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Introduction

Bees play a key role in the reproduction of wild and cultured plants. Over recent years, their widespread declines have raised considerable concern for food security and the sustainability of our ecosystems [START_REF] Goulson | Bee declines driven by combined stress from parasites, pesticides, and lack of flowers[END_REF][START_REF] Klein | Why bees are so vulnerable to environmental stressors[END_REF]. Central to understanding the impact of pollinator loss on plant reproduction is the foraging behaviour of bees [START_REF] Thomson | Pollen transport and deposition by bumble bees in Erythronium: influences of floral nectar and bee grooming[END_REF][START_REF] Waser | Flower constancy: definition, cause, and measurement[END_REF]. Most bees are central-place foragers, meaning that they collect food (nectar and pollen) to provision their brood in a single nest [START_REF] Michener | The Bees of the World[END_REF]. By exploiting plants and developing foraging routes to visit them, individual bees may bias pollen flow and fashion the genetic structure of plant populations, therefore calling for more research of bee spatial strategies at the individual and collective levels [START_REF] Ohashi | Trapline foraging by pollinators: Its ontogeny, economics and possible consequences for plants[END_REF][START_REF] Burkle | The future of plant-pollinator diversity: Understanding interaction networks acrosss time, space, and global change[END_REF][START_REF] Mayer | Pollination ecology in the 21st Century: key questions for future research[END_REF].

Historically, bees were assumed to use simple movement rules that would yield maximal energy gains to exploit patchily distributed resources, such as moving between nearest unvisited flowers [START_REF] Ohashi | Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition[END_REF], making short trips after encountering highly rewarding flowers [START_REF] Chittka | Foraging dynamics of bumble bees: correlates of movements within and between plant species[END_REF] or keeping constant heading directions between visiting flowers [START_REF] Pyke | The flight directionality of bumblebees: Do they remember where they came from?[END_REF].

While these rules of thumb may hold true when bees forage at small spatial scales (within an inflorescence or a flower patch) mounting evidence shows that this is not the case at larger spatial scales, when bees move between distant locations (flower patches or plants). In these conditions, foragers of many bee species tend to develop stable foraging routes (sometimes called traplines in analogy to the fixed circuits that trappers follow when examining a number of traps distributed widely in space) that they follow for several hours or days (e.g. Euglossine bees [START_REF] Janzen | Euglossine bees as long-distance pollinators of tropical plants[END_REF]bumblebees: Heinrich 1976;[START_REF] Thomson | Trapline foraging by bumble bees: II. Definition and detection from sequence data[END_REF]honeybees: Buatois & Lihoreau, 2016). This routing behaviour is based on the acquisition of spatial memories encoding the location of the different food resources, the colony nest site and other prominent environmental features (e.g. visual landmarks) [START_REF] Collett | Spatial memory in insect navigation[END_REF]. With training, bumblebees and honeybees can learn to find the shortest path to visit a few artificial flowers (equivalent to natural flower patches) once and return to the nest (Bombus impatiens: [START_REF] Ohashi | Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition[END_REF]Bombus terrestris: Lihoreau et al., 2012a; Apis mellifera: [START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF], an optimisation behaviour analogous to solving the Travelling Salesman Problem in graph theory [START_REF] Cook | pursuit of the traveling salesman: mathematics at the limits of computation[END_REF]. This mathematical problem is notoriously difficult (if not impossible) to solve for large graphs, because the number of possible paths increases factorially with the number of nodes in the graph (e.g. 6 paths for 3 nodes, > 3 million paths for 10 nodes), and finding efficient solutions often requires complex algorithms and systematic approaches [START_REF] Polyakovskiy | A comprehensive benchmark set and heuristics for the traveling thief problem[END_REF][START_REF] Dorigo | Ant-Q: A reinforcement learning approach to the traveling salesman problem[END_REF].

While there is evidence that bees exhibit routing behaviour in nature [START_REF] Heinrich | the foraging specializations of individual bumble-bees[END_REF][START_REF] Janzen | Euglossine bees as long-distance pollinators of tropical plants[END_REF], to what extent these observations in simplified experimental conditions can be extrapolated to the field, where individuals may interact to exploit numerous highly variable resources scattered across large landscapes, is an open question.

