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Abstract  
 

Nutrition is thought to be a major driver of social evolution, yet empirical support for 

this hypothesis is scarce. Here we illustrate how conceptual advances in nutritional 

ecology illuminate some of the mechanisms by which nutrition mediates social 

interactions in insects and some other arthropods. We focus on experiments and 

models of nutritional geometry and argue that they provide a powerful means for 

comparing nutritional phenomena across species exhibiting various social ecologies. 

This approach, initially developed to study the nutritional behaviour of individual 

insects, has been increasingly applied to study insect groups and societies, leading 

to the emerging field of social nutrition. We discuss future directions for exploring 

how these nutritional mechanisms may influence major social transitions in insects 

and other animals. 
 

Keywords 
 

Insects, nutritional geometry, social interactions, social evolution, comparative 

analysis. 
 

Highlights 
 

 Nutrition mediates a wide range of social interactions. 

 Nutritional geometry is a powerful means to study these effects. 

 This approach was first developed to study individual insects. 

 It is increasingly applied to groups and societies. 

 Comparative research will clarify the role of nutrition in social evolution. 
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The geometry of insect nutrition 

 

Over the past few years, growing attention in insect social behaviour has been 

dedicated to non-eusocial species that nevertheless exhibit sophisticated interactions 

and group structures (e.g. [1–3], see also the article by Costa in this special issue). 

Diversifying the scope of insect behavioural research is essential to assess the full 

diversity of social forms and open new lines of research with the aim of 

understanding how different evolutionary pathways may lead to social life [4].  

 

Nutrition, which encompasses behavioural strategies related to food selection, 

acquisition and processing, is a striking example. Many authors have identified food 

constraints as potential drivers for insect social evolution [5–8]. For instance the 

transition from ancestrally solitary cockroaches to social wood roaches and even 

eusocial termites may have evolved in response to the challenge of acquiring 

sufficient nitrogen from diets dominated by wood [7]. However these nutritional 

effects have remained difficult to quantify and compare across eusocial taxa, which 

has long hampered the development of a unifying theory [9]. Here we argue that 

conceptual advances used to study nutrition in solitary and gregarious insects 

provide such a framework. 

 

Insects, like humans, carefully select foods and consume them in quantities and 

proportion that maximise fitness [10,11]. Important insights about insect nutrition 

come from nutritional geometry (Figs 1A and 1B), a graphical modelling approach 

first developed by Stephen Simpson and David Raubenheimer to study dietary 

regulation behaviour by herbivorous locusts [12,13] (for recent reviews see [14,15]). 

In nutritional geometry, foods are defined by their key dietary components (typically, 

but not exclusively, proteins and carbohydrates). Individuals are defined by their 

nutritional state (NS) and their intake target (IT; e.g. optimal state). In this approach, 

it is therefore possible to predict the blends of foods an insect should eat in order to 

acquire mixtures of nutrients maximising fitness traits, and to test these predictions in 

experimental conditions where animals are given artificial diets [16,17].  

 

Although initially applied to individual insects, nutritional geometry was recently 

extended to study the role of nutrition in social interactions (i.e. social nutrition) within 

groups and societies [18–20]. In this case, each individual has its own NS and 

attempts to reach an IT, either independently from the others (Fig. 1C) or by 

interacting socially or competitively (Fig. 1D). At the most basic level, animals may 

attract each other to feeding sites, potentially leading to collective foraging dynamics 

for nutrient balancing [21]. However more complex interactions may occur, as for 

instance in provisioning species, when adults must simultaneously choose foods to 

address their nutritional needs as well as the different needs of their offspring [22]. 

 

Here, we consider the emerging research field of social insect nutrition. We illustrate 

how nutritional geometry has been used to investigate some of the mechanisms that 
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drive social interactions in a broad range of non-eusocial insects and some other 

invertebrates, and how this research increasingly motivates studies in eusocial 

insects. We discuss how comparing social phenomena based on the nutritional 

properties of groups (variance in NSs and ITs) may help delineate major principles by 

which nutrition influences social behaviour and evolutionary transitions. 
 

