. In short,
given the hundreds of peaks available in the model spectrum for
l = 1 and l = 2, it is always possible to find a high correlation. As
a matter of fact, this is the very reason why the correlation also
permits the putative detection of higher degrees (l > 2). This fact
is simply an artefact of the detection methodology.

The maximisation of the correlation with the model spec-
trum involves the coincidence of several hundreds of peaks being
at the same location in the observed (or simulated) spectrum.
When trying to optimise the correlation, one tries to optimise the
average level of the ensemble of the hundreds of peaks; here the
optimisation tries to maximise the average level of these peaks.
Therefore, we can explain this artefact by using a simple exam-
ple not for many peaks but just a single peak. The optimisation
for the single peak can be put in parallel with the statistics of the
maximum. For example assuming the same probability distribu-
tion function (pdf) of an ensemble of n i.i.d.(independent and
identically distributed) random variable X, what is the statistics
of the maximum Y of these n random variables? The solution is
given by computing the cumulative distribution function (cdf) as:

P(Y < y) = P(X1 < y; ...; Xn < y) = [P(X < y)]n, (8)

then the pdf of Y (pY ) is simply given as the derivative of the cdf
with respect to y as

pY (y) = npX(y)[P(X < y)](n−1), (9)

where pX is the cdf of X. It is obvious that the pdf of X and Y are
different since we have:

pY (y) , pX(y). (10)

This example is used for a single ensemble of X random
variables. In the case of the optimisation of the correlation, we
find the maximum amongst not a single ensemble but amongst
several hundreds of ensembles related to the number of g-mode
orders and degree. The number n of variables for a single ensem-
ble (i.e. a single g-mode peak) depends upon how we set the size
of the hypersphere and the resolution in the power spectrum. In
theory, the resulting pdf of the sum of the maximised peaks can
be computed but this is rather complicated as some modes of
different orders overlap. In practice, it is somewhat easier to do
the Monte-Carlo simulation that we performed in Sect. 3. Even
though we do not write an analytical formulation for the cor-
relation, we understand well the reason why the correlation at
lag=0 can be higher by several σ compared to the basal value of

the correlation. Of course the explanation for lag=νl is the same
since we also optimise the correlation at that lag.

In light of this work we would like to stress that an important
discovery such as detecting solar g-modes should probably rely
on a higher detection level than used before. For instance, the
10% probability level provides a posterior probability of H0 to
be true of at least 38%. Here we suggest to adopt the lower detec-
tion level of 1%, providing a posterior probability H0 to be true
of at least 11%. As already stressed by Appourchaux (2011), this
conservative approach is the result of a Bayesian framework. We
also suggest a higher rejection level of 1% instead of the canon-
ical 10% as already suggested by Appourchaux et al. (2010).

5. Conclusion

We cannot confirm the g-mode detection claims of F17 and
FS18. The lack of reproducibility of the detection in F17 is most
likely due to the noise contributing in different manners depend-
ing on how the GOLF data are analysed (sampling, cadence,
photomultiplier, start time). Even though the detection is not
confirmed, F17 has restarted the work on g-mode detection,
which is greatly beneficial to the field. We believe that the detec-
tion of g modes as made in FS18 is the result of an artefact of the
analysis methodology related to the large number of modes used
in the analysis. The artefact also explains the claimed detection
of g modes of degree higher than 2.
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