Field data on such multi-destination routes among flower patches are even more complex and challenging to analyse, and conventional behavioural metrics do not suffice to capture detailed information about routing behaviour [START_REF] Thomson | Trapline foraging by bumble bees: II. Definition and detection from sequence data[END_REF][START_REF] Makino | Findings on spatial foraging patterns of bumblebees (Bombus ignitus) from a bee-tracking experiment in a net cage[END_REF][START_REF] Makino | Does interaction between bumblebees (Bombus ignitus) reduce their foraging area?: bee-removal experiments in a net cage[END_REF][START_REF] Makino | Longer visits on familiar plants?: testing a regular visitor's tendency to probe more flowers than occasional visitors[END_REF][START_REF] Lihoreau | Monitoring flower visitation networks and interactions between pairs of bumble bees in a large outdoor flight cage[END_REF]. We argue that network statistics derived from graph theory hold considerable promise to characterise these complex movement patterns at the individual and collective levels, and to identify the decision rules underpinning spatial strategies. In developing routes between flowers, foragers form movement networks embedded in space [START_REF] Barthélemy | Spatial networks[END_REF], where 'nodes' are feeding locations (flower patches or plants) and 'edges' are flight paths between them (see examples in Figures 1A-E) [START_REF] Thomson | Trapline foraging by bumble bees: II. Definition and detection from sequence data[END_REF][START_REF] Lihoreau | Monitoring flower visitation networks and interactions between pairs of bumble bees in a large outdoor flight cage[END_REF]. These spatial movement networks are directed, meaning that individuals move from one particular location to another (movement vectors). Networks are also weighted so that the thickness of edges is proportional to the frequency of movements between nodes. Because most bee species are central-place foragers, their spatial movement networks also include the nest site, a specific node at which every flower visitation sequence starts and ends. Therefore, in principle, an optimal movement network for a bee connects all flowers and the nest using the shortest possible path (optimal network in Figure 1E). Discrete temporal network analysis can then be performed depending on the time intervals with which a visitation matrix is built. For instance, matrices may be developed by considering flower visits made in a single foraging bout (dynamic network) or by cumulating the flower visits of several foraging bouts (static network). A major advantage of network statistics is that they allow for analyses of very large spatial datasets and the derivation of new empirically testable hypotheses (e.g. [START_REF] Perna | Animal transportation networks[END_REF][START_REF] Jacoby | Emerging network-based tools in movement ecology[END_REF]. Several analytical packages (e.g. igraph, sna, tnet packages in R, graph-tool in Python, UCINET) and both local metrics (e.g. measures describing the level of importance of a node in a network) and global metrics (e.g. measures describing the general level of connectivity of the entire network) can be readily calculated to characterize space use by pollinators from an individual-based point of view to measure, compare and predict their behaviour across different temporal scales.

In a recent field survey, [START_REF] Dupont | Spatial structure of an individual-based plant-pollinator network[END_REF] applied an individual-based plant-pollinator network analysis to flower visitation data of different bumblebee species. The study showed significant modularity in space use by bees based on plant characteristics, so that foragers tended to visit patches of aggregated plants with numerous flowers and use taller plants to move from one module to another [START_REF] Dupont | Spatial structure of an individual-based plant-pollinator network[END_REF]. Although the analytical approach developed in this study is very appealing, field surveys only provide partial information about the foraging experience of individual bees, the location of their nest relative to different plant patches and the temporal dynamics of their foraging patterns. All these parameters are critical in determining bee foraging behaviour [START_REF] Chittka | Cognitive ecology of pollination: animal behaviour and floral evolution[END_REF]. Experimental advances on model bee species, such as bumblebees and honeybees, using artificial flowers delivering controlled rates of food resources combined with automated movement tracking, now allow for collecting high resolution spatial and temporal data on bee foraging patterns in complex, yet controlled, environments (e.g. motion detection cameras on flowers: [START_REF] Lihoreau | Monitoring flower visitation networks and interactions between pairs of bumble bees in a large outdoor flight cage[END_REF]Radio Frequency Identification (RFID): [START_REF] Ohashi | An automated system for tracking and identifying individual nectar foragers at multiple feeders[END_REF]harmonic radars: Lihoreau et al., 2012b;QR tags: Crall et al. 2015;3D video tracking: Ings & Chittka, 2008).

Extensive recordings of individual based data using these semi-field approaches provide an interesting opportunity to start examining the cognitive processes underpinning the foraging patterns of bees and how they change across time in ecologically relevant conditions.