Collective behaviour 
 

Complex group dynamics often emerge through the repetition of simple social 

interactions [23]. In groups characterised by a low variance in NSs and ITs (Fig. 2A), 

nutrition can modulate these interactions and lead to collective movements. 
 

Mass migrations 
 

Outbreak orthopterans, such as locusts and crickets, exhibit mass migrations. In 

these insects, the homogenisation of the NSs of individuals (due to crowding) favours 

phenotypic changes and social interactions that trigger the onset of collective motion.  

 

Short scale migrations of marching Mormon crickets (Anabrus simplex) and nymphs 

of desert locusts (Schistocerca gregaria) have been associated with a nutritional 

imbalance (or deficit in specific nutrients) [24,25]. During outbreaks, these insects 

congregate on receding vegetation patches [26], which in locusts induces a 

phenotypic shift from a solitarious to a gregarious phase. In these conditions of 

nutritional restriction, crickets [25] and locusts [27] seek out proteins (and mineral 

salts in the case of crickets) at concentrations matching those found in the tissues of 

conspecifics. By eating each other, insects can supplement their intake of nutrients 

that are limiting in the environment and increase their survival [28]. Cannibalistic 

interactions result in a push-pull mechanism in which insects move to reduce their 

risk of being eaten, while chasing ahead for potential victims, leading to the formation 

of marching bands at critical population densities [29,30]. Larger scale migrations of 

flying adults, however, have been associated with a nutritional balance [31]. In the 

Mongolian locust (Oedaleus asiaticus), adults artificially fed balanced (low-protein) 

diets have increased muscle size and fuel stores, and thus fly for longer than 

individuals fed imbalanced (very low- or high-protein) diets [31]. In the Eurasian 

steppe, heavy livestock grazing and grassland degradation (loss of organic N) 

promotes locust outbreaks by shifting plant nutrient content toward optimal low-

protein diets favourable to migratory morphs [32].  

 

Collective foraging  
 

Group foraging insects make collective decisions often enabling individuals to 

increase their probability to select good (if not the best) available options [33]. When 

resources are not nutritionally balanced, efficient foraging implies that groups 

alternate between exploiting multiple nutritionally complementary foods [14]. In such 

ACCEPTED M
ANUSCRIP

T



5  

conditions, the homogenisation of the NSs of individuals (due to social cohesion and 

collective feeding) generates collective patterns for nutrient regulation.  

 

Fruit flies (Drosophila melanogaster) self-select foods in order to balance their intake 

of protein and carbohydrates [16,34]. Under high population densities, these insects 

respond to an aggregation pheromone mediating collective foraging decisions [35]. If 

given the task to find a balanced diet among several imbalanced diet options, groups 

of flies outperform single flies, indicating that social interactions enhance individual 

choices [36]. In such conditions, collective feeding synchronises the NS of all 

individuals, which generates collective switching between complementary diets 

[18,19]. In the nomadically foraging forest tent caterpillar (Malacosoma disstria), 

where social foraging involves trail following and social cohesion is therefore stronger, 

group foraging can lead to suboptimal nutritional decisions by which the individuals 

settle on the first food patch discovered [37]. Presumably, the limited tree-wide 

searching and short-distance recruitment of M. disstria reflects more of a group 

cohesion function that constrains location of high-quality patches and the nutrition of 

individuals in laboratory conditions, in contrast to the collective flexibility in social 

foraging exhibited by its central-place foraging congener M. americanum. Nutritional 

geometry models predict that different levels of social attraction can enhance 

individual decisions in environments with different food abundances and spatial 

distributions [38], suggesting that the suboptimal behaviours that can be observed in 

experimental conditions may be more adapted to natural conditions.  

 

Nutritional immunology 
 

Parasites, pathogens and commensals can all modify the IT of an insect, ultimately 

influencing its feeding decisions [39]. These effects can generate a high variance in 

ITs among group members and affect collective dynamics (Fig. 2B).   
 

