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Abstract 19 

1) Pollinators, such as bees, face the complex challenge of efficiently exploiting patchily distributed 20 

floral resources across large landscapes. 21 

 22 

2) Here we consider the utility of spatial network statistics for analysing the foraging patterns of bees 23 

moving between feeding sites at various spatial and temporal scales. 24 

 25 

3) First we explain how spatial movement networks can be derived theoretically and experimentally to 26 

describe bee foraging decisions.  27 

 28 

4) We then illustrate this approach by analysing six datasets of bumblebees and honeybees foraging 29 

in arrays of artificial flowers, and showing how some specific network metrics vary predictably as 30 

foragers gain experience with the spatial distribution of feeding sites. 31 

 32 

5) We compare network analyses to more conventional statistics used to characterise bee foraging 33 

movements and discuss the implications of this novel statistical and modelling approach for pollination 34 

ecology research. 35 

 36 

Keywords: bumblebees; foraging; honeybees; movement ecology; pollination; route optimization; 37 

spatial networks. 38 

 39 

 40 

 41 

 42 
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Introduction 44 

Bees play a key role in the reproduction of wild and cultured plants. Over recent years, their 45 

widespread declines have raised considerable concern for food security and the sustainability of our 46 

ecosystems (Goulson et al., 2015; Klein et al., 2017). Central to understanding the impact of pollinator 47 

loss on plant reproduction is the foraging behaviour of bees (Thomson, 1986; Waser, 1986). Most 48 

bees are central-place foragers, meaning that they collect food (nectar and pollen) to provision their 49 

brood in a single nest (Michener, 2000). By exploiting plants and developing foraging routes to visit 50 

them, individual bees may bias pollen flow and fashion the genetic structure of plant populations, 51 

therefore calling for more research of bee spatial strategies at the individual and collective levels 52 

(Ohashi & Thomson, 2009; Burkle & Alarcón, 2011; Mayer et al., 2011).  53 

Historically, bees were assumed to use simple movement rules that would yield maximal 54 

energy gains to exploit patchily distributed resources, such as moving between nearest unvisited 55 

flowers (Ohashi et al., 2007), making short trips after encountering highly rewarding flowers (Chittka et 56 

al., 1997) or keeping constant heading directions between visiting flowers (Pyke & Cartar, 1992). 57 

While these rules of thumb may hold true when bees forage at small spatial scales (within an 58 

inflorescence or a flower patch) mounting evidence shows that this is not the case at larger spatial 59 

scales, when bees move between distant locations (flower patches or plants). In these conditions, 60 

foragers of many bee species tend to develop stable foraging routes (sometimes called traplines in 61 

analogy to the fixed circuits that trappers follow when examining a number of traps distributed widely 62 

in space) that they follow for several hours or days (e.g. Euglossine bees: Janzen, 1971; bumblebees: 63 

Heinrich 1976; Thomson et al., 1997; honeybees: Buatois & Lihoreau, 2016). This routing behaviour is 64 

based on the acquisition of spatial memories encoding the location of the different food resources, the 65 

colony nest site and other prominent environmental features (e.g. visual landmarks) (Collett et al., 66 

2013). With training, bumblebees and honeybees can learn to find the shortest path to visit a few 67 

artificial flowers (equivalent to natural flower patches) once and return to the nest (Bombus impatiens: 68 

Ohashi et al., 2007; Bombus terrestris: Lihoreau et al., 2012a; Apis mellifera: Buatois & Lihoreau, 69 

2016), an optimisation behaviour analogous to solving the Travelling Salesman Problem in graph 70 

theory (Cook, 2012). This mathematical problem is notoriously difficult (if not impossible) to solve for 71 

large graphs, because the number of possible paths increases factorially with the number of nodes in 72 

the graph (e.g. 6 paths for 3 nodes, > 3 million paths for 10 nodes), and finding efficient solutions often 73 

requires complex algorithms and systematic approaches (Polyakovskiy et al., 2014; Dorigo & 74 

Gambardella, 2016).  75 

While there is evidence that bees exhibit routing behaviour in nature (Heinrich 1976; Janzen 76 

1971), to what extent these observations in simplified experimental conditions can be extrapolated to 77 

the field, where individuals may interact to exploit numerous highly variable resources scattered 78 

across large landscapes, is an open question.  79 

Field data on such multi-destination routes among flower patches are even more complex and 80 

challenging to analyse, and conventional behavioural metrics do not suffice to capture detailed 81 

information about routing behaviour (Thomson et al., 1997; Makino & Sakai 2004; Makino & Sakai 82 

2005; Makino 2013; Lihoreau et al., 2016). We argue that network statistics derived from graph theory 83 
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hold considerable promise to characterise these complex movement patterns at the individual and 84 

collective levels, and to identify the decision rules underpinning spatial strategies. In developing routes 85 

between flowers, foragers form movement networks embedded in space (Barthélemy, 2011), where 86 

‘nodes’ are feeding locations (flower patches or plants) and ‘edges’ are flight paths between them (see 87 

examples in Figures 1A-E) (Thomson et al., 1997; Lihoreau et al., 2016). These spatial movement 88 

networks are directed, meaning that individuals move from one particular location to another 89 

(movement vectors). Networks are also weighted so that the thickness of edges is proportional to the 90 

frequency of movements between nodes. Because most bee species are central-place foragers, their 91 

spatial movement networks also include the nest site, a specific node at which every flower visitation 92 

sequence starts and ends. Therefore, in principle, an optimal movement network for a bee connects all 93 

flowers and the nest using the shortest possible path (optimal network in Figure 1E). Discrete temporal 94 

network analysis can then be performed depending on the time intervals with which a visitation matrix 95 

is built. For instance, matrices may be developed by considering flower visits made in a single foraging 96 

bout (dynamic network) or by cumulating the flower visits of several foraging bouts (static network). A 97 

major advantage of network statistics is that they allow for analyses of very large spatial datasets and 98 

the derivation of new empirically testable hypotheses (e.g. Perna & Latty, 2014; Jacoby & Freeman, 99 