Here we describe how spatial network statistics can be used to analyse the foraging patterns of bees both at local and global levels. We illustrate the potential of this approach for comparative analyses by statistically comparing spatial optimisation in the movement patterns of bees of the same species or, of different species across environments varying in spatial scales, number of flowers and flower configurations using standard network metrics. We used published movement datasets of bumblebees and honeybees of known age, foraging experience and colony origin, foraging in arrays of artificial flowers in the lab and in the field. To validate the approach, we compared our results with analyses of more conventional behavioural metrics used in previous studies, such as the number of re-visits to flowers and overall travel efficiency (distance/number of flowers visited).

Materials and methods

Experimental data

We analysed six datasets of bee flower visitation sequences. Three datasets were obtained on the bumblebee Bombus terrestris (experiment 1: Lihoreau et al., 2012a;experiment 2: Lihoreau et al., 2011;experiment 3: Lihoreau et al., 2012b). The three other datasets were obtained on the honeybee Apis mellifera (experiments 4-6: [START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF].

All the datasets were generated following the same general methodology and are thus comparable. In all experiments bees were individually marked (coloured number tags or paint dots on the thorax) and maintained in colony nest boxes (bumblebees) or hives (honeybees) equipped with a transparent, colourless, entrance tube. The tube was fitted with a series of shutters to control all departure and arrival of foragers at the colony. Workers collected sucrose solution (40% w/w) on artificial flowers outside the colony. Flowers consisted of a blue plastic landing platform (diameter = 60mm) with a yellow feeding spot in the middle. Bees were initially pre-trained on a flower from which they could collect ad libitum sucrose solution. Each individual was tested alone. A regular forager that made at least five foraging bouts (foraging trips starting and ending at the nest colony box) in one hour was selected. The crop capacity of this forager was estimated by averaging the total volume of sucrose solution collected from a training flower over another three foraging bouts. The forager was then tested with all test flowers placed in a specific spatial arrangement (see experimental arrays in Figure 2). During the test, each flower provided the same amount of sucrose solution, chosen so that the bee had to visit all flowers to fill its nectar crop to capacity before returning to the colony nest box (e.g. 1/5 th of the crop capacity available in each flower in an array of five flowers). Flowers were refilled by the experimenter at the end of each foraging bout, meaning that any revisit to a flower within the same foraging bout was not rewarding. Bees were tested for 22 to 80 consecutive foraging bouts in the same array of flowers. All flower visits (when a bee landed on a flower) were recorded and used to reconstruct the complete foraging history of each bee.

Experiments were conducted in six different arrays, varying in their spatial scale, their number of flowers and the spatial configuration of flowers. Experiments 1, 2 and 4 (Figure 2A,B,D) were completed in flight rooms at small spatial scales and with controlled illumination [START_REF] Lihoreau | Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees[END_REF]Lihoreau et al., 2012a;[START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF]. Experiments 3, 5 and 6 (Figure 2C,D,E) were completed in outdoor open fields at small spatial scale for experiment 5 and large spatial scales for experiments 3 and 6 (Lihoreau et al., 2012b;[START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF]. Details about the spatial arrangement of flowers, the number of bees tested and the numbers of foraging bouts per bee are given in Figure 2.

Network analyses

We built spatial networks of bee foraging movements in which flowers were nodes and movements were edges (Figure 1). Edges weight corresponded to the frequency of movement between flowers.

To describe foraging movements and compare them across experimental conditions and species, we calculated three local network metrics describing the role of each flower in the bee movement network and one global network metric to infer on the efficiency of the network structure.

Local network measures

At a local level, we calculated the "weighted clustering coefficient", which assesses the degree to which nodes tend to cluster together [START_REF] Barrat | The architecture of complex weighted networks[END_REF]. Here a high clustering value indicates that neighbouring flowers of a given flower are themselves highly connected, i.e. frequently re-visited (Figure 1B). We used the "Kleinberg's authority score" [START_REF] Kleinberg | Authoritative sources in a hyperlinked environment[END_REF] to measure the relative importance of a node in a network (Figure 1C). Given A, an individual movement matrix across flowers, the Kleinberg's authority score is defined as the principal eigenvector of the inverted matrix t(A)*A. This metric assigns large values to flowers that are most often used, while accounting for the number of visits to adjacent flowers (i.e. flowers connected by at least one edge). Therefore a high Kleinberg's authority score indicates that a specific flower is more often visited than all its neighbour flowers. This may be the case, for instance, at the early stages of a route development when bees often return to a reference flower from which they explore and attempt to locate new flowers [START_REF] Ohashi | Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition[END_REF][START_REF] Lihoreau | Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations[END_REF]2016).