Self-medication 
 

Insects exposed to parasites often change their feeding preferences, seeking out 

substances to overcome the infection. While best-described cases of self-medication 

involve the consumption of toxic minerals or secondary compounds [40], nutrient 

intake can also influence the immune response of insects and help them combat 

parasites [41–43]. The clearest evidence come from the African armyworm 

(Spodoptera exempta), an outbreak moth whose larvae feed on graminaceous plants 

[44]. Caterpillars fed high-protein diets are more likely to survive a baculovirus 

infection than caterpillars fed low-protein diets [43]. Accordingly, virus-challenged 

caterpillars given a choice between complementary diets eat more protein than 

controls [43]. A similar switch of dietary preferences has been modelled to explore 

the possibility of collective medication in eusocial insect colonies, whereby foragers 

adjust their nutrient collection to the ITs of infected (higher in protein) and non-

infected nestmates [45]. In such social groups, large variance in ITs (due to different 
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infection statuses among individuals) may generate complex dietary regulatory 

patterns. Although there is not direct demonstration of dietary collective medication in 

eusocial insects, honey bees (Apis mellifera) infected with the microsporidium 

Nosema ceranae tend to collect and eat pollens that are richer in protein, which 

increases their survival [46,47].  

 

Gut microbiota  

 

Many insects are nutritionally and immunologically dependent on symbiotic microbes 

[48]. An individual's diet influences its microbiota [49], which can in turn affect host 

physiology and behaviour, including food decisions [50] and social interactions [51]. 

In a host group, different microbiota communities can generate large variance in the 

ITs of individuals, potentially leading to collective patterns of nutrient regulation. In 

the fruit fly (D. melanogaster), microbes found in the food modify individual nutritional 

decisions [50]. When offered a choice between different diets, microbe-free flies 

choose a nutritionally balanced diet, whereas flies artificially supplemented with 

microbes tend to choose slightly imbalanced diets (high-protein or high-carbohydrate), 

depending on which microbes the flies were associated with [50]. Seeding diets with 

microbes further influences these foraging patterns, leading flies to trade-off between 

balancing nutrient acquisition and acquiring beneficial symbionts [50]. Interestingly, 

flies artificially supplemented with commensal bacteria do not express any negative 

symptoms following deprivation of essential dietary amino acids, indicating that 

microbes can also compensate for a nutritional imbalance [52].  

 

Inter-individual behavioural variability 
 

Advanced societies are characterised by some level of behavioural variability, 

sometimes leading to division of labour. In a group, differential access to nutrients 

among individuals can generate a high variance in NSs, underpinning behavioural 

variability (Fig. 2C). 

 

Temporary roles  

 

Socially foraging insects often alternate between feeding and moving phases in a 

coordinated manner [23]. In such groups, variance in the NSs of individuals can 

regulate the behavioural transition, whereby individuals with the greatest nutrient 

imbalance initiate feeding and lead groups. In the nomadic forest tent caterpillar (M. 

disstria), which forms foraging trails of dozens of individuals, most protein-deficient 

individuals tend to initiate collective departure and lead the group towards new 

feeding sites, whereas protein-satiated individuals follow behind [53]. Theoretically, 

this nutritional regulation of temporary roles can lead to collective patterns where the 

decisions to switch from one food to another nutritionally complementary food may 

emerge through natural variation in the NS among leaders (most imbalanced state 

individuals) and followers (most balanced states individuals) [19]. 
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Reproductive division of labour 

 
In addition to mediating temporary roles, differential nutrition generates variance in 

the NSs of individuals that can be associated with reproductive division of labour 

where only a subset of the individuals can reach their IT and become either dominant 

[54] or breeder [55]. Social spiders of the genus Stegodyphus form colonies in which 

less than half of the females reproduce. These spiders share large webs that allow 

them to capture bigger prey, but the largest females tend to monopolize limited 

nutritional resources required for growth and reproduction [56]. When artificially 

supplemented with lipid-rich prey, colonies produce higher proportions of 

reproductive breeders relative to non reproductive helpers, indicating that lipids 

determine the magnitude of reproductive skews in this species [57]. In more 

advanced societies, differential feeding, whereby adults selectively allocate nutrients 

to the larvae, has also been implicated in regulating the development of reproductive 

castes (e.g. eusocial hymenoptera [58], termites [7]). In the honeybee (A. mellifera), 

larvae fed royal jelly, honey and pollen develop into sterile workers, while larvae 

exclusively fed royal jelly develop into queens [59]. Similar effects have been 

observed in solitary bees (Megachile rotundata) suggesting that nutritionally 

regulated reproductive plasticity is an ancestral condition that facilitated social 

evolution in bees [60]. 