2016). Several analytical packages (e.g. igraph, sna, tnet packages in R, graph-tool in Python, 100 

UCINET) and both local metrics (e.g. measures describing the level of importance of a node in a 101 

network) and global metrics (e.g. measures describing the general level of connectivity of the entire 102 

network) can be readily calculated to characterize space use by pollinators from an individual-based 103 

point of view to measure, compare and predict their behaviour across different temporal scales.  104 

 In a recent field survey, Dupont et al. (2014) applied an individual-based plant-pollinator 105 

network analysis to flower visitation data of different bumblebee species. The study showed significant 106 

modularity in space use by bees based on plant characteristics, so that foragers tended to visit 107 

patches of aggregated plants with numerous flowers and use taller plants to move from one module to 108 

another (Dupont et al., 2014). Although the analytical approach developed in this study is very 109 

appealing, field surveys only provide partial information about the foraging experience of individual 110 

bees, the location of their nest relative to different plant patches and the temporal dynamics of their 111 

foraging patterns. All these parameters are critical in determining bee foraging behaviour (Chittka & 112 

Thomson, 2001). Experimental advances on model bee species, such as bumblebees and 113 

honeybees, using artificial flowers delivering controlled rates of food resources combined with 114 

automated movement tracking, now allow for collecting high resolution spatial and temporal data on 115 

bee foraging patterns in complex, yet controlled, environments (e.g. motion detection cameras on 116 

flowers: Lihoreau et al., 2016; Radio Frequency Identification (RFID): Ohashi et al., 2010; harmonic 117 

radars: Lihoreau et al., 2012b; QR tags: Crall et al. 2015; 3D video tracking: Ings & Chittka, 2008). 118 

Extensive recordings of individual based data using these semi-field approaches provide an 119 

interesting opportunity to start examining the cognitive processes underpinning the foraging patterns 120 

of bees and how they change across time in ecologically relevant conditions. 121 

Here we describe how spatial network statistics can be used to analyse the foraging patterns of 122 

bees both at local and global levels. We illustrate the potential of this approach for comparative analyses 123 
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by statistically comparing spatial optimisation in the movement patterns of bees of the same species or, 124 

of different species across environments varying in spatial scales, number of flowers and flower 125 

configurations using standard network metrics. We used published movement datasets of bumblebees 126 

and honeybees of known age, foraging experience and colony origin, foraging in arrays of artificial 127 

flowers in the lab and in the field. To validate the approach, we compared our results with analyses of 128 

more conventional behavioural metrics used in previous studies, such as the number of re-visits to 129 

flowers and overall travel efficiency (distance/number of flowers visited).  130 

 131 

Materials and methods 132 

Experimental data 133 

We analysed six datasets of bee flower visitation sequences. Three datasets were obtained on the 134 

bumblebee Bombus terrestris (experiment 1: Lihoreau et al., 2012a; experiment 2: Lihoreau et al., 135 

2011; experiment 3: Lihoreau et al., 2012b). The three other datasets were obtained on the honeybee 136 

Apis mellifera (experiments 4-6: Buatois & Lihoreau, 2016).  137 

All the datasets were generated following the same general methodology and are thus 138 

comparable. In all experiments bees were individually marked (coloured number tags or paint dots on 139 

the thorax) and maintained in colony nest boxes (bumblebees) or hives (honeybees) equipped with a 140 

transparent, colourless, entrance tube. The tube was fitted with a series of shutters to control all 141 

departure and arrival of foragers at the colony. Workers collected sucrose solution (40% w/w) on 142 

artificial flowers outside the colony. Flowers consisted of a blue plastic landing platform (diameter = 143 

60mm) with a yellow feeding spot in the middle. Bees were initially pre-trained on a flower from which 144 

they could collect ad libitum sucrose solution. Each individual was tested alone. A regular forager that 145 

made at least five foraging bouts (foraging trips starting and ending at the nest colony box) in one hour 146 

was selected. The crop capacity of this forager was estimated by averaging the total volume of 147 

sucrose solution collected from a training flower over another three foraging bouts. The forager was 148 

then tested with all test flowers placed in a specific spatial arrangement (see experimental arrays in 149 

Figure 2). During the test, each flower provided the same amount of sucrose solution, chosen so that 150 

the bee had to visit all flowers to fill its nectar crop to capacity before returning to the colony nest box 151 

(e.g. 1/5th of the crop capacity available in each flower in an array of five flowers). Flowers were refilled 152 

by the experimenter at the end of each foraging bout, meaning that any revisit to a flower within the 153 

same foraging bout was not rewarding. Bees were tested for 22 to 80 consecutive foraging bouts in 154 

the same array of flowers. All flower visits (when a bee landed on a flower) were recorded and used to 155 

reconstruct the complete foraging history of each bee.  156 

 Experiments were conducted in six different arrays, varying in their spatial scale, their number 157 

of flowers and the spatial configuration of flowers. Experiments 1, 2 and 4 (Figure 2A, B, D) were 158 

completed in flight rooms at small spatial scales and with controlled illumination (Lihoreau et al., 2011; 159 

Lihoreau et al., 2012a; Buatois & Lihoreau, 2016). Experiments 3, 5 and 6 (Figure 2C, D, E) were 160 

completed in outdoor open fields at small spatial scale for experiment 5 and large spatial scales for 161 

experiments 3 and 6 (Lihoreau et al., 2012b; Buatois & Lihoreau, 2016). Details about the spatial 162 
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arrangement of flowers, the number of bees tested and the numbers of foraging bouts per bee are 163 

given in Figure 2. 164 

 165 

Network analyses 166 

We built spatial networks of bee foraging movements in which flowers were nodes and movements 167 

were edges (Figure 1). Edges weight corresponded to the frequency of movement between flowers. 168 