We calculated the "weighted betweenness centrality". This metric reflects the importance of a node as intermediary of the network, based on the number of shortest paths connecting all pairs of nodes that pass through the focal node [START_REF] Opsahl | Structure and evolution of weighted networks[END_REF]. In a bee movement network a high weighted betweenness centrality characterises a flower that is acting as a bridge among multiple other flowers (Figure 1D).

Because our aim was to study general trends of spatial optimization by bees across time at the network level (route efficiency) and not at the node level (role played by individual flowers), for all the local metrics we calculated mean values over all flowers at each foraging bout. Betweenness scores were normalized following an algorithm that weights the betweenness value for the number of flowers visited in the network [START_REF] Freeman | Centrality in social networks conceptual clarification[END_REF]. Authority scores were scaled from 0 to 1. Clustering coefficients vary between 0 and 1 and need no normalization. In these conditions, an optimal network (in which a bee would visit all flowers once and return to the nest by travelling the shortest distance to visit all flowers) and a suboptimal network (in which a bee would travel longer distances for visiting the same amount of flowers) would be characterised by the maximum average betweenness of 0.5, the maximum average authority score of 1, and the minimum average clustering coefficient of 0 (Figure 1E).

Global network measures

At the global level, we examined the triadic structures of the network -i.e. motifs [START_REF] Milo | Network motifs: Simple building blocks of complex networks[END_REF], which represent triadic patterns of connection between nodes in a directed network. Network motifs can be representative of various biological processes such as information flow [START_REF] Nandi | Social insect colony as a biological regulatory system: modelling information flow in dominance networks[END_REF], resource exchange [START_REF] Quevillon | Social, spatial, and temporal organization in a complex insect society[END_REF] or disease spread [START_REF] Waters | Information processing in social insect networks[END_REF]. In a bee movement network the analyses of network motifs might help identifying behavioural rules underpinning trapline formation (Figure 1F) while allowing for unbiased comparison across different datasets (Shizuja & McDonald, 2015). Whereas a detailed temporal network analysis of motifs might be used to better understand the mechanisms of network functionality [START_REF] Kovanen | Temporal motifs in timedependent networks[END_REF], here we used a discrete approach by counting all the 16 possible triadic motifs to connect three flowers (including the nest) observed at each foraging bout and thus not strictly related to the exact temporal sequence of visits on flowers (Figure 1F). For each experiment, we compared the triadic motifs of the observed bee foraging networks at each foraging bout to those of the theoretical optimal network connecting all flowers and the nest using the shortest possible path. Since only two out of the 16 possible triadic motifs (Figure 3A-F) can be observed in the optimal movement network (Figure 1E), these global measures inform us about the overall efficiency of the routes developed by bees.

Data analyses

Local network measures

All analyses were conducted in the statistical environment R (i.e. version 3.2.3). For each foraging bout of each bee we extracted weighted clustering coefficient values, authority scores and weighted betweenness centrality values of each flower, using the functions "clustering_local_w" and "betweenness_w" in the tnet package [START_REF] Opsahl | Structure and evolution of weighted networks[END_REF] and the function "authority.scores" in the igraph package [START_REF] Csardi | The igraph software package for complex network research[END_REF]. We ran three different regression models for weighted betweenness, authority and weighted clustering coefficient values using the sequential number of foraging bouts, type of array (i.e. small or large spatial scale), species (i.e. bumblebee or honeybee) and all the interactions among these predictors as fixed effects. We used individual identity nested in experimental array as a random effect in all models. We carried out model selection for the three different parameters ranking candidate models according to their Akaike Information Criterion [START_REF] Akaike | Prediction and Entropy[END_REF]. We used beta regression for the three averaged local network measures (clustering coefficient, weighted betweenness centrality and authority scores) because their values were constrained between 0 and 1. We also applied a zero inflation method using the Beta Inflated (BEINF) family function from the gamlss package [START_REF] Rigby | Generalized additive models for location, scale and shape[END_REF]. Model selection of the Beta regression mixed models are shown in the supplementary materials (Tables S1, S2 andS3). Because network metrics are correlated, we applied a Bonferroni correction by setting the alpha level of significance at 0.017 [START_REF] Tylianakis | Habitat modification alters the structure of tropical host-parasitoid food webs[END_REF].

