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Drosophila females trade off good nutrition with high-quality
oviposition sites when choosing foods

Mathieu Lihoreau¥, Laure-Anne Poissonnier*#, Guillaume Isabel and Audrey Dussutour$

ABSTRACT

Animals, from insects to humans, select foods to regulate their
acquisition of key nutrients in amounts and balances that maximise
fitness. In species in which the nutrition of juveniles depends on
parents, adults must make challenging foraging decisions that
simultaneously address their own nutrient needs as well as those of
their progeny. Here, we examined how the fruit fly Drosophila
melanogaster, a species in which individuals eat and lay eggs in
decaying fruits, integrate feeding decisions (individual nutrition) and
oviposition decisions (offspring nutrition) when foraging. Using
cafeteria assays with artificial diets varying in concentrations and
ratios of protein to carbohydrates, we show that D. melanogaster
females exhibit complex foraging patterns, alternating between laying
eggs on high carbohydrate foods and feeding on foods with different
nutrient contents depending on their own nutritional state. Although
larvae showed faster development on high protein foods, both
survival and learning performance were higher on balanced foods.
We suggest that the apparent mismatch between the oviposition
preference of females for high carbohydrate foods and the high
performances of larvae on balanced foods reflects a natural situation
where high carbohydrate ripened fruits gradually enrich in
proteinaceous yeast as they start rotting, thereby yielding optimal
nutrition for the developing larvae. Our findings that animals with
rudimentary parental care uncouple feeding and egg-laying decisions
in order to balance their own diet and provide a nutritionally optimal
environment to their progeny reveal unsuspected levels of complexity
in the nutritional ecology of parent—offspring interactions.

KEY WORDS: Drosophila melanogaster, Fruit fly, Nutritional
geometry, Foraging behaviour, Feeding, Egg-laying

INTRODUCTION

Animals have evolved sophisticated nutritional strategies to locate,
select and ingest blends of nutrients maximising growth and
reproduction (Simpson and Raubenheimer, 2012). Over the past
decades, comparative research in nutritional ecology has showed
how individual animals efficiently self-regulate their intake of
multiple nutrients simultaneously and how this varies across
developmental stages, taxonomic groups and feeding guilds
(Behmer, 2009; Simpson and Raubenheimer, 1993, 2012;
Simpson et al., 2015a,b). However, much less is known about
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how these complex regulatory behaviours are affected by social and
competitive interactions in groups and populations (Lihoreau et al.,
2014, 2015; Senior et al., 2015, 2016; Simpson et al., 2010). Many
animals use social information provided by conspecifics to select
food resources (Danchin et al., 2004; Giraldeau and Caraco, 2000).
Therefore, under these conditions, an individual’s decision to eat a
food depends not only on its own nutritional requirements, but
also on the requirements of others, including social partners and
competitors (Lihoreau et al., 2014). These trade-offs between
optimising individual nutrition and interacting socially can have
important consequences on group-level phenomena, such as social
structures and collective dynamics (Lihoreau et al., 2015). For
instance, in advanced social insects, such as ants and bees, food
collection is achieved by a subset of individuals (the foragers) that
must integrate their own nutrient needs as well as the different needs
of all other nestmates, including workers, breeders (queens) and the
brood (eggs and larvae) when deciding which food to collect
(Dussutour and Simpson, 2009). Foragers compensate for specific
nutrient deficiencies to maintain a colony-level intake target that
varies with colony composition and developmental stage [e.g. ants
(Christensen et al., 2010; Cook et al., 2010; Dussutour and
Simpson, 2009, 2012), honeybees (Altaye et al., 2010; Hendriksma
and Shafir, 2016) and bumblebees (Stabler et al., 2015)].

Although most research on dietary alloregulation (when
individuals make nutritional decisions for others) has focused on
social insects (Simpson et al., 2015a), in principle, similar strategies
could be observed in all parent—offspring associations in which
juveniles do not actively forage or do not choose their foraging
environment. At the most simplistic level, females must find a
suitable breeding site for the development of the juveniles (Royle
etal., 2012). In species in which animals lay eggs in food resources,
such as fruit flies, the challenge for the females is to trade off
between choosing food substrates maximising their own nutrition
and providing a high-quality nutritional environment for the
development of their offspring (Reaume and Sokolowski, 2006).
Because fruit fly larvae have limited mobility, their nutrition is
largely determined by the mother’s choice of oviposition site,
making egg-laying decisions crucial for the survival of embryos and
larvae.

Recent studies using nutritional geometry, a conceptual approach
to dissect the nutritional interactions between animals and their
environment (Simpson and Raubenheimer, 1993, 2012; Simpson
et al., 2015b), have shown how fruit flies actively balance their
acquisition of macronutrients (protein and carbohydrates) to trade
off fitness traits such as development time, reproduction and
survival [e.g. Drosophila melanogaster (Lee, 2015; Lee et al., 2008,
2013; Piper et al., 2014; Reddiex et al., 2013; Ribeiro and Dickson,
2010; Rodrigues et al., 2015); other fruit flies (Fanson et al., 2009;
Matavelli et al., 2015)]. These effects of nutrition on physiology and
behaviour greatly vary with age, sex and the mating status of
individuals. For instance, when provided with nutritionally
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complementary diets, mated females and larvae balance their intake
of protein (P) and carbohydrates (C) to reach P:C ratios maximising
growth and reproduction [mated females P:C 1:1.5 (Lee et al., 2008,
2013), larvae P:C 1:2 (Rodrigues et al., 2015)], whereas unmated
females and males tend to consume more carbohydrates for energy
[P:C 1:4 (Lee et al., 2013)]. Several studies also indicate that
D. melanogaster females are highly selective when choosing
oviposition sites (Yang et al., 2008). Although yeast is an important
cue for attracting flies to food resources (Becher et al., 2012),
females prefer laying eggs on substrates rich in carbohydrates, such
as sucrose-based media (Schwartz et al., 2012) or mixed foods with
low P:C ratios (Rodrigues et al., 2015) [but see (Yang et al., 2008)],
suggesting that flies choose foods with a suboptimal nutrient
balance for the development of their future larvae.