To describe foraging movements and compare them across experimental conditions and species, we 169 

calculated three local network metrics describing the role of each flower in the bee movement network 170 

and one global network metric to infer on the efficiency of the network structure.  171 

 172 

Local network measures 173 

At a local level, we calculated the “weighted clustering coefficient”, which assesses the degree to 174 

which nodes tend to cluster together (Barrat et al., 2004). Here a high clustering value indicates that 175 

neighbouring flowers of a given flower are themselves highly connected, i.e. frequently re-visited 176 

(Figure 1B).  177 

We used the “Kleinberg’s authority score” (Kleinberg, 1999) to measure the relative 178 

importance of a node in a network (Figure 1C). Given A, an individual movement matrix across 179 

flowers, the Kleinberg's authority score is defined as the principal eigenvector of the inverted matrix 180 

t(A)*A. This metric assigns large values to flowers that are most often used, while accounting for the 181 

number of visits to adjacent flowers (i.e. flowers connected by at least one edge). Therefore a high 182 

Kleinberg’s authority score indicates that a specific flower is more often visited than all its neighbour 183 

flowers. This may be the case, for instance, at the early stages of a route development when bees 184 

often return to a reference flower from which they explore and attempt to locate new flowers (Ohashi 185 

et al., 2007; Lihoreau et al., 2010; 2016). 186 

We calculated the “weighted betweenness centrality”. This metric reflects the importance of a 187 

node as intermediary of the network, based on the number of shortest paths connecting all pairs of 188 

nodes that pass through the focal node (Opsahl 2009). In a bee movement network a high weighted 189 

betweenness centrality characterises a flower that is acting as a bridge among multiple other flowers 190 

(Figure 1D). 191 

Because our aim was to study general trends of spatial optimization by bees across time at 192 

the network level (route efficiency) and not at the node level (role played by individual flowers), for all 193 

the local metrics we calculated mean values over all flowers at each foraging bout. Betweenness 194 

scores were normalized following an algorithm that weights the betweenness value for the number of 195 

flowers visited in the network (Freeman, 1979). Authority scores were scaled from 0 to 1. Clustering 196 

coefficients vary between 0 and 1 and need no normalization. In these conditions, an optimal network 197 

(in which a bee would visit all flowers once and return to the nest by travelling the shortest distance to 198 

visit all flowers) and a suboptimal network (in which a bee would travel longer distances for visiting the 199 

same amount of flowers) would be characterised by the maximum average betweenness of 0.5, the 200 

maximum average authority score of 1, and the minimum average clustering coefficient of 0 (Figure 201 

1E). 202 
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Global network measures 203 

At the global level, we examined the triadic structures of the network - i.e. motifs (Milo et al., 2002), 204 

which represent triadic patterns of connection between nodes in a directed network. Network motifs 205 

can be representative of various biological processes such as information flow (Nandi et al., 2014), 206 

resource exchange (Quevillon et al., 2015) or disease spread (Waters & Fewell, 2012). In a bee 207 

movement network the analyses of network motifs might help identifying behavioural rules 208 

underpinning trapline formation (Figure 1F) while allowing for unbiased comparison across different 209 

datasets (Shizuja & McDonald, 2015). Whereas a detailed temporal network analysis of motifs might 210 

be used to better understand the mechanisms of network functionality (Kovanen et al., 2011), here we 211 

used a discrete approach by counting all the 16 possible triadic motifs to connect three flowers 212 

(including the nest) observed at each foraging bout and thus not strictly related to the exact temporal 213 

sequence of visits on flowers (Figure 1F). For each experiment, we compared the triadic motifs of the 214 

observed bee foraging networks at each foraging bout to those of the theoretical optimal network 215 

connecting all flowers and the nest using the shortest possible path. Since only two out of the 16 216 

possible triadic motifs (Figure 3A-F) can be observed in the optimal movement network (Figure 1E), 217 

these global measures inform us about the overall efficiency of the routes developed by bees. 218 

 219 

Data analyses 220 

 221 

Local network measures 222 

All analyses were conducted in the statistical environment R (i.e. version 3.2.3). For each foraging 223 

bout of each bee we extracted weighted clustering coefficient values, authority scores and weighted 224 

betweenness centrality values of each flower, using the functions “clustering_local_w” and 225 

“betweenness_w” in the tnet package (Opsahl, 2009) and the function “authority.scores” in the igraph 226 

package (Csardi & Nepusz, 2006). We ran three different regression models for weighted 227 

betweenness, authority and weighted clustering coefficient values using the sequential number of 228 

foraging bouts, type of array (i.e. small or large spatial scale), species (i.e. bumblebee or honeybee) 229 

and all the interactions among these predictors as fixed effects. We used individual identity nested in 230 

experimental array as a random effect in all models. We carried out model selection for the three 231 

different parameters ranking candidate models according to their Akaike Information Criterion (Akaike, 232 

1985). We used beta regression for the three averaged local network measures (clustering coefficient, 233 

weighted betweenness centrality and authority scores) because their values were constrained 234 

between 0 and 1. We also applied a zero inflation method using the Beta Inflated (BEINF) family 235 

function from the gamlss package (Rigby & Stasinopoulos 2005). Model selection of the Beta 236 

regression mixed models are shown in the supplementary materials (Tables S1, S2 and S3). Because 237 

network metrics are correlated, we applied a Bonferroni correction by setting the alpha level of 238 

significance at 0.017 (Tylianakis et al., 2007). 239 

 240 

 241 

 242 
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Global network measures 243 

Motifs were calculated using the “triad.census” function in the “igraph package” (Csardi & Nepusz, 244 

2006). Only two out of the 16 possible triadic motifs (motif 2 and 6: Figure 3A-F) are representative of 245 

the optimal movement network (Figure 1E). Depending on the number of flowers in the array, motif 1 246 