Global network measures

Motifs were calculated using the "triad.census" function in the "igraph package" [START_REF] Csardi | The igraph software package for complex network research[END_REF]. Only two out of the 16 possible triadic motifs (motif 2 and 6: Figure 3A-F) are representative of the optimal movement network (Figure 1E). Depending on the number of flowers in the array, motif 1 (triadic structure where the three nodes -A, B, C -have no connection among them, i.e. the empty graph A, B, C) can also occur and being represented for a maximum of 7 times in a network with 7 flowers. Motif 2 (triadic structure with a single connection between the three nodes, i.e. A>B, C) and motif 6 (triadic structure where A>B>C are all connected by two directed lines) of the optimal movement network can also occur at different frequencies depending on the network size (i.e. for 7 flowers: 21 and 7; for 6 flowers: 12, 6; for 5 flowers: 5, 5; as indicated by red horizontal lines in Figure 3). We analysed the tendency of bees to modify their motifs frequency with time by applying a generalized linear mixed effect model for count data (i.e. GLMM with Zero Inflated Poisson distribution error) using the observed frequency for each motif and for each dataset as response variable, the number of foraging bouts as predictor, and individual identity as random effect.

Other measures

To illustrate the benefits of using the network approach relative to more conventional analyses, we also calculated non-network measures used in previous studies for assessing the ability of bees to develop efficient routes [START_REF] Lihoreau | Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees[END_REF]Lihoreau et al., 2012a;Lihoreau et al., 2012b;[START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF]. For each foraging bout of each bee we calculated the number of revisits to flowers and the distance travelled (assuming straight lines between flowers) divided by the number of flowers visited. Both measures of route efficiency are expected to decrease with increasing network efficiency, and reach a minimum in an optimal movement network. We applied a GLMM for count data to study the impact of experience (foraging bout) on the number of revisits to flowers and a linear mixed effect model (LMM) for the travelled distance divided by the number of flowers visited. Both models were run for each experiment using individual identity as random effect.

Results

Local network measures

The average weighted betweenness centrality increased as bees accumulated foraging experience in the six experiments (estimatebout = 0.066, standard error (se) = 0.004, t = 17.11, P < 0.001), indicating that individuals tended to visit all flowers at a similar frequency by the end of training (Figure 4). This tendency was stronger in large spatial scale arrays (estimatesmall_array = -0.067, se = 0.005, t = -13.55, P < 0.001). Interestingly, in small spatial scale arrays bumblebees showed higher average weighted betweenness centrality (estimatehoneybees = -1.172, se = 0.164, t = -7.15, P < 0.001) and a tendency to develop optimal networks faster (estimatehoneybees = -0.020, se = 0.008, t = -2.533, P = 0.011) than honeybees (Figure 4).

The average Kleinberg's authority scores also increased as bees accumulated experience in the six experiments (estimatebout = 0.083, se = 0.03, t = 2.781, P = 0.004), meaning that all flowers became equally important in the network. For both bee species, the average authority scores were lower in small spatial scale arrays than in large spatial scale arrays (estimatesmall_arrays = -0.446, se = 0.103, t = -4.334, P < 0.001). However, honeybees had larger average authority scores than bumblebees in the small spatial scale arrays (estimatesmall_arrays_honeybees = 0.582, se = 0.111, t = 5.229, P < 0.001) meaning that they tended to use all possible connections between flowers equally whereas bumblebees only used a few.

The average clustering coefficient tended to decrease with time, as bees accumulated foraging experience (Figure 6). Specifically, bumblebees showed a significant decrease in average clustering coefficient while honeybees maintained stable values throughout the experiments (estimatebout_honeybees= 0.018, se = 0.004, t = 4.185, P < 0.001). Honeybees showed completely different trend at small spatial scales, by increasing their average clustering coefficient scores with experience (estimatehoneybees_small_arrays = 0.407, se = 0.148, t = 2.752, P = 0.006). This again illustrates the much reduced route optimisation efficiency of honeybees in comparison to bumblebees at small spatial scales (Figure 6).

Overall, these changes in all three local network measures were more pronounced at larger spatial scales, where flowers were distant from each other and from the colony nest, both for bumblebees and honeybees (Figures 4, 5 and6).

