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1Station d’Ecologie Théorique et Expérimentale du CNRS UMR5321, Evolutionary Ecology Group, 2 route du
CNRS, 09200 Moulis, France
2Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse, France
3Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, UK
4Graduate School of Environmental Science, Division of Biospohere Science, Hokkaido University, Sapporo, Hokkaido, Japan
5School of Psychology, University of Ottawa, Ottawa, Canada
6Centre de recherche Cerveau et Cognition, UPS-CNRS, UMR5549, Toulouse, France
7Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
8Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B, 10691 Stockholm, Sweden
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11LPC, Aix Marseille University, CNRS, Marseille, France
12Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
13AP-HM Timone & Institut de Neurosciences des Systèmes, Marseille, France
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Behavioural and cognitive processes play important roles

in mediating an individual’s interactions with its environ-

ment. Yet, while there is a vast literature on repeatable

individual differences in behaviour, relatively little is

known about the repeatability of cognitive performance.

To further our understanding of the evolution of cogni-

tion, we gathered 44 studies on individual performance

of 25 species across six animal classes and used meta-

analysis to assess whether cognitive performance is repea-

table. We compared repeatability (R) in performance (1) on

the same task presented at different times (temporal repeat-

ability), and (2) on different tasks that measured the same

putative cognitive ability (contextual repeatability). We

also addressed whether R estimates were influenced by

seven extrinsic factors (moderators): type of cognitive per-

formance measurement, type of cognitive task, delay

between tests, origin of the subjects, experimental context,

taxonomic class and publication status. We found support

for both temporal and contextual repeatability of cognitive

performance, with mean R estimates ranging between 0.15

and 0.28. Repeatability estimates were mostly influenced

by the type of cognitive performance measures and pub-

lication status. Our findings highlight the widespread

occurrence of consistent inter-individual variation in cog-

nition across a range of taxa which, like behaviour, may

be associated with fitness outcomes.

This article is part of the theme issue ‘Causes and

consequences of individual differences in cognitive abilities’.
1. Introduction
Cognition has been broadly defined as the acquisition, pro-

cessing, storage and use of information [1], and hence plays

an important role in mediating how animals behave and

interact with their environment. While comparative studies

have broadened our understanding of how socio-ecological

selection pressures shape cognitive evolution [2–4], relatively

little is known about the adaptive significance of inter-

individual variation of cognitive abilities [5,6]. There is,

however, some evidence that learning may be under selection

if it influences fitness [6–19]. Opportunities to learn have

been linked to increased growth rate [7], and individual

learning speed can correlate with foraging success [8,9].

Greater cognitive capacities may allow individuals to better

detect and evade predators [10,11] and may also influence

their reproductive success [12–15]; but see [16]. Finally,

rapid evolutionary changes in learning abilities have also

been shown by experimentally manipulating environmental

conditions, revealing trade-offs between fitness benefits and

costs to learning [17–20]. Accordingly, we might expect

selection to act on individual differences in cognitive ability

in other species and contexts.

As selection acts on variation, a fundamental prerequisite

to understanding the evolution of cognition in extant

populations requires an assessment of individual variation

in cognitive traits [21]. The approach most commonly used

in evolutionary and ecological studies to estimate consistent

among-individual variation has its origin in quantitative

genetics [22,23]. This approach compares the variation in

two or more measures of the same individual with variation

in the same trait across all individuals to distinguish between
variation due to ‘noise’ and variation among individuals. The

amount of variation explained by inter-individual variation

relative to intra-individual variation is termed the ‘intra-class

correlation coefficient’ or ‘repeatability’ (R). Repeatability coef-

ficients are often used to estimate the upper limit of heritability

[23], but see [22], and thus quantifying repeatability is a useful

first step in evolutionary studies of traits [24].

Assessing the repeatability of behavioural or cognitive

traits is, however, challenging, because the context of

measurement can influence the behaviour of animals, and

thus the value recorded. Contextual variation can come from

the internal state of the organism (e.g. hunger, circadian

cycle, recent interactions, stress) and/or the external environ-

ment, which may differ between trials [22]. Moreover,

behavioural and cognitive measures may suffer further

variation between measures as experience with one type of

measure or test can influence subsequent measures via pro-

cesses such as learning and memory [25]. While this issue

has been recognized and discussed in recent research on

animal personality [26], it may be particularly relevant when

assaying the repeatability of cognitive traits. Consequently,

we might therefore expect higher within-individual variation

in behavioural or cognitive measures compared with morpho-

logical or physiological measures, owing to greater differences

in the context (internal and/or external) of repeated sampling.