(triadic structure where the three nodes – A, B, C - have no connection among them, i.e. the empty 247 

graph A, B, C) can also occur and being represented for a maximum of 7 times in a network with 7 248 

flowers. Motif 2 (triadic structure with a single connection between the three nodes, i.e. A>B, C) and 249 

motif 6 (triadic structure where A>B>C are all connected by two directed lines) of the optimal 250 

movement network can also occur at different frequencies depending on the network size (i.e. for 7 251 

flowers: 21 and 7; for 6 flowers: 12, 6; for 5 flowers: 5, 5; as indicated by red horizontal lines in Figure 252 

3). We analysed the tendency of bees to modify their motifs frequency with time by applying a 253 

generalized linear mixed effect model for count data (i.e. GLMM with Zero Inflated Poisson distribution 254 

error) using the observed frequency for each motif and for each dataset as response variable, the 255 

number of foraging bouts as predictor, and individual identity as random effect.  256 

 257 

Other measures 258 

To illustrate the benefits of using the network approach relative to more conventional analyses, we 259 

also calculated non-network measures used in previous studies for assessing the ability of bees to 260 

develop efficient routes (Lihoreau et al., 2011; Lihoreau et al., 2012a; Lihoreau et al., 2012b; Buatois & 261 

Lihoreau, 2016). For each foraging bout of each bee we calculated the number of revisits to flowers 262 

and the distance travelled (assuming straight lines between flowers) divided by the number of flowers 263 

visited. Both measures of route efficiency are expected to decrease with increasing network efficiency, 264 

and reach a minimum in an optimal movement network. We applied a GLMM for count data to study 265 

the impact of experience (foraging bout) on the number of revisits to flowers and a linear mixed effect 266 

model (LMM) for the travelled distance divided by the number of flowers visited. Both models were run 267 

for each experiment using individual identity as random effect. 268 

 269 

Results 270 

Local network measures 271 

The average weighted betweenness centrality increased as bees accumulated foraging experience in 272 

the six experiments (estimatebout = 0.066, standard error (se) = 0.004, t = 17.11, P < 0.001), indicating 273 

that individuals tended to visit all flowers at a similar frequency by the end of training (Figure 4). This 274 

tendency was stronger in large spatial scale arrays (estimatesmall_array = -0.067, se = 0.005, t = -13.55, 275 

P < 0.001). Interestingly, in small spatial scale arrays bumblebees showed higher average weighted 276 

betweenness centrality (estimatehoneybees = -1.172, se = 0.164, t = -7.15, P < 0.001) and a tendency to 277 

develop optimal networks faster (estimatehoneybees = -0.020, se = 0.008, t = -2.533, P = 0.011) than 278 

honeybees (Figure 4).  279 

 The average Kleinberg’s authority scores also increased as bees accumulated experience in 280 

the six experiments (estimatebout = 0.083, se = 0.03, t = 2.781, P = 0.004), meaning that all flowers 281 

became equally important in the network. For both bee species, the average authority scores were 282 
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lower in small spatial scale arrays than in large spatial scale arrays (estimatesmall_arrays = -0.446, se = 283 

0.103, t = -4.334, P < 0.001). However, honeybees had larger average authority scores than 284 

bumblebees in the small spatial scale arrays (estimatesmall_arrays_honeybees = 0.582, se = 0.111, t = 5.229, 285 

P < 0.001) meaning that they tended to use all possible connections between flowers equally whereas 286 

bumblebees only used a few.  287 

 The average clustering coefficient tended to decrease with time, as bees accumulated 288 

foraging experience (Figure 6). Specifically, bumblebees showed a significant decrease in average 289 

clustering coefficient while honeybees maintained stable values throughout the experiments 290 

(estimatebout_honeybees= 0.018, se = 0.004, t = 4.185, P < 0.001). Honeybees showed completely 291 

different trend at small spatial scales, by increasing their average clustering coefficient scores with 292 

experience (estimatehoneybees_small_arrays = 0.407, se = 0.148, t = 2.752, P = 0.006). This again illustrates 293 

the much reduced route optimisation efficiency of honeybees in comparison to bumblebees at small 294 

spatial scales (Figure 6). 295 

Overall, these changes in all three local network measures were more pronounced at larger 296 

spatial scales, where flowers were distant from each other and from the colony nest, both for 297 

bumblebees and honeybees (Figures 4, 5 and 6). 298 

 299 

Global network measures 300 

While bees initially used the 16 possible motifs to link flowers, they gradually reduced the number of 301 

motifs to only use two of them by the end of training (motifs 2 and 6), a behaviour that is characteristic 302 

of route optimisation (Figure 3). This tendency was less pronounced for honeybees at small spatial 303 

scales (Figures 3D and 3E). Analyses of the frequency usage of each motif confirmed that honeybees 304 

at small spatial scales often presented opposite tendencies than honeybees at large spatial scales or 305 

bumblebees at all spatial scales (Figure 3D: motifs 3, 7, 8 and 15; Figure 3E: motifs 4, 5, 10 and 15) 306 

(for detailed motifs analysis see Table S4-S9).  307 

 308 

Other measures 309 

Conventional statistics for bee movement analyses showed trends towards a general increase in 310 

movement efficiency with experience. In all experiments bees decreased the number of revisits to 311 

flowers as they accumulated foraging bouts (Table S10). Bees also tended to decrease their travelled 312 

distance divided by the number of visited flowers, except in the case of honeybees foraging in small 313 

spatial scale arrays (Table S10). 314 

 315 

Discussion  316 

Network analyses are increasingly used in behavioural and ecological research, providing a whole 317 

new range of metrics to describe and model interactions between individuals and their environment 318 

(Croft et al., 2008; Jeanson, 2012; Pinter-Wollman et al., 2013). In pollination ecology, this approach 319 

has proved particularly powerful to describe interactions between plant and pollinator species, for 320 

instance using undirected bipartite networks based on field surveys of pollinator abundance (e.g. 321 