 

Foraging for others  
 

Food provisioning implies that some individuals need to collect foods that address 

the divergent needs of multiple other individuals. In such groups, characterised by a 

high variance in NSs and a high variance in ITs (Fig. 2D), nutritional interactions can 

lead to complex foraging patterns. 

 

Oviposition site decisions  
 

When the nutrition of juveniles depends on parents, adults must make foraging 

decisions that simultaneously address their own IT as well as the different ITs of their 

progeny. At the most basic level, a female may choose to lay eggs in site providing 

good nutrition to the larvae. Female fruit flies (D. melanogaster) eat and lay eggs in 

decaying fruits. When selecting a food source, flies must therefore integrate 

decisions about feeding (individual nutrition) and egg laying (offspring nutrition). Flies 

given a choice between artificial diets varying in concentration and ratios of protein to 

carbohydrates exhibit complex food visitation dynamics, alternating between laying 

eggs on high-carbohydrate diets and feeding on different diets depending on their NS 

[36]. Although larvae show faster development when reared on high-protein diets, 

they survive better and reach higher learning performances on diets with more 

balanced protein to carbohydrate ratios [36]. The apparent mismatch between the 

oviposition preference of females for high-carbohydrate diets and the high 

performance of larvae on balanced diets reflects a natural situation were high-
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carbohydrate decaying fruits become enriched in high-protein yeast as they start 

rotting, yielding optimal nutrition for the developing larvae [61], suggesting that 

females select oviposition sites based on sensory cues predicting good larval 

nutrition. 

 

Colony-level nutrition 
 

In eusocial insects, foragers need to satisfy the ITs of all colony members, including 

themselves, the non-foraging workers, as well as the larvae and the queens, which 

have significantly higher protein needs [62]. Early applications of nutritional geometry 

in ants show that colonies dynamically regulate their protein to carbohydrate intake at 

a colony level IT [63] that can vary with colony composition [64]. If constrained to 

high-protein diets, ants reject excess protein in the form of pellets stockpiled in a 

waste dump outside the nest, which signals a need for carbohydrates to the foragers 

[64]. In these insects, variation in the ITs among castes modulate the complex 

network of social interactions within the colony including food assessment, collection, 

processing, storage and waste disposal [14]. Studies on bees show how colonies 

also balance their intake of free amino acids in nectar, and lipids and proteins in 

pollen, with important implications for understanding pollinator population declines 

[59]. For instance, honey bee colonies (A. mellifera) constrained to pollen deficient in 

one essential amino acid subsequently allocate more foragers towards the 

complementary diet in a choice test [65].  

 

Farming  
 

Some ants and termites farm ectosymbiontic fungi that turn nutrients into digestible 

food for the insects. Here, the divergence in the ITs of insects and the ITs of their 

cultivars structures the collective foraging pattern of colonies. In Mycocepurus smithii 

ants, for instance, fungal cultivars have conserved their capacity for independent 

reproduction [66]. Mapping fungus performance in a nutrient space revealed that the 

growth of edible somatic tissues and non-edible reproductive tissues are maximised 

on high-carbohydrate diets, but that modest protein provisioning can suppress 

reproductive tissues [66]. When given a choice between artificial diets, ants collect 

protein and carbohydrates in amounts and ratios that promote (but do not maximise) 

growth of fungal somatic tissues while inhibiting production of reproductive tissues to 

values that are consistent with field measures [67]. This nutritional control by ants 

reflects their need to curtail potential host-symbiont conflict over the independent 

reproduction of fungi.  

 

Future directions  
 
In this short review we have illustrated how nutrition impacts on many forms of social 

interactions and how these effects can be studied experimentally and theoretically 

using nutritional geometry. This conceptual framework is increasingly used to 

compare social interactions in insects exhibiting various levels of social complexity 
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and provides a powerful basis for comparative research on the mechanisms by which 

nutrition affects social interactions and their evolution, in order to fill a major gap in 

insect science. 