One hypothesis to reconcile these laboratory studies is that
D. melanogaster females anticipate the gradual change of nutrient
content in their natural food resources (decaying fruits) that may
occur throughout larval development. Maturation of fruits, from
ripening to rotting, is accompanied by important modifications in
the density and diversity of yeast populations (Morais et al., 1995),
resulting in predictable variations in P:C ratios with the stage of fruit
decay (Tournas and Katsoudas, 2005; Matavelli et al., 2015).
Alternately, females may simply lay eggs on the foods they eat from.
Under this second hypothesis, oviposition choices may be primarily
driven by the nutrient needs (nutritional state) of females. The strong
preferences for laying eggs in high carbohydrate foods observed in
previous studies (Rodrigues et al., 2015; Schwartz et al., 2012) may
thus result from an attempt of flies bred on high protein diets to
compensate for their deficit in carbohydrates (Lee et al., 2008,
2013).

Here, we explored how D. melanogaster flies integrate feeding
and oviposition decisions when choosing food resources. First, we
used nutritional geometry to test the importance of nutrient balance
(P:C) and concentration (P+C) on female foraging behaviour. We
measured the oviposition preferences of females in multiple-choice
(cafeteria) assays and manipulated the nutritional state of females to
test the relative importance of oviposition and feeding in food
choices. Next, we examined the consequences of female oviposition
choices on the fitness of their progeny by comparing growth,
survival and cognitive performances of larvae bred on diets with
different nutrient ratios. Cognitive impairments were assessed in an
olfactory learning task where larvae had to associate an odour with a
food reward.

MATERIALS AND METHODS
Fly culture
Wild-type Canton-S D. melanogaster flies (Bloomington

Drosophila Stock Center) were reared under standard conditions
(20°C, 60% relative humidity, 12 h:12 h light:dark photoregime,
light on at 08:00 h). Flies were cultured in 150 ml plastic bottles
containing standard diet made of dry inactive yeast (90 g 17!,
Dutscher Scientific, Brentwood, UK), maize flour (90 g 17!,
Genesee Scientific, San Diego, CA, USA), Vanderzant vitamin
mixture for insects (0.25 g1~!, Sigma-Aldrich, St Louis, MO,
USA), Tegosept (4 g17!, Dutscher Scientific) and propionic acid
(1.5 g17!, Dutscher Scientific) in a 1.5% agar gel (Dutscher
Scientific). The protein to carbohydrate (P:C) ratio of the standard
diet was 1:2.

Experiments 1-7 were conducted with 4-day-old mated females.
To obtain mated females, virgin adults were collected from the stock
culture within 2 h of eclosion from the pupae and maintained in
groups of 15 males and 15 females in culture bottles with standard

diet (experiments 1-3) or experimental diet (experiments 4-7) for
mating. After 96 h, females were transferred to a test arena
(experiments 1-5) or to plastic tubes (experiments 6—7) under
light CO, anaesthesia (see details below). All experiments were
conducted in climate-controlled chambers (20°C, 60% relative
humidity) under far-red light (LED bulb 625-630 nm, Rubin-
Lacaque), which is not detected by flies (Heisenberg and Buchner,
1977). All experiments were started at 10:00 h. For cafeteria assays
(experiments 2—5), the different diets were placed in a circular array
and their relative positions were pseudo-randomised at each trial to
avoid potential biases due to side preferences or hard-wired foraging
movement rules by flies.

Experimental diets

We designed 34 experimental diets differing in their content of
protein and digestible carbohydrates. The protein content was
manipulated using a mix of whey protein and casein (ratio whey:
casein 1:4, Nutrimuscle, Longwy, France). The carbohydrate
content was manipulated using sucrose (Dutscher Scientific). The
quantity of yeast (dry and inactive, Dutscher Scientific) was kept
constant (10 g17!) in order to keep the quantity of minerals and
other components present in yeast identical across all diets. The
protein and carbohydrate contents of the yeast (0.45 g g~! protein,
0.24 g g~! carbohydrate) were included in the calculation of the
protein to carbohydrate ratios tested. Vanderzant vitamin mixture
for insects (2.5 g 17!, Sigma-Aldrich), Tegosept (4 g 17!, Dutscher
Scientific) and propionic acid (1.5 g 17!, Dutscher Scientific) were
added to each diet. All diets were presented to the insects in a 2%
agar gel (Dutscher Scientific), providing suitable feeding and
oviposition sites.