(Fontaine et al., 2006; Bascompte & Jordano, 2007; Campbell et al., 2011; Burkle et al., 2013; Coux et 322 
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al., 2016). Here we show how spatial network analyses can be developed to study the movement 323 

patterns of individual bees exploiting multiple feeding locations at various spatial and temporal scales 324 

in simplified experimental conditions. We argue that this approach may prove particularly helpful to 325 

analyse pollinator movements in more complex and ecologically realistic experimental designs and to 326 

generate new empirically testable hypotheses for pollination ecology research. 327 

As illustrated above, bee movement patterns can be described in terms of local and global 328 

network metrics that change predictably as individuals accumulate foraging experience. For instance, 329 

in a simple situation where only one bee exploits a stable array of flowers refilled between each 330 

foraging bout, both average betweenness values and average authority scores increased with time. By 331 

contrast the average clustering of flowers decreased with time as bees started to develop optimal or 332 

suboptimal stable movement networks. This tendency for optimisation of spatial movement networks 333 

was also reflected in the dynamics of motif usage, resulting in bees increasing their usage of the only 334 

two motifs representative of an optimal foraging route. Interestingly, and in accordance with previous 335 

studies (e.g. Saleh & Chittka, 2007; Lihoreau et al., 2012a; Buatois & Lihoreau 2016), we found that 336 

bumblebees and honeybees rarely use optimal spatial networks at small spatial scales, where the cost 337 

of using a longer (suboptimal) path may be negligible. By contrast, foragers bees always used optimal 338 

spatial networks at large spatial scales, suggesting that they use more complex optimisation 339 

movement rules in more costly conditions. These results were confirmed with more conventional 340 

statistical approaches (e.g. flower re-visits, travel efficiency), thereby validating our approach. 341 

Importantly, the global network approach, based on motif analyses, brought new insights into the 342 

spatial behaviour of bees. For instance the foraging patterns of honeybees were characterised by 343 

frequent back and forth movements between flowers (Figure 6D - i.e. motifs 7 & 8) and 344 

disproportionate usage of specific flowers or local hubs (Figure 6D – i.e. motif 4).  345 

The aim of this exploratory study was to introduce spatial network analyses for characterising 346 

bee movement patterns using relatively standard metrics. Further developments of this approach will 347 

provide a powerful, complementary, analytical tool to conventional behavioural metrics in order to 348 

inform researchers about spatial processes that are not captured by other measures. This approach 349 

should focus more on global measures of path optimality (e.g. network path length, geodesic distance 350 

“Wasserman & Faust, 1994”) to discriminate these different scenarios. For instance, network triads 351 

give new information about specific movement routines that may be repeated within a route but that 352 

are hardly detectable with current measures of sequence repeatability (Thomson et al., 1997; Ayers et 353 

al., 2015). Ultimately, a major challenge for future studies will be to consider the high levels of 354 

heterogeneity among flower resources that bees may face in nature, taking into account variation in 355 

resource reward quantity and quality, signals, and competition among foragers in addition to spatial 356 

constraints of resource locations, in order to extend our approach to field conditions. Experimentally, 357 

bumblebees foraging in arrays of artificial flowers providing different nectar rewards face a trade off 358 

between maximising their nectar intake rate and minimizing travel distances when developing traplines 359 

(Lihoreau et al., 2011). Analyses on non-averaged local metrics could be used to capture the effect of 360 

resource diversity in network formation, and bring new insights into how bees integrate memories of 361 

multiple individual flowers in their spatial memory. The Kleinberg’s authority score likely informs us 362 
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about how bees use flowers as reference points relative to neighbouring flowers, perhaps to locate 363 

new flowers at the beginning of route formation. The weighted clustering coefficient is a mean to 364 

determine the level of connections between sub-groups flowers, a measure that should greatly vary 365 

during the process of route optimisation. Other network measures, not used here, may also help 366 

understand how bees change their foraging area with experience or in the face of competition (e.g. 367 

modularity in Dupont et al., 2014). 368 

While some of the predictions tested here may seem rather intuitive, our analysis of bumblebee and 369 

honeybee movement patterns in relatively simple foraging conditions aims at illustrating how network 370 

statistics could serve future research in field and semi-field conditions. Motif network analyses offer the 371 

possibility to statistically compare networks to each other, either for the same individuals at different 372 

stages of route formation, or between different individuals, and between different species. 373 

Characterising the spatial foraging strategies of a wider range of pollinators, including wild and 374 

managed species is a key challenge of pollination ecology in order to identify and compare the real 375 

impact of these species on pollination services (Garibaldi et al., 2013). For instance, our preliminary 376 

analysis suggests that at small spatial scales bumblebees display more efficient spatial movements 377 

than honeybees. Bumblebees tended to reach a frequency of each triadic structure that would lead to 378 

an optimal foraging network, whereas honeybees often showed the opposite behaviour.  A possible 379 

explanation is the difference of social life style between these two pollinator species. Honeybees, in 380 

contrast to bumblebees, have evolved a unique food recruitment system (the waggle dance) by which 381 

successful foragers communicate locational information about food resources to their nestmates upon 382 

their return to the hive (Von Frisch, 1967; Dornhaus et al., 2006). These insects may thus invest less 383 

in individual sampling and efficient route learning than species lacking the means to communicate 384 

foraging locations, such as bumblebees (Buatois & Lihoreau, 2016). Another possibility is the 385 

difference of typical foraging range between the two species. While bumblebees rarely cover more 386 

than three kilometres to exploit floral resources (Osborne et al., 2008), honeybees can travel more 387 

than ten kilometres within a single foraging trip (Pahl et al., 2011), suggesting that they are better 388 

adapted to long flights and could start exhibiting optimisation movement patterns at larger spatial 389 