Global network measures

While bees initially used the 16 possible motifs to link flowers, they gradually reduced the number of motifs to only use two of them by the end of training (motifs 2 and 6), a behaviour that is characteristic of route optimisation (Figure 3). This tendency was less pronounced for honeybees at small spatial scales (Figures 3D and3E). Analyses of the frequency usage of each motif confirmed that honeybees at small spatial scales often presented opposite tendencies than honeybees at large spatial scales or bumblebees at all spatial scales (Figure 3D: motifs 3, 7, 8 and 15; Figure 3E: motifs 4, 5, 10 and 15) (for detailed motifs analysis see Table S4-S9).

Other measures

Conventional statistics for bee movement analyses showed trends towards a general increase in movement efficiency with experience. In all experiments bees decreased the number of revisits to flowers as they accumulated foraging bouts (Table S10). Bees also tended to decrease their travelled distance divided by the number of visited flowers, except in the case of honeybees foraging in small spatial scale arrays (Table S10).

Discussion

Network analyses are increasingly used in behavioural and ecological research, providing a whole new range of metrics to describe and model interactions between individuals and their environment [START_REF] Croft | Exploring animal social networks[END_REF][START_REF] Jeanson | Long-term dynamics in proximity networks in ants[END_REF][START_REF] Pinter-Wollman | The dynamics of animal social networks: Analytical, conceptual, and theoretical advances[END_REF]. In pollination ecology, this approach has proved particularly powerful to describe interactions between plant and pollinator species, for instance using undirected bipartite networks based on field surveys of pollinator abundance (e.g. [START_REF] Fontaine | Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities[END_REF][START_REF] Bascompte | Plant-animal mutualistic networks: The architecture of biodiversity[END_REF][START_REF] Campbell | A network model for plant-pollinator community assembly[END_REF][START_REF] Burkle | Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function[END_REF][START_REF] Coux | Linking species functional roles to their network roles[END_REF]. Here we show how spatial network analyses can be developed to study the movement patterns of individual bees exploiting multiple feeding locations at various spatial and temporal scales in simplified experimental conditions. We argue that this approach may prove particularly helpful to analyse pollinator movements in more complex and ecologically realistic experimental designs and to generate new empirically testable hypotheses for pollination ecology research.

As illustrated above, bee movement patterns can be described in terms of local and global network metrics that change predictably as individuals accumulate foraging experience. For instance, in a simple situation where only one bee exploits a stable array of flowers refilled between each foraging bout, both average betweenness values and average authority scores increased with time. By contrast the average clustering of flowers decreased with time as bees started to develop optimal or suboptimal stable movement networks. This tendency for optimisation of spatial movement networks was also reflected in the dynamics of motif usage, resulting in bees increasing their usage of the only two motifs representative of an optimal foraging route. Interestingly, and in accordance with previous studies (e.g. [START_REF] Saleh | Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging[END_REF]Lihoreau et al., 2012a;[START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF], we found that bumblebees and honeybees rarely use optimal spatial networks at small spatial scales, where the cost of using a longer (suboptimal) path may be negligible. By contrast, foragers bees always used optimal spatial networks at large spatial scales, suggesting that they use more complex optimisation movement rules in more costly conditions. These results were confirmed with more conventional statistical approaches (e.g. flower re-visits, travel efficiency), thereby validating our approach.

Importantly, the global network approach, based on motif analyses, brought new insights into the spatial behaviour of bees. For instance the foraging patterns of honeybees were characterised by frequent back and forth movements between flowers (Figure 6D -i The aim of this exploratory study was to introduce spatial network analyses for characterising bee movement patterns using relatively standard metrics. Further developments of this approach will provide a powerful, complementary, analytical tool to conventional behavioural metrics in order to inform researchers about spatial processes that are not captured by other measures. This approach should focus more on global measures of path optimality (e.g. network path length, geodesic distance " [START_REF] Wasserman | Social network analysis: Methods and applications[END_REF] to discriminate these different scenarios. For instance, network triads give new information about specific movement routines that may be repeated within a route but that are hardly detectable with current measures of sequence repeatability [START_REF] Thomson | Trapline foraging by bumble bees: II. Definition and detection from sequence data[END_REF][START_REF] Ayers | Determinism as a statistical metric for ecologically important recurrent behaviors with trapline foraging as a case study[END_REF]. Ultimately, a major challenge for future studies will be to consider the high levels of heterogeneity among flower resources that bees may face in nature, taking into account variation in resource reward quantity and quality, signals, and competition among foragers in addition to spatial constraints of resource locations, in order to extend our approach to field conditions. Experimentally, bumblebees foraging in arrays of artificial flowers providing different nectar rewards face a trade off between maximising their nectar intake rate and minimizing travel distances when developing traplines [START_REF] Lihoreau | Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees[END_REF]. Analyses on non-averaged local metrics could be used to capture the effect of resource diversity in network formation, and bring new insights into how bees integrate memories of multiple individual flowers in their spatial memory. The Kleinberg's authority score likely informs us about how bees use flowers as reference points relative to neighbouring flowers, perhaps to locate new flowers at the beginning of route formation. The weighted clustering coefficient is a mean to determine the level of connections between sub-groups flowers, a measure that should greatly vary during the process of route optimisation. Other network measures, not used here, may also help understand how bees change their foraging area with experience or in the face of competition (e.g. modularity in [START_REF] Dupont | Spatial structure of an individual-based plant-pollinator network[END_REF].