Experiment 1: egg-laying performances

We assessed the egg-laying performances of females reared on
standard diet, confined to one of 34 experimental diets varying in
protein and carbohydrate content, using four nutrient concentrations
(P+C 45, 90, 180 and 270 g 17!) and 10 nutrient ratios (P:C 1:56,
1:32, 1:16, 1:8, 1:4, 1:2, 1:1, 2:1, 4:1 and 8:1). Each fly was tested
for 24 h in a small Petri dish (@=35 mm, height=15 mm) filled with
5 ml of diet. At the end of the test, the fly was removed and the
number of eggs laid on the food was counted. The experiment was
repeated at least 20 times for each diet (N=808 flies; see details in
Table S1).

Experiment 2: egg-laying preferences

We assessed the egg-laying preferences of females reared on
standard diet in a cafeteria assay. Flies were tested for 24 h, during
which they had unrestricted access to eight patches of different
experimental diets (@=35 mm, height=15 mm, volume=5 ml) set in
a 15 ml agar gel basis (30 g17!) in a large Petri dish (@=145 mm,
height=20 mm). Diets varied in their nutrient ratios (P:C 1:16, 1:8,
1:4,1:2,1:1,2:1, 4:1 and 8:1, P+C 180 g I™'; Table S1). At the end
of the test, flies were removed and the number of eggs laid on each
diet was counted. Flies were tested either alone (N=40 flies) or in
groups of 10 (N=24 groups; Table S1).

Experiment 3: interaction between feeding and egg-laying
preferences

We examined the feeding and egg-laying preferences of flies reared
on standard diet in cafeteria assays with eight patches of different
experimental diets, similar to experiment 2. The flies were observed
for 24 h. Top-view pictures of the test arena were taken every minute
with a webcam (HD Webcam C270, Logitech, Romanel-sur-
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Morges, Switzerland) placed 150 mm above the setup and
programmed with Zone Trigger (Omega Unfold, Montreal, QC,
Canada). The number of flies on each food patch was counted on
each of 80,640 images recorded using the ‘analyse particles’ tool in
Image] (National Institutes of Health, Bethesda, MD, USA; for
details of the image analysis procedure, see Lihoreau et al., 2016).
At the end of the test, flies were removed and the number of eggs
laid on each patch was counted. The experiment was repeated 21
times (N=21 groups of 10; Table S1).

Assuming that flies were eating when they were on a food patch,
we estimated the cumulated intake of protein (/p) and carbohydrate
(Ic) by flies based on time spent on food:

X 8
T; x P;
Ip: ! l, (1)
x 8
T; x C;
o=y e )
=1 i=1

where ¢ is the time since the beginning of the experiment (0 to
1440 min), N is the number of flies in the cafeteria, 7; is the
cumulated time spent on food patch i, and P; and C; are the
concentrations in protein and carbohydrate in food patch i,
respectively. For simplicity, we assumed that time spent on food
correlates with food consumption and considered that flies ate from
each diet at the same constant rate (for finer-scale patterns, see
Itskov et al., 2014). We did not consider the time spent laying eggs
on food, which is typically accomplished within 1 min (Yang et al.,
2008) and is therefore negligible for the duration of our
observations.

Experiment 4: effect of nutritional state on egg-laying
performances and preferences

We examined the egg-laying preferences of flies maintained on
different breeding diets varying in nutrient concentrations and
ratios. Flies were transferred to a high carbohydrate diet (P:C 1:16,
P+C 180 g171), a high protein diet (P:C 8:1, P+C 180 g1=!) or an
intermediate diet (P:C 1:2, P+C 180 g 1=!) within 2 h of emergence
from the pupae, and maintained under these conditions for 96 h. We
used a first batch of flies to investigate the role of nutritional state in
egg production. Flies were tested individually in a no-choice assay
similar to experiment 1 but with standard diet (N=40 flies per
nutritional state; Table S1). We used a second batch of flies to
investigate the role of nutritional state in egg-laying preferences.
Flies were tested in groups of 10 in one of four cafeteria assays
containing eight patches of experimental diets with different P+C
concentrations: 45, 90, 180 and 360 gl~'. The following
cafeterias were used: P:C 1:8, 1:6, 1:4, 1:2, 1:1, 2:1, 4:1 and 8:1
atP+C45 g17'; P:C 1:16, 1:8, 1:4, 1:2, 1:1, 2:1, 4:1 and 8:1 at P+C
90 g17!; P:C 1:32, 1:16, 1:8, 1:4, 1:2, 1:1, 2:1 and 4:1 at
P+C 180 g1~!, and P:C 1:56, 1:32, 1:16, 1:8, 1:4, 1:2, 1:1 and
2:1 at P+C 270 g 17!, The number of eggs laid on each food patch
was counted after 24 h. As mentioned above, because yeast contains
diverse nutrients other than protein (e.g. carbohydrates, sterols, fatty
acids, minerals and vitamins) (Morais et al., 1995), we standardised
its quantity in all food to 10 g 17!, As yeast contains 0.45 g g=! of
protein, each diet contained a minimum of 4.5 g 17! of protein. This
standardisation prevented us from testing a range of high
carbohydrate diets at low P+C concentrations. We conducted 17
to 20 replicates for each P+C concentration and each nutritional state
(235 cafeterias; Table S1).