Research on animal personality has provided a broad

understanding that individual differences in behaviour are

repeatable across time and contexts (average R ¼ 0.37, R ¼
0.29, R ¼ 0.41: see [27–29] respectively), hence revealing an

important platform for selection to act on [30–33]. Yet, rela-

tively little is known about the stability of inter-individual

variation in cognitive traits, such as those associated with

learning and memory [25]. Some examples of repeatability

estimates suggest that children show good test–retest

reliability on false-belief tasks used to assess theory-of-mind

[25,34]. Consistent individual differences in performance on

cognitive tasks have also been documented in a few non-

human animals, such as guinea pigs, Cavia aperea f. porcellus
[35,36], zebra finch, Taenopigya guttata [37], Australian mag-

pies, Gymnorhina tibicen [15], mountain chickadees, Poecile
gambeli [38], bumblebees, Bombus terrestris [39], and snails,

Lymnaea stagnalis [40]. While the paucity of repeatability

measures of cognitive performance may stem from the

recency of interest in the evolutionary ecology of cognitive

traits [41,42], it may also suggest that it is difficult to accu-

rately capture repeatable measures of cognitive ability [43].

Further investigation into the consistency of individual differ-

ences in cognition and how internal and external factors may

influence repeatability estimates of these measures is there-

fore warranted.

Recent advances in analytical techniques, such as the use

of mixed-effect models, have facilitated the assessment of

repeatability of behavioural traits, by accounting for the

potential confounding effects of both internal and external

contextual variations [24,44]. Such approaches can help pro-

vide more accurate estimates of repeatability of cognitive

traits and could provide new insights to the influence of

internal and external factors on cognitive performance. For

example, we can now explicitly address the effect of time,

or an individual’s condition, on the repeatability of traits of

interest such as learning performance. Likewise, we can

examine the effect of external factors, for example by model-

ling the environment (e.g. group size at testing) or the type of

http://rstb.royalsocietypublishing.org/
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test employed (e.g. spatial versus colour cues in associative

learning). Adopting these methods (i.e. adjusted repeatability

[45]) could therefore facilitate studies that generate repeatabil-

ity estimates of cognitive performance and provide greater

clarity concerning the sources of variation in measures of

cognition in this rapidly expanding field.

In this study, we collated 38 unpublished datasets (see

below) and used R values that are reported in six published

studies to conduct a meta-analysis. We aim to (1) estimate aver-

age repeatability of cognitive performance across different taxa,

and (2) discuss the implications of how internal and external

factors influence measures of cognitive repeatability. To do

this, we first assessed individual performances from 14 differ-

ent cognitive tasks from 25 species of six animal classes. For

each of the 14 tasks, we assessed multiple performance

measures, such as number of trials to reach a criterion or

success-or-failure (SUC) for the same task. We then assessed

temporal repeatability by comparing individual performances

on multiple exposures to the same task, and contextual repeat-
ability by comparing individual performances on different

tasks that measure the same putative cognitive ability. We

also used meta-analysis to investigate whether there are

general across-taxa patterns of repeatability for different tasks

and which factors (type of cognitive performance measure-

ment, type of cognitive task, delay between tasks, origin of

the subjects, experimental context, taxonomic class, and

whether the R value was published or unpublished) might

influence the repeatability of cognitive performance.
2. Material and methods
(a) Data collection
We followed the preferred reporting items for systematic reviews

and meta-analyses (PRISMA) approach for the collation of the

datasets used in the current study [46]. We first collected published

repeatability estimates of cognitive performance (electronic

supplementary material, figure S1). We did not include studies

reporting inter-class correlations (Pearson or Spearman) between

cognitive performances on tasks measuring different cognitive

abilities (i.e. general intelligence or ‘g’) as we considered these out-

side the scope of this meta-analysis. Although we acknowledge

that results from the literature on test–retest [25,34] or convergent

validity [47] in psychology would be relevant to compare with

the present study, we also considered them beyond the scope of

this paper as their inclusion would have led to a heavy bias

towards studies on humans. We only found six publications

reporting repeatability values for cognitive performance (R) in

six different species: one arachnid [48], two mammals [35,49,50]

and three birds [15,51,52], with a sample size ranging from 15 to

347 (mean: 54.7, median: 33) and number of repeated tests

varying from 2 to 4 (mean: 2.5, median: 2).

To complement our dataset from published studies, we used

an ‘individual-patient-data’ meta-analysis approach commonly

used in medical research [53] in which effect sizes are extracted

using the same analysis on primary data [53]. We invited partici-

pants from a workshop on the ‘Causes and consequences of

individual variation in cognitive ability’ (36 people), as well as

25 colleagues working on individual differences in cognition,

to contribute primary datasets of repeated measurements of

cognitive performance. From this approach, we assembled 38 pri-

mary datasets from unpublished (nine datasets: six were fully

unpublished, while three had similar methods published from

the same laboratory group) or published sources (29 datasets:

including repeated measures of cognitive performance but that
did not report R values) that we could use to compute repeatability

using consistent analytical methods (electronic supplementary

material, figure S1, see shared repository link). These datasets

comprised 20 different species of mammals (humans included),

insects, molluscs, reptiles and birds (electronic supplementary

material, tables S1 and S2). Details about subjects, experimental

context and cognitive tasks for each dataset can be found in elec-

tronic supplementary material, methods (https://doi.org/10.