scales than bumblebees. Systematic comparisons of both species across a wider range of spatial 390 

scales will be needed to test these hypotheses. 391 

Another key advantage of network analyses is that they allow for working on complete (raw) 392 

datasets and thus reduce the risks of arbitrarily discarding important information. In the case of 393 

pollinators, such approach may allow identification of specific movement patterns that occur at the 394 

early stage of route learning, for instance exploration flights to locate flowers and store them in spatial 395 

memory, or exploitation flights to return to familiar locations (Woodgate et al., 2016). Further 396 

development of pollinator movement networks may also include detailed dynamic temporal analyses 397 

of flower visitation sequences, which might reveal differential effect of the individual experience on the 398 

probability to optimize the foraging route. Stochastic agent-based methods (Snijders et al., 2010) 399 

recently applied to animal social networks (Boucherie et al., 2016; Pasquaretta et al., 2016), may also 400 

prove useful to integrate rate of change of flower visitation sequences. New metrics could be 401 

developed to estimate network efficiency in order to account for the specificity of the structure of bee 402 
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spatial movement based on individual experience. For instance, the direct integration of probability 403 

values based on the spatial distances between flowers will allow for a finer calculation of local network 404 

metrics which could be used to characterize the individual learning process and compare the likelihood 405 

to obtain an optimal foraging route depending on the early spatial experience of the bee. Explicit 406 

consideration of the nest as a specific node in the network, different from flowers, may also bring 407 

useful information about bee network dynamics and efficiency. 408 

 For all these reasons, we believe that pollinator movement networks constitutes a highly 409 

promising conceptual framework for studying plant-pollinator systems from a mechanistic point of view 410 

in complement to more conventional behavioural measures. Ultimately, a comprehensive 411 

understanding of bee movement patterns between plants may provide new fundamental insights into 412 

pollination processes and the genetic structuralism of plant populations. The development of optimal 413 

routes by individual bees between particular plants can have important and predictable effects on 414 

plant reproduction and inbreeding (Ohashi & Thomson, 2009). Advances in DNA pollen analyses (see 415 

Clare et al., 2013; and metabarcoding; Pornon et al., 2016) now allow identification of flower species 416 

visited by individual bees during a given foraging trip. One can readily downscale the approach at an 417 

intraspecific level by using pollen DNA and more variable genetic markers (e.g. microsatellite; Arif et 418 

al., 2010) to identify individual plants visited by pollinators and infer patterns of pollen flow within a 419 

plant population that can then be verified by paternity analyses using plant progeny genotypes for 420 

these markers (Bernasconi, 2003). Coupling these approaches with existing models of bee 421 

movements (Lihoreau et al., 2012b; Reynolds et al., 2013; Becher et al., 2016) will provide critical 422 

information about how the foraging strategies of bees directly influence pollen transfer and plant 423 

mating patterns across landscapes, and therefore a better assessment of consequences of bee 424 

declines on pollination.  425 
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Figure legends 

Figure 1. 

Examples of local and global metrics calculated on a bee spatial movement network. Nodes of the network 

(white circles) represent flowers (F1-F6) and the colony nest (black square). Edge directions indicate individual 

movements between flowers and the nest. Edge thickness is proportional to the frequency of bee movements 

from one flower to another (i.e. edge weights). In this hypothetical network, from A to E, the forager tends to 
increase the number of visited flowers with experience (t0, t0 + 1, t0 + 2, t0 + n) while reducing both the number 

of revisits to flowers and the time needed to visit all (i.e. network optimization). Examples of local network 

measures are shown (black arrows): 1) High clustering coefficient calculates the degree to which neighbours of a 

given node are themselves highly connected; 2) Authority score indicates the existence of highly visited nodes; 

3) High betweenness centrality value counts the number of shortest paths that pass through a focal node. (F) 

Hypothetical network illustrating two common network motifs (red arrows) in bee movement data (motifs 3 and 6, 

see Figure 3). 
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Figure 2. 

Spatial arrangements of the artificial flowers (F1-F6) and the colony nest (black square) in the six experiments 

under investigation (scale is in meters). Number of bees (n) and foraging bouts (fb) are shown for each 

experiment. A. Experiment 1: bumblebees in the lab (Lihoreau et al., 2012a). B. Experiment 2: bumblebees in 

the lab (Lihoreau et al., 2011). C. Experiment 3: bumblebees in the field (Lihoreau et al., 2012b). D. Experiment 

4: honeybees in the lab (Buatois & Lihoreau 2016). E. Experiment 5: honeybees in the field (Buatois & Lihoreau 

2016). F. Experiment 6: honeybees in the field (Buatois & Lihoreau 2016). Spatial scales are provided for each 

array (i.e. SMALL or LARGE). 
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Figure 3. 

Distribution of all possible network triadic motifs across foraging bouts. For each motif, the x-axis represents the 

temporally ordered foraging bouts. Red horizontal lines indicate the frequency of each motif expected in the 
optimal network. Best fitted lines obtained from generalized linear models using foraging bouts as predictor and 

frequency of motif as response variable are shown for each motif along with their standard errors (blue line and 

shaded grey area). Significant effects of time on the frequency of each motif are highlighted with asterisks. 

GLMM estimates, Z-values and P-values for each motif in each experiment are available in Tables S4-S9. 
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Relationship going in the opposite direction of the optimal network are numbered in red. Alpha level is set at 

0.05. Spatial scales are provided for each graph (i.e. SMALL – a,b,d,e - or LARGE – c,f -, see also Figure 2).  
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Figure 4. 

Average weighted betweenness centrality values for each individual bee at each foraging bout. Black lines and 
grey shaded areas represent respectively the best fitted lines and their standard errors obtained from 

zeroinflated mixed effect models built using foraging bouts as fixed effect and individual identity as random (see 

details in the methods). Spatial scales are provided for each graph (i.e. SMALL – a,b,d,e - or LARGE – c,f -; see 

also Figure 2). 
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Figure 5. 