2516

Experiment 5: effect of nutritional state on the interaction
between feeding and egg-laying

We examined the feeding and egg-laying preferences of flies
maintained on different breeding diets during 96h. As in
experiment 4, flies were transferred to a high carbohydrate diet
(P:C 1:16, P+C 180 g17"), a high protein diet (P:C 8:1, P+C
180 g 17") or an intermediate diet (P:C 1:2, P+C 180 g1~') within
2 h of emergence from the pupae, and maintained under these
conditions for 96 h. To disentangle the effect of nutritional state on
feeding and egg-laying preferences, groups of 10 flies were tested in
a cafeteria assay with eight patches of experimental diets, similar to
in experiment 2 (P:C 1:16 N=18 groups, P:C 1:2 N=17 groups, P:C
8:1 N=19 groups; Table S1). The number of flies on each diet was
recorded every minute using the webcam pictures and the number of
eggs laid was counted after 24 h. Nutrient intake was estimated
using time spent on food (see details in experiment 3).

Experiment 6: effect of breeding diets on larval growth and
survival

To evaluate the consequences of female egg-laying decisions on the
fitness of larvae, we measured the development of eggs laid on three
different breeding diets. Fifteen groups of five females reared on a
standard diet were transferred to culture tubes (55 ml) containing a
high carbohydrate diet (P:C 1:16, P+C 180 g17!), a high protein
diet (P:C 8:1, P+C 180 g 17!) or an intermediate diet (P:C 1:2, P+C
180 g 17!) and left to lay eggs for 24 h. The mean number of eggs
laid was 34413 (mean#s.d., N=45 groups), giving us a total of 1518
eggs (Table S1). For all groups, we monitored the time course of
larval development from egg to adult emergence by counting the
number of pupae and adults on a daily basis over a period of
30 days. Newly emerged adults were removed to prevent females
from starting to lay their own eggs.

Experiment 7: effect of breeding diets on larval cognition
To evaluate the consequences of the egg-laying decisions of females
on the cognitive abilities of larvae, we measured the learning
performances of third instar larvae reared on three different breeding
diets using a well-established reciprocal, differential conditioning
assay for olfactory learning (Gerber et al., 2013). Fifteen groups of
five females reared on a standard diet were transferred to culture
tubes (55 ml) containing a high carbohydrate diet (P:C 1:16, P+C
180 g171), a high protein diet (P:C 8:1, P+C 180 g1") or an
intermediate diet (P:C 1:2, P+C 180 g17') and allowed to lay eggs
for 24 h. Newly hatched larvae were maintained under these
conditions until they reached the third stadium (feeding stage).
Groups of 30 larvae underwent one of two reciprocal training
assays with 1-octanol (OCT; purity: 99.5%; Sigma-Aldrich) and
amyl acetate (AM; purity: 99%, diluted 1:50 in paraffin oil; Sigma-
Aldrich). A third of the groups received AM associated with an
appetitive sucrose reinforcement and OCT without sucrose
(AM+/OCT). A second third of the groups was trained
reciprocally (AM/OCT+). The final third was not trained, only
tested (control groups). Training arenas (medium Petri dishes,
=85 mm, height=20 mm) contained either pure agar gel (1%) or
agar gel mixed with sucrose (68.4%). Half of the assays were started
with an ‘agarose arena’, the other half with a ‘sucrose arena’. Two
containers (1.5 ml Eppendorf tube cap) with the same odorant were
placed on opposite sides of the training arena. Training consisted of
transferring a group of larvae in the arena and observing them for
5 min. Larvae were then transferred to a second training arena
loaded with the alternative odorant and the respective other substrate
for 5 min. This cycle was repeated 3 times (6 training trials per
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group). All groups were then tested in a choice condition between
AM and OCT without sucrose (AM/OCT) in an agarose arena. We
recorded the number of larvae on ‘AM’ and ‘OCT’ sides every 30 s
for 5 min.

For each assay, we calculated the odour preferences (P) of
each group for each time point as the number of larvae on the
AM side minus the number on the OCT side, divided by the total
number of larvae observed. P ranges from —1 to 1; positive values
indicate a preference for AM and negative values indicate a
preference for OCT. To determine whether these preferences
depended on training, we used the P values from the training
assays performed in parallel (AM+/OCT and AM/OCT+) and
computed a learning index (LI):

L[ _ P(AM+,0CT) — P(AM,OCT +)

- ()

LIranges from —1 to 1; positive values indicate associative learning
between the odorant and the sucrose reinforcement. We tested 30
groups for each nutritional treatment (P:C 1:16, 1:2, 8:1). Ten
groups were trained with AM+/OCT, 10 groups with AM/OCT+
and 10 groups were the naive controls (Table S1).

Statistical analyses

For experiment 1, we used Lande—Arnold regressions to estimate
parametric nonlinear response surfaces. These comprise linear and
quadratic components for protein and carbohydrate concentrations
and the cross-product of both nutrients. Response surfaces for
number of eggs laid were fitted over P:C intake. These surfaces are
best visualised using non-parametric techniques that do not
constrain the shape of the surface. We fitted non-parametric
thin-plate splines using the ‘fields’ package in R (http:/CRAN.
R-project.org/package=fields).

All other analyses were conducted with SPSS (v21.0).
For experiments 2—5, we used generalised linear mixed models
(GLMM) with a binomial logit function to compare the oviposition
preferences. The number of individuals (experiment 2), behaviour
(feeding or egg-laying; experiment 3), nutritional state (experiments
4 and 5), nutrient concentration (experiment 5) and nutrient ratio
(experiments 2-5) of diets were added as fixed factors; the total
number of eggs was added as a covariate; and the cafeteria replicate
was added as a random factor. We used general linear models
(GLM) to compare the total number of eggs laid in each cafeteria
assay with nutritional state (experiments 4 and 5) and nutrient
concentration of diets (experiment 5) as fixed factors.