While some of the predictions tested here may seem rather intuitive, our analysis of bumblebee and honeybee movement patterns in relatively simple foraging conditions aims at illustrating how network statistics could serve future research in field and semi-field conditions. Motif network analyses offer the possibility to statistically compare networks to each other, either for the same individuals at different stages of route formation, or between different individuals, and between different species.

Characterising the spatial foraging strategies of a wider range of pollinators, including wild and managed species is a key challenge of pollination ecology in order to identify and compare the real impact of these species on pollination services [START_REF] Garibaldi | Wild pollinators enhance fruit set of crops regardless of honey bee abundance[END_REF]. For instance, our preliminary analysis suggests that at small spatial scales bumblebees display more efficient spatial movements than honeybees. Bumblebees tended to reach a frequency of each triadic structure that would lead to an optimal foraging network, whereas honeybees often showed the opposite behaviour. A possible explanation is the difference of social life style between these two pollinator species. Honeybees, in contrast to bumblebees, have evolved a unique food recruitment system (the waggle dance) by which successful foragers communicate locational information about food resources to their nestmates upon their return to the hive [START_REF] Frisch | The dance language and orientation of bees[END_REF][START_REF] Dornhaus | Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model[END_REF]. These insects may thus invest less in individual sampling and efficient route learning than species lacking the means to communicate foraging locations, such as bumblebees [START_REF] Buatois | Evidence of trapline foraging in honeybees[END_REF]. Another possibility is the difference of typical foraging range between the two species. While bumblebees rarely cover more than three kilometres to exploit floral resources [START_REF] Osborne | Bumblebee flight distances in relation to the forage landscape[END_REF], honeybees can travel more than ten kilometres within a single foraging trip [START_REF] Pahl | Large scale homing in honeybees[END_REF], suggesting that they are better adapted to long flights and could start exhibiting optimisation movement patterns at larger spatial scales than bumblebees. Systematic comparisons of both species across a wider range of spatial scales will be needed to test these hypotheses.

Another key advantage of network analyses is that they allow for working on complete (raw) datasets and thus reduce the risks of arbitrarily discarding important information. In the case of pollinators, such approach may allow identification of specific movement patterns that occur at the early stage of route learning, for instance exploration flights to locate flowers and store them in spatial memory, or exploitation flights to return to familiar locations [START_REF] Woodgate | Life-long radar tracking of bumblebees[END_REF]. Further development of pollinator movement networks may also include detailed dynamic temporal analyses of flower visitation sequences, which might reveal differential effect of the individual experience on the probability to optimize the foraging route. Stochastic agent-based methods [START_REF] Snijders | Introduction to stochastic actor-based models for network dynamics[END_REF] recently applied to animal social networks [START_REF] Boucherie | A longitudinal network analysis of social dynamics in rooks corvus frugilegus: repeated group modifications do not affect social network in captive rooks[END_REF][START_REF] Pasquaretta | Understanding dynamics of information transmission in Drosophila melanogaster using a statistical modeling framework for longitudinal network data (the RSiena package)[END_REF], may also prove useful to integrate rate of change of flower visitation sequences. New metrics could be developed to estimate network efficiency in order to account for the specificity of the structure of bee spatial movement based on individual experience. For instance, the direct integration of probability values based on the spatial distances between flowers will allow for a finer calculation of local network metrics which could be used to characterize the individual learning process and compare the likelihood to obtain an optimal foraging route depending on the early spatial experience of the bee. Explicit consideration of the nest as a specific node in the network, different from flowers, may also bring useful information about bee network dynamics and efficiency.