Average authority score values for each individual bee at each foraging bout. Black lines and grey shaded areas 
represent respectively the best fitted lines and their standard errors obtained from zeroinflated mixed effect 

models built using foraging bouts as fixed effect and individual identity as random (see details in the methods). 

Spatial scales are provided for each graph (i.e. SMALL – a,b,d,e - or LARGE – c,f -; see also Figure 2). 
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Figure 6. 

Average clustering coefficient values for each individual bee at each foraging bout. Black lines and grey shaded 

areas represent respectively the best fitted lines and their standard errors obtained from zeroinflated mixed 

effect models built using foraging bouts as fixed effect and individual identity as random (see details in the 

methods). Spatial scales are provided for each graph (i.e. SMALL – a,b,d,e - or LARGE – c,f -; see also Figure 

2). 
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Supplementary material legends: 

Supplementary materials 

Table S1: Betweenness centrality model selection using the Generalised Akaike information criterion (GAIC). 

The three ranked best models with both FULL and NULL models are shown. 

Beta regression df GAIC 

~Bout*Type*Bee (FULL) 48.86721 -2235.839 

~Bout*Type + Bee 46.53556 -2229.735 

~Bout*Type + Bee*Type 46.53556 -2228.518 

~Bout*Type + Bee*Bout 47.58002 -2228.460 

~ 1 (NULL) 39.68915 -1897.678 

Table S2: Authority model selection using the Generalised Akaike information criterion (GAIC). The three ranked 

best models with both FULL and NULL models are shown. 

GLMM Proportional model  df GAIC 

~Bout*Type + Bee 25.17792 524.4065 

~Bout*Type + Bee*Bout 24.60263 525.0094 

~Bout*Type + Bee*Type 25.71766 527.1393 

~Bout*Type*Bee (FULL) 28.58996 530.3337 

~ 1 (NULL) 31.60761 538.5515 

Table S3: Clustering coefficient model selection using the Generalised Akaike information criterion (GAIC). The 
three ranked best models with both FULL and NULL models are shown. 

Beta regression df GAIC 

~bout*bee+bee*type 38.44953 1829.870 

~bout*type+bee*bout 39.11552 1830.968 

~bout*type+bee*type+ bout*bee 39.48056 1831.826 

~Bout*Type*Bee (FULL) 40.46720 1833.819 

~1 (NULL) 35.43024 1838.964 
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Table S4: Experiment 1 - GLMMs frequency of each network motifs and foraging bouts. 

 Estimate (SE)  t-values P-values 

Motif 1 0.035 (0.042) 0.84 0.403 

Motif 2 0.113 (0.021) 5.44 <0.001 

Motif 3 -0.008 (0.048) -0.16 0.872 

Motif 4 -0.702 (0.166) -4.24 <0.001 

Motif 5 -0.636 (0.149) -4.26 <0.001 

Motif 6 0.094 (0.047) 2.00 0.046 

Motif 7 -0.235 (0.078) -3.03 0.002 

Motif 8 -0.235 (0.078) -3.02 0.003 

Motif 9 -1.732 (0.474) -3.66 0.001 

Motif 10 -0.574 (0.193) -2.98 0.003 

Motif 11 -0.387 (0.151) -2.56 0.011 

Motif 12 -1.791 (0.781) -2.92 0.022 

Motif 13 -0.604 (0.399) -1.51 0.13 

Motif 14 -1.523 (0.232) -6.57 <0.001 

Motif 15 -0.966 (0.194) -4.98 <0.001 

Motif 16 -3.006 (1.015) -2.96 0.003 

 

 

 

 

 

 
Table S5: Experiment 2 - GLMMs frequency of each network motifs and foraging bouts. 

 Estimate (SE)  t-values P-values 
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Motif 1 -0.389 (0.057) -6.79 <0.001 

Motif 2 0.176 (0.043) 4.05 <0.001 

Motif 3 -0.164 (0.083) -1.98 0.048 

Motif 4 -0.310 (0.270) -1.15 0.252 

Motif 5 -0.199 (0.279) -0.71 0.475 

Motif 6 0.220 (0.049) 4.44 <0.001 

Motif 7 -0.219 (0.141) -1.59 0.122 

Motif 8 -0.304 (0.154) -1.98 0.048 

Motif 9 -1.823 (0.821) -2.18 0.029 

Motif 10 -0.520 (0.246) -2.11 0.035 

Motif 11 -0.445 (0.179) -2.48 0.013 

Motif 12 -0.021 (0.001) -9.70 <0.001 

Motif 13 0.528 (1.603) 0.33 0.742 

Motif 14 -0.758 (0.343) -2.21 0.028 

Motif 15 -1.008 (0.470) -2.148 0.032 

Motif 16 -1.102 (0.953) -1.157 0.248 

 

 

 
 

 

 

 

Table S6: Experiment 3 - GLMMs frequency of each network motifs and foraging bouts. 

 Estimate (SE)  t-values P-values 

Motif 1 -0.883 (0.057) -15.58 <0.001 

Motif 2 0.235 (0.075) 3.14 0.002 
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Motif 3 -0.500 (0.165) -3.02 0.003 

Motif 4 0.295 (0.572) 0.45 0.651 

Motif 5 0.299 (0.515) 0.58 0.562 

Motif 6 0.324 (0.168) 1.98 0.048 

Motif 7 0.053 (0.311) 0.17 0.863 

Motif 8 0.116 (0.306) 0.38 0.704 

Motif 9 0.610 (0.688) 0.89 0.377 

Motif 10 -0.402 (0.320) -1.26 0.210 

Motif 11 -0.949 (0.461) -1.93 0.050 

Motif 12 0.090 (1.238) 0.07 0.942 

Motif 13 0.161 (0.991) 0.163 0.871 

Motif 14 -0.681 (0.763) -0.89 0.373 

Motif 15 -0.301 (0.806) -0.37 0.709 

Motif 16 -0.335 (2.070) -0.16 0.871 

 

 

 
 

 

 

 

Table S7: Experiment 4 - GLMMs frequency of each network motifs and foraging bouts. 