For experiment 6, we used a GLM to compare larval development
time in relation to the nutritional state and a GLM with a logit
function to compare the proportion of adult emergence in relation to
the nutritional state. In both models, nutrient ratios of diets were
used as a fixed factor and group of flies as a nested factor.

For experiment 7, we used a GLMM to investigate the effect of
the nutritional state on the cognitive performances of larvae. Time
was used as a within-subject factor and diet as a between-subject
factor.

RESULTS

Experiment 1: egg-laying performance

Flies confined to one of 34 foods varying in nutrient balance and
concentration laid more eggs on high carbohydrate foods (R*=0.19,
F’s 506=38.17, P<0.001; Table S2). The number of eggs peaked on
P:C 1:8 (Fig. 1). This number decreased sharply with increasing
ratio and concentration of protein, reaching a minimum on P:C 8:1.

No. of eggs
250+
30
200+ : 25

T
2
o 150 20
©
e
>
£ i
2 100/ 15
@©
@)

10

50
2
5
0 T T T T I
0 50 100 150 200 250

Protein (g I-")

Fig. 1. Egg-laying performances in no-choice assays (experiment 1).
Effects of nutrient balance and concentration on the number of eggs laid by
individual flies confined for 24 h to one of 34 diets (N>20 flies for each diet;
Table S1). Response surfaces were generated using non-parametric thin-plate
splines fitted using the ‘fields’ package in R (http:/CRAN.R-project.org/
package=fields) (see details of Lande—Arnold regression in Table S2). Dark
red indicates the highest values of the number of eggs laid, descending to the
lowest values in dark blue regions.

Experiment 2: egg-laying preferences

When offered a choice between eight foods varying in nutrient
balance at stable concentration, flies consistently showed an
oviposition preference for high carbohydrate foods, laying the
majority of their eggs on P:C 1:16 and P:C 1:8 (GLMM, diet:
F7.406=53.10, P<0.001; Fig. 2). The number of eggs increased with
decreasing P:C ratio in a similar manner for flies tested in isolation
or in groups. However, the preference for high carbohydrate diets
was more pronounced in grouped flies (GLMM, social condition:
F7406=29.65, P<0.001; dietxsocial condition: F7496=7.87,
P<0.001; Fig. 2). Therefore, we conducted all the following
choice experiments (experiments 3—5) with groups of flies.

180 g I-!
0.8+ | 10 individuals
| 1 individual
c
S
£ 0.6
o
Q.
o
a
S 0.4
s ;
§ t
3
= 0.2+
,,,,,,,,,,,,,,,,,? ,,,,,, + ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0 + i L ° ° " °®

T T T T T
1:4 1:2 1:1 2:1 4:1 8:1

Food P:C
Fig. 2. Egg-laying preferences in choice assays (experiment 2). Mean
proportion of eggs laid on each food patch for individual flies (N=40 flies) or

groups of flies (N=24 groups of 10; Table S1). The dashed line indicates
random choice. Error bars indicate +95% CI.
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Experiment 3: interaction between feeding and egg-laying
preferences

Detailed analyses of the choice dynamics by groups of flies in
cafeteria assays confirmed the results of experiment 2 that females
spent most of their time and laid most of their eggs on high
carbohydrate foods (GLMM, diet: F;30=31.14, P<0.001; Fig. 3).
If we consider that it takes 1 min for each fly to lay one egg, egg-
laying represented a maximum of 20% of the time spent on the high
carbohydrate foods. This suggests that flies also visited these foods
for feeding. However, the mean proportion of flies observed on the
different foods was not perfectly correlated with the mean number
of eggs laid, suggesting that feeding decisions and oviposition
decisions were uncoupled to some extent. On average, flies spent
23% of the time (N=21 groups) on high protein foods (P:C 2:1, 4:1,
8:1) while not laying eggs on them (GLMM, behaviour:
F7320=21.42, P<0.001; dietxbehaviour: F;350=9.01, P<0.001;
Fig. 3). Our estimations of protein and carbohydrate intake (based
on total number of flies observed on foods) suggest that flies
acquired both nutrients at a P:C ratio of 1:1.6 (R?=0.88,
F121=155.15, P<0.001; Fig. 4).

Experiment 4: effect of nutritional state on egg-laying
performances and preferences

Manipulation of the nutritional state of flies fed different breeding
diets for 96 h induced important changes in their feeding and egg-
laying behaviour. In no-choice conditions, flies confined to standard
diet laid more eggs when fed high protein diet P:C 8:1 than when fed
balanced diet P:C 1:2 or high carbohydrate diet P:C 1:16 (GLM,
nutritional state: F; 40=67.97, P<0.001; Fig. 5A). Flies offered a
choice between eight food patches varying in nutrient balance
and concentration laid more eggs when fed high protein P:C
8:1, than when fed balanced P:C 1:2 or high carbohydrate P:C 1:16
diets (GLM, nutritional state: F,35=555.21, P<0.001; Fig. 5B).
This difference in egg production was more pronounced in cafeteria
assays with high nutrient concentrations (concentration:
F;535=30.31, P<0.001; concentrationxnutritional state: F 535=31.69,
P<0.001; Fig. 5B). For all P+C concentrations, flies laid
the majority of their eggs on foods with a carbohydrate-biased P:
C ratio (GLMM, 45gl™": F;,44=192.77, P<0.001; 90 g 17"
F7.445=208.18, P<0.001; 180 gl™': F;445=429.40, P<0.001;
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£
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Fig. 3. Interaction between feeding and egg-laying in choice assays
(experiment 3). Mean proportion of flies and eggs on each diet (N=21 groups

of 10 flies; Table S1). The dashed line indicates random choice. Error bars
indicate £95% CI.
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270 g 17t F7.445=289.21; Fig. 6), thereby confirming the results
of experiments 2—4. However, the choice became more significant
and specific to foods with the highest carbohydrate ratio (P:C 1:56)
when the nutrient concentration was increased. Presumably the
presence of nutrients in higher concentrations facilitated the
discrimination between close P:C ratios by flies.