 

As proposed in Fig. 2, using the nutritional characteristics of social groups is an 

objective approach to quantify and compare the effects of nutrition on social 

behaviour. Comparative research on insect social behaviour has suffered from a 

priori criteria to classify social levels, sometimes misleading about the real complexity 

of the social interactions exhibited by species [68]. Natural selection is expected to 

act on the intake targets of individuals [69] and therefore to shape the variance in 

intake targets within groups and societies [19]. Understanding social behaviour in 

groups with comparable nutritional structures (in terms of diversity of nutritional 

states and needs), can reveal the specific effects of nutrition on social behaviour, 

especially as we progress from populations of solitary individuals to more integrated 

societies. Importantly, both the variance of nutritional states and the variance of 

intake targets within a group can be modelled (e.g. Fig. 1) and experimentally 

quantified and manipulated, thereby providing ample opportunities to generate and 

test predictions in a wide range of species [14]. Models of nutritional geometry have 

already been used to explore the evolution of nutritional behaviours [19,20]. For 

instance, social foraging, mediated by varying levels of social attraction and 

alignments, is expected to be most adaptive in environments where food resources 

are imbalanced, abundant but recalcitrant, nutritionally rich but ephemeral, or patchily 

distributed, whereas solitary foraging should be favoured when food is dispersed [38], 

a result in line with theories about the evolution of food recruitment in eusocial 

insects [70]. Future work should explicitly include selection processes to generate 

scenarios by which nutrition may favour evolutionary transitions between different 

social forms.  

 

The field of social nutrition is still in its infancy and many mechanisms by which 

nutrition shapes social interactions still remain to be discovered. Simple societies can 

teach us a lot about social behaviour and motivate important research in more 

advanced societies, as illustrated by fast growing research on social bee nutrition 

[59,71]. Since basic features of nutritional biology are shared by virtually all animal 

species, including humans [72], this approach has implications beyond just the insect 

sciences [73], and may provide key insights to study the broader role of nutrition in 

the evolution of animal societies . 
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Figures  

 
 

Fig 1. Examples of nutritional geometry models for hypothetical individuals (A and B) 

and groups (C and D). A. Nutritional rails (grey lines) represent the ratio of nutrients 

X and Y in foods. The blue dot is the nutritional state (NS) of the individual and the 

red dot is its intake target (IT). Foods 1 and 2 are individually imbalanced but 

complementary (fall on opposite sides of the IT). The individual can reach its IT by 

combining its intake from the two foods (arrows). B. The individual is restricted to a 

single imbalanced food and can: (1) satisfy its needs for Y but suffer a shortfall of X; 

(2) satisfy its needs for X but over-ingest Y; (3) suffer a moderate shortage of X and 

excess of Y. C. The two individuals have different NSs (NS1 and NS2) and ITs (IT1, 

IT2). In this example the individuals do not interact. Each individual can reach its IT 

by combining its intake from the two foods using a different foraging sequence. D. In 

this example the two individuals are socially attracted and move together from food 1 

to food 2. In doing so, none of the individuals can reach their IT. However both can 

make a compromise to approach an area in the nutrient space minimising the 

distance between the two ITs (e.g. the collective IT, white circle). (A and B were 

modified from [14]). 
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Fig 2. Comparing social interactions based on the nutritional properties of groups 
(variance in nutritional states, NS, and intake targets, IT). A. Individuals have the 
same NS and the same IT. This group structure favours collective behaviour (e.g. 
crickets and locusts, fruit flies, tent caterpillars). B. Individuals have the same NS and 
different ITs. This group structure is characteristic of host-parasite interactions (e.g. 
caterpillars, bees) and host-microbiota interactions (e.g. fruit flies). C. Individuals 
have different NSs and the same IT. This group structure is often associated with 
behavioural variability characterising temporary roles (e.g. tent caterpillars), and 
permanent division or labour (social spiders, eusocial bees). D. Individuals have 
different NSs and different ITs. This group structure is common in species displaying 
offspring habitat selection (e.g. fruit flies), food provisioning (e.g. eusocial ants and 
bees) or symbiont farming (e.g. fungus-farming ants). 
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