 Estimate (SE)  t-values P-values 

Motif 1 -0.414 (0.125) -3.31 0.002 

Motif 2 -0.007 (0.098) -0.07 0.947 

Motif 3 -0.326 (0.144) -2.27 0.024 

Motif 4 0.762 (0.266) 2.86 0.004 
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Motif 5 0.464 (0.356) 1.30 0.194 

Motif 6 -0.074 (0.122) -0.61 0.545 

Motif 7 -0.048 (0.190) -0.25 0.800 

Motif 8 -0.186 (0.191) -0.97 0.331 

Motif 9 -0.618 (0.889) -0.69 0.488 

Motif 10 0.264 (0.183) 1.45 0.149 

Motif 11 -0.022 (0.239) -0.09 0.927 

Motif 12 0.225 (2.994) 0.07 0.940 

Motif 13 0.771 (0.947) 0.81 0.416 

Motif 14 0.236 (0.317) 0.74 0.458 

Motif 15 1.037 (0.526) 1.97 0.049 

Motif 16 2.306 (2.748) 0.84 0.401 

 

 
 

 

 

 

 

Table S8: Experiment 5 - GLMMs frequency of each network motifs and foraging bouts. 

 Estimate (SE)  t-values P-values 

Motif 1 -0.539 (0.078) -6.92 <0.001 

Motif 2 -0.215 (0.083) -2.59 0.009 

Motif 3 -0.114 (0.094) -1.21 0.225 

Motif 4 0.277 (0.357) 0.77 0.439 

Motif 5 0.045 (0.327) 0.14 0.889 

Motif 6 0.112 (0.108) 1.04 0.299 
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Motif 7 0.374 (0.150) 2.49 0.013 

Motif 8 0.218 (0.155) 1.39 0.163 

Motif 9 0.891 (0.568) 1.57 0.118 

Motif 10 0.180 (0.220) 0.82 0.413 

Motif 11 -0.024 (0.166) -0.15 0.883 

Motif 12 -0.024 (0.166) -0.15 0.883 

Motif 13 1.195 (0.620) 1.95 0.051 

Motif 14 -0.265 (0.186) -1.42 0.156 

Motif 15 0.472 (0.268) 1.76 0.079 

Motif 16 0.339 (0.677) 0.50 0.617 
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Table S9: Experiment 6 - GLMMs frequency of each network motifs and foraging bouts. 

 Estimate (SE)  t-values P-values 

Motif 1 -1.359 (0.239) -5.74 <0.001 

Motif 2 0.060 (0.171) 0.35 0.726 

Motif 3 -0.479 (0.274) -1.74 0.084 

Motif 4 1.286 (1.179) 1.09 0.279 

Motif 5 1.181 (1.164) 1.02 0.310 

Motif 6 0.136 (0.259) 0.52 0.601 

Motif 7 -0.107 (0.489) -0.22 0.827 

Motif 8 -0.160 (0.469) -0.34 0.734 

Motif 9 NC NC NC 

Motif 10 -0.216 (0.432) -0.50 0.618 

Motif 11 -0.040 (0.739) -0.05 0.957 

Motif 12 NC NC NC 

Motif 13 NC NC NC 

Motif 14 0.029 (0.830) 0.03 0.972 

Motif 15 -1.755 (1.852) -0.95 0.345 

Motif 16 NC NC NC 

 

 

 

 

 

 

 

 



 

32 

 

 

 

Table S10: Conventional statistics. Number of re-visits to flowers and travelled distance divided by the number 

of visited flowers for bumblebees (experiments 1,2 and 3) and honeybees (experiments 4, 5 and 6) in large 

(experiments 3 and 6) and small (experiments 1,2,4 and 5) spatial scale arrays. Two types of statistical 

modelling approaches were used: a generalized linear mixed effect model for count data (GLMM) to study the 

impact of experience (foraging bout) on the number of revisits to flowers and a linear mixed effect model (LMM) 

for the travelled distance divided by the number of flowers visited. Both models were ran for each experiment 

using individual identity as random effect. Both models were run for each experiment using individual identity as 
random effect. Estimates, their standard errors (SE), the appropriate statistics (z-value for GLMM or t-value for 

LMM) and P-values are shown.     

 Estimate ± SE  statistics p-value 

Experiment 1    

Number of flowers re-visits -0.018 ± 0.001 (z) -25.55 < 0.001 

Distance / Number of unique flowers visited -0.052± 0.007 (t) -7.71 < 0.001 

Experiment 2    

Number of flowers re-visits -0.022 ± 0.002 (z) -12.79 < 0.001 

Distance / Number of unique flowers visited -0.093 ± 0.017 (t) -5.39 < 0.001 

Experiment 3    

Number of flowers re-visits -0.026 ± 0.005 (z) -4.78 < 0.001 

Distance / Number of unique flowers visited -1.491 ± 0.342 (t) -4.359 < 0.001 

Experiment 4    

Number of flowers re-visits -0.021 ± 0.006 (z) -5.67 < 0.001 

Distance / Number of unique flowers visited 0.002 ± 0.014 (t) 0.123 0.902 

Experiment 5    

Number of flowers re-visits -0.01 ± 0.002 (z) -4.953 < 0.001 

Distance / Number of unique flowers visited 0.011 ± 0.036 (t) 0.310 0.756 

Experiment 6    

Number of flowers re-visits -0.026 ± 0.005 (z) -5.61 < 0.001 
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Distance / Number of unique flowers visited -0.321 ± 0.135 (t) -2.38 0.019 
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