Experiment 5: effect of nutritional state on the interaction
between feeding and egg-laying

When given a choice between eight foods varying in nutrient
balance, flies laid more eggs on high carbohydrate food (P:C 1:16),
regardless of their nutritional state, thus confirming the result of
experiment 2 (GLMM, diet: F;405=57.93, P<0.001; nutritional
state: /' 40s=1.12, P=0.333; Fig. 7). Although the total number of
eggs laid on all foods was much higher in flies fed high protein diet
P:C 8:1 (GLM, nutritional state: F, 53=67.97, P<0.001; Fig. S1), the
total number of flies observed on all foods did not differ according
to their nutritional state (GLM, nutritional state: F,s3=2.74,
P=0.074). The distribution of flies across the different foods,
however, varied considerably with nutritional state (Fig. 7). Flies
fed P:C 8:1 were observed on both P:C 1:16, while flies fed P:C 1:2
and P:C 1:16 were observed on both P:C 8:1 and P:C 1:16 (GLMM,
diet: F;405=96.12, P<0.001; nutritional state: F; 405=7.26,
P=0.001; dietxnutritional state: F'j4405=5.05, P<0.001; Fig. 7).
Our estimations of protein and carbohydrate intake (based on
cumulated time spent on foods) suggest that flies acquired both
nutrients at varying P:C ratios depending on their nutritional state
(P:C1:3.8,P:C 1:1.6 and P:C 1:1.4 for 8:1, 1:2 and 1:16 nutritional
states, respectively; Fig. 8). Overall, flies fed high carbohydrate
diets spent more time on high protein foods, while flies fed
high protein diets spent more time on high carbohydrate foods.
These opposite behavioural responses by flies with divergent
nutritional states indicate a strategy of compensatory feeding
(illustrated in Fig. 9).

Experiment 6: effect of breeding diets on larval growth and
survival

The nutrient content of breeding diets had a considerable effect
on larval development (Fig. S2). Larvae had the fastest egg-to-adult
development on P:C 8:1 and the slowest egg-to-adult development
on P:C 1:16 (GLM, diet: F; 44=38.34, P<0.001; meants.d., P:C
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1:16=22.5+2.8 days, P:C 1:2=17.3+2.5 days, P:C 8:1=14.3+¢
2.1 days). However, the proportion of adults that successfully
emerged from pupae was the lowest on P:C 8:1 and the highest on P:
C 1:2 (GLM, x%,44=204.55, P<0.001, proportion of emergence: P:C
1:16=0.63, P:C 1:2=0.74, P:C 8:1=0.47). Thus, overall, the
developmental performance of larvae (combining growth and
survival) was the highest on P:C 1:2.

Experiment 7: effect of breeding diets on larval cognition

The larvae belonging to the naive control group did not express
any innate preference for either of the odours during the test
(mean proportion of the larvae observed on the AM side +95% CI,
P:C 1:16=0.51+0.07, P:C 1:2=0.55+0.05, P:C 8:1=0.51+0.06;
Fig. S3). However, the composition of breeding diets impacted on
the cognitive capacities of larvae, influencing both their learning
performances and decision speed. Overall, larvae fed P:C 1:2
showed higher learning indices than larvae fed P:C 1:16 and larvae
fed P:C 8:1 (GLM, nutritional state: F; ,;=4.01, P=0.03; Fig. 10).
During the test trials, larvae fed P:C 1:16 showed the shortest

latency (60 s to reach a plateau) to join the side scented with the
reinforced stimulus, either AM+ or OCT+, while larvae fed P:C 8:1
showed the longest latency (240 s to reach a plateau) (GLM, time:
Fo43=43.31, P<0.001; timexbreeding diet: Fg543=3.69,
P<0.001). Thus, the overall associative olfactory learning
performance of larvae (combining the decision speed and
accuracy during the test) was the highest on P:C 1:2.

DISCUSSION

We sought to understand how female fruit flies integrate feeding
decisions (individual nutrition) and oviposition decisions (offspring
nutrition) in their foraging activities, and how these trade-offs
impact the fitness of the future larvae. Our observation of time spent
on foods and egg counts indicate that flies exhibit complex foraging
patterns during which they alternate between feeding on balanced
diets known to maximise female fitness and laying eggs on high
carbohydrate diets that are suboptimal for larval development. The
apparent mismatch between the oviposition choices of females and
the nutritional requirements of larvae may reflect a natural situation
where ripening (high carbohydrate) fruits gradually enrich in protein
as they start rotting, thereby providing good nutrition for the
developing larvae.