For all these reasons, we believe that pollinator movement networks constitutes a highly promising conceptual framework for studying plant-pollinator systems from a mechanistic point of view in complement to more conventional behavioural measures. Ultimately, a comprehensive understanding of bee movement patterns between plants may provide new fundamental insights into pollination processes and the genetic structuralism of plant populations. The development of optimal routes by individual bees between particular plants can have important and predictable effects on plant reproduction and inbreeding [START_REF] Ohashi | Trapline foraging by pollinators: Its ontogeny, economics and possible consequences for plants[END_REF]. Advances in DNA pollen analyses (see [START_REF] Clare | The promise of genomics in the study of plant-pollinator interactions[END_REF]and metabarcoding;[START_REF] Pornon | Using metabarcoding to reveal and quantify plant-pollinator interactions[END_REF] now allow identification of flower species visited by individual bees during a given foraging trip. One can readily downscale the approach at an intraspecific level by using pollen DNA and more variable genetic markers (e.g. microsatellite; [START_REF] Arif | Interpretation of electrophoretograms of seven microsatellite loci to determine the genetic diversity of the Arabian Oryx[END_REF] to identify individual plants visited by pollinators and infer patterns of pollen flow within a plant population that can then be verified by paternity analyses using plant progeny genotypes for these markers [START_REF] Bernasconi | Seed paternity in flowering plants: an evolutionary perspective[END_REF]. Coupling these approaches with existing models of bee movements (Lihoreau et al., 2012b;[START_REF] Reynolds | A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements[END_REF][START_REF] Becher | BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE[END_REF] will provide critical information about how the foraging strategies of bees directly influence pollen transfer and plant mating patterns across landscapes, and therefore a better assessment of consequences of bee declines on pollination.
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GLMM estimates, Z-values and P-values for each motif in each experiment are available in Tables S4-S9. 

  .e. motifs 7 & 8) and disproportionate usage of specific flowers or local hubs (Figure 6D -i.e. motif 4).

Figure 1 .

 1 Figure 1. Examples of local and global metrics calculated on a bee spatial movement network. Nodes of the network (white circles) represent flowers (F1-F6) and the colony nest (black square). Edge directions indicate individual movements between flowers and the nest. Edge thickness is proportional to the frequency of bee movements from one flower to another (i.e. edge weights). In this hypothetical network, from A to E, the forager tends to increase the number of visited flowers with experience (t0, t0 + 1, t0 + 2, t0 + n) while reducing both the number of revisits to flowers and the time needed to visit all (i.e. network optimization). Examples of local network measures are shown (black arrows): 1) High clustering coefficient calculates the degree to which neighbours of a given node are themselves highly connected; 2) Authority score indicates the existence of highly visited nodes;3) High betweenness centrality value counts the number of shortest paths that pass through a focal node. (F) Hypothetical network illustrating two common network motifs (red arrows) in bee movement data (motifs 3 and 6, see Figure3).

Figure 2 .

 2 Figure 2. Spatial arrangements of the artificial flowers (F1-F6) and the colony nest (black square) in the six experiments under investigation (scale is in meters). Number of bees (n) and foraging bouts (fb) are shown for each experiment. A. Experiment 1: bumblebees in the lab (Lihoreau et al., 2012a). B. Experiment 2: bumblebees in

  Figure 3.

Figure 4 .

 4 Figure 4. Average weighted betweenness centrality values for each individual bee at each foraging bout. Black lines and grey shaded areas represent respectively the best fitted lines and their standard errors obtained from zeroinflated mixed effect models built using foraging bouts as fixed effect and individual identity as random (see details in the methods). Spatial scales are provided for each graph (i.e. SMALL -a,b,d,e -or LARGE -c,f -; see also Figure 2).

  Figure 5.Average authority score values for each individual bee at each foraging bout. Black lines and grey shaded areas represent respectively the best fitted lines and their standard errors obtained from zeroinflated mixed effect models built using foraging bouts as fixed effect and individual identity as random (see details in the methods).Spatial scales are provided for each graph (i.e. SMALL -a,b,d,e -or LARGE -c,f -; see also Figure2).

Average clustering coefficient values for each individual bee at each foraging bout. Black lines and grey shaded areas represent respectively the best fitted lines and their standard errors obtained from zeroinflated mixed effect models built using foraging bouts as fixed effect and individual identity as random (see details in the methods). Spatial scales are provided for each graph (i.e. SMALL -a,b,d,e -or LARGE -c,f -; see also Figure 2). 
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