Deciding where to feed and where to lay eggs are critical
nutritional decisions for D. melanogaster females and their
progeny. In all our different choice experiments, eggs were almost
exclusively observed on high carbohydrate diets (P:C 1:16 and 1:8)
irrespective of the nutritional state of flies. Selectivity for
oviposition sites rich in carbohydrates is consistent with previous
observations that D. melanogaster females given a simultaneous
choice between multiple foods prefer laying eggs on sucrose
substrates (Schwartz et al., 2012) or on mixed-sugar protein
substrates with high carbohydrate ratios (Rodrigues et al., 2015)
over yeast media. Interestingly, we found that these choices were
more pronounced in groups than in isolated females. Presumably,
aggregation on foods mediated by social information transfer
between foraging flies (e.g. phenomenal cues such as cis-11-
vaccenyl acetate or sex-specific cuticular hydrocarbons) increased
the accuracy of their oviposition decisions (Duménil et al., 2016;
Lihoreau et al., 2016; Philippe et al., 2016), a well-known property
of collective decision-making in animal groups (Couzin, 2009).

Monitoring of the complete foraging patterns of flies over 24
consecutive hours revealed that females alternated visiting diets
with distinct nutrient contents. This pattern is incompatible with the
hypothesis that flies simply lay eggs where they eat. Instead, females
clearly engaged in a complex succession of nutritional decisions to
simultaneously self-regulate their own nutrient intake while also
searching for suitable nutritional habitats for the future larvae, a
foraging pattern that we do not expect to observe in virgin or sterile
females. Females reared on a standard food were mostly seen on the
balanced diet (P:C 1:1), reaching an estimated intake target of P:C
1:1.6. This estimation is similar to recent measures of intake targets
by D. melanogaster based on actual consumption of liquid foods
(Lee et al., 2013). Accordingly, females reared on an imbalanced
diet P:C 1:16 (or P:C 8:1) were more often observed on a
nutritionally complementary diet P:C 8:1 (or P:C 1:16), possibly in
an attempt to compensate for their deficiency of one of the two
nutrients. The pattern of food visitations combined with egg-laying
performances show that flies need protein to lay eggs, confirming
previous observations that egg production is related to both
available nutrients and the nutritional state of females in
D. melanogaster and many other insects (Rivero et al., 2001;
Terashima and Bownes, 2004). Flies reared on high carbohydrate
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Fig. 6. Effect of nutritional state on
egg-laying preference in choice

assays (experiment 4). Mean
proportion of eggs laid on each food
according to the nutritional state of
flies (N=79 groups for P:C 1:16, N=79
groups for P:C 1:2, N=77 groups for
8:1) and P+C concentration of foods:
(A) N=60 groups for 45 g 17",

(B) N=59 groups for 90 g I,

(C) N=59 groups for 180 g 1" and (D)
N=57 groups for 270 g I~". Flies were
tested in groups of 10. The dashed
lines indicate random choice. Error
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high protein diets only later, towards the end of the experiment.
These results thus confirm that when given a choice between
complementary foods, D. melanogaster mated females exhibit
compensatory feeding, which enables them to balance their intake
of protein and carbohydrates to reach nutritional states maximising
egg production (Lee et al., 2008, 2013; Piper et al., 2014; Ribeiro
and Dickson, 2010).

Our analyses of the performances of larvae confined to specific
diets show that development was impaired on high carbohydrate diets
(P:C 1:16), as illustrated by the 15% decrease in survival, 30%
increase in egg-to-adult development duration and 30% reduced
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Fig. 8. Effect of nutritional state on nutrient intake (experiment 5). Indices
of protein and carbohydrate intake computed from the time spent on foods
according to the nutritional state of flies (N=18 groups for P:C 1:16, N=17
groups for P:C 1:2, N=19 groups for P:C 8:1). Flies were tested in groups of 10.
Grey lines represent foods. Slope indicates the C:P ratio of each food. Bivariate
error bars indicate £95% CI.
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learning scores in comparison to flies reared on more balanced diets.
The highest larval performances were obtained for flies raised on P:C
1:2, which is consistent with recent estimates of the D. melanogaster
larval nutrient intake target (Rodrigues et al., 2015). Accordingly, the
worst performances were observed for flies raised on P:C 8:1, with
only half of the larvae reaching the imaginal moult, suggesting that
protein overconsumption has a toxic effect on larvae, as previously
demonstrated in adult insects [e.g. Drosophila (Lee et al., 2008), ants
(Dussutour and Simpson, 2012), bees (Stabler et al., 2015) and field
crickets (Maklakov et al., 2008)]. Alternately, it is possible that a hard
ceiling on protein intake slowed food consumption so that larvae
actually suffered from a lethal carbohydrate deficit (Simpson and
Raubenheimer, 2005; Felton et al., 2009).

Importantly, we found that learning performances are also
directly affected by diet, thereby adding a new dimension to the
fitness landscape of D. melanogaster larvae. The effects of
malnutrition on cognitive performances have long been identified
in mammals (La Rue et al., 1997) and insects [e.g. honeybees (Arien
etal., 2015; Wright et al., 2013) and Drosophila (Guo et al., 1996;
Kawecki, 2010; Kolss and Kawecki, 2008; Shou-Zhen et al.,
1997)], and may be due to modifications of the biochemical
composition of the brain, developmental procedures (Heisenberg
et al., 1995; Xia et al., 1997) or sensorial modalities (e.g. impaired
olfaction). Previous studies on fruit flies indicate that adults fed high
carbohydrate diets (ca. P:C 1:12) have reduced performances in
operant visual learning tasks (Guo et al., 1996; Shou-Zhen et al.,
1997). However, none of these studies have systematically
compared the cognitive performances of flies fed diets varying in
their contents of specific nutrients. Our results indicate that a diet
balanced in protein and carbohydrate is critical for learning. Our
future experiments using more diets to cover the entire nutrient
space will determine whether impairment of learning is caused by an
excess and/or deficit of one nutrient or both. In the case of

D. melanogaster larvae, learning associations between odours and
food rewards may be of primary importance for guiding their
foraging decisions in the dark (Schleyer et al., 2015). Within a
single rotting fruit, the stochastic nature of colonisation by bacteria
and fungi may lead to considerable spatio-temporal variation of
nutrient distribution, providing patchy and ephemeral foraging
environments (Reaume and Sokolowski, 2006). Olfactory learning
may therefore be useful for larvae to accurately navigate between
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Fig. 10. Effect of nutritional state on larval cognition (experiment 7).
Learning index (LI) according to the nutritional state of flies (N=10 groups of

30 larvae for each nutritional state). LI ranges from —1 to 1. Positive values
indicate successful associative learning. Error bars indicate +95% CI.
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patches of nutritious substrates interspaced with non-nutritious
areas free of microbes.

The apparent mismatch between female egg-laying preferences
and larval performances suggests that flies integrate the gradual
dynamics of fruit decomposition in their egg-laying decisions. In
nature, as a fruit starts rotting and yeast populations grow, the
composition of the fruit dynamically enriches in protein, thus
providing food resources with increased P:C ratios (Matavelli et al.,
2015; Morais et al., 1995). For instance, the composition of a
ripening fig fruit changes from ca. P:C 1:10 to P:C 10,000:1 over the
course of 27 days, with P and C concentrations varying between 10
and 10,000 g1=' (Matavelli et al., 2015). These nutritional
modifications of food resources are likely favoured by the fact
that females inoculate the fruit substrate with yeast during
oviposition (Buser et al., 2014; Stamps et al., 2012) and tend to
lay eggs in aggregations (Navarro and del Solar, 1975; Prokopy and
Roitberg, 2001; Wertheim et al., 2005; see also experiment 2). In
many cases, multiple fly species may also breed in the same fruits
(Matavelli et al., 2015). These changes in nutrient balance and
concentration mediated by the behaviour of females correlate with
changes in the nutrient requirements of larvae as they develop. Thus
under this hypothesis, foods with a high P:C ratio may indicate a
stage in the food decay process that is too advanced to sustain the
development of the larvae and, therefore, a poor-quality oviposition
site. This is consistent with observations that D. melanogaster
females prefer laying eggs in fruits with intermediate levels of
decay (Hoffmann, 1985) and that these preferences vary among
drosophilid species (Matavelli et al., 2015). Such selectivity for an
optimal nutrient mix may explain some of the variance observed in
female oviposition choices under laboratory conditions, where the
preference for a non-nutritious substrate (medium without yeast)
changes depending on its distance to a nutritious substrate (medium
containing yeast) (Miller et al., 2011), presumably because flies use
gradients of nutrient concentration rather than discrete food patches
for selecting appropriate sites. Future experiments with nutritional
geometry designs to measure how the intake targets of larvae may
change throughout their development are needed to definitively
answer this question (Simpson and Raubenheimer, 1993).

Although ample evidence shows that early diet can have critical
consequences on the physiology and behaviour of animals
(Simpson and Raubenheimer, 2012), the nutritional ecology of
parent—offspring interactions has so far received little attention. Our
study, in a model organism for nutrition research with minimal
parental care, reveals that females combine their own nutritional
regulation with complex oviposition decisions, anticipating changes
in food nutrient contents in their foraging activities. Although it is
clear from our results that these nutritional and oviposition decisions
are independent from each other (at least partially), it is possible
that longer-term dietary experiences may affect the egg-laying
behaviour of females. For instance, it has been proposed that
D. melanogaster females can adjust their investment in offspring
based on the quality of the nutritional environment, so that flies bred
on poor diets (low P+C) produce higher quality offspring (e.g.
heavier eggs, faster larval development, higher reproductive output)
than flies bred on rich diets (high P+C) to maximise their chance of
surviving (Matzkin et al., 2013; Vijendravarma et al., 2010).
Similarly, it is possible that a long-term exposure to an unbalanced
diet (nutritional stress) causes females to lay eggs on nutritionally
complementary diets in order to anticipate protein compensation by
the larvae.

Future studies are needed to explore how these complex
alloregulatory behaviours are adjusted in relation to the nutritional

2522

context across taxa and socio-ecological environments. In nature,
nutritional decisions can be complicated by several additional
factors such as social information provided by other females
(Battesti et al., 2012; Durisko et al., 2014; Lihoreau et al., 2016;
Sarin and Dukas, 2009; Chabaud et al., 2009), competition (Eggert
et al., 2008; Salomon et al., 2008), sexual interactions with males
(Chapman and Partridge, 1996; Gorter et al., 2016) or the presence
of beneficial microbial communities on foods (Venu et al., 2014;
Wong et al., 2015). Thanks to their unique association with food as
shelter, breeding sites and sources of nutrients, fruit flies hold
considerable promise as model organisms with which to study these
multi-level nutritional interactions within the extended integrative
framework of nutritional ecology (Simpson et al., 2015a).
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