6084/m9.figshare.6431549.v1).

Each dataset included 4–375 individuals (mean: 46.6, median:

29) that performed 2–80 (mean: 7.9, median: 2) repetitions of tests

targeting the same cognitive process, by conducting either the

same task presented at different points in time (temporal repeatabil-
ity, see electronic supplementary material, table S1), or different

tasks aimed at assessing the same underlying cognitive process

but using a different protocol (contextual repeatability, see electronic

supplementary material, table S2). Tasks considered to assess con-

textual repeatability differed by stimulus dimension (e.g. spatial

versus colour reversal learning in Cauchoix great tit dataset), sen-

sory modality (e.g. visual versus olfactory discrimination in Henke

von der Malsburg microcebus dataset), or change in experimental

apparatus (e.g. colour discrimination on touch screen and on solid

objects in Chow squirrel laboratory dataset) or could be a different

task designed to measure the same cognitive process (i.e. Mouse

Stroop Test and the Dual Radial Arm Maze to measure external

attention in Matzel attention mice dataset).

(b) Repeatability analysis for primary data
All analyses were performed in the R environment for statistical

computing v. 3.3.3 [54]. We performed the same repeatability

analysis for all primary data provided by co-authors: (1) We

first transformed cognitive variables to meet assumptions of

normality; (2) To assess whether time-related changes (i.e. the

number of repetitions of the same task or test order of different

tasks), and/or an individual’s sex and age (hereafter, individual

determinants) played a role in repeatability of cognitive perform-

ances, we then computed three types of repeatability values

with a mixed-effects model approach using the appropriate

link function in the ‘rptR’ package [55]. Specifically, we calcu-

lated unadjusted repeatability (R), repeatability adjusted for test

order (Rn), and repeatability adjusted for test order and individ-

ual determinants (Rni) for temporal and contextual repeatability

separately; (3) For cases with unadjusted R close to 0 (less than

0.005), we computed the R estimate using a least-squares

ANOVA approach as advised in [29,56,57] using the ‘ICC’ pack-

age [58]; and (4) We removed R estimates from further analyses

when residuals were not normal or overdispersed (for Poisson

distribution) and for data that could not be transformed to

achieve normality (see the electronic supplementary material

general methods for more details; excluded R estimates are

presented in table S3).

(c) Meta-analysis and meta-regression
We collated the 178 R values computed from primary data with

the 35 R values from published studies to obtain a total of 213

estimates of cognitive repeatability. We did not recompute repeat-

ability de novo for published studies that provide repeatability

values as the statistics used in these papers are the same or similar

to those used here for primary data (e.g. mixed-model approach

with or without ‘rptR’ package). We then used a meta-analytic

approach to examine average R estimates across species of

cognitive performance. This approach allowed us to: (1) take

into account sample size and number of repeated measures associ-

ated with each R value in the estimation of average cognitive

repeatability; (2) control for repeated samples (i.e. avoid pseudo-

replication) of the same species (taxonomic bias), the same

laboratory group (i.e. same senior author; observer bias) or
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the same experiment (measurement bias) by including these

factors as random effects; and (3) ask whether other specific factors

(fixed effects called ‘moderators’ in meta-analysis, see below)

could explain the variation in repeatability of cognitive tests.

For each of the six types of R analysis (i.e. unadjusted temporal

R, adjusted temporal R for test order, adjusted temporal R for test

order and individual determinants, unadjusted contextual R,

adjusted contextual R for test order, adjusted contextual R for

test order and individual determinants), we performed three

different multilevel meta-analyses by fitting linear mixed models

(LMMs) using the ‘metafor’ package [59]: (1) a standard meta-

analytic model (intercept-only model) to estimate the overall

mean effect size, (2) seven univariate (multilevel) meta-regression

models to independently test the significance of each moderator.

For each model, we used standardized (Fisher’s Z transformed)

R values as the response variable. Finally, we conducted (3) a

type of Egger’s regression to test for selection bias.

In the intercept-only model, overall effects (intercepts) were

considered statistically significant if their 95% CIs did not overlap
with zero. To examine whether the overall effect sizes of the six

different analyses were statistically different from each other,

we manually performed multiple pairwise t-tests by compar-

ing t values calculated from meta-analytic estimates and their

standard errors (s.e.).

In meta-regression models, we accounted for variance in

repeatability of cognitive performance by adding both fixed and

random effects. We accounted for variation in repeatability related

to fixed effects by including moderators. We considered seven

moderators (detailed in the electronic supplementary material,

general methods and figures 1 and 2): type of cognitive perform-

ance measurement (e.g. success or failure, latency, the number of

trials before reaching a learning criterion); type of cognitive task

(e.g. reversal learning, discrimination learning); median delay

between tests; experimental context (conducted in the wild or in

captivity); the origin of subjects (wild or hand-raised), taxonomic

class and publication status (whether the R value was published

or unpublished). We also took into account non-independence

of data by including random effects, including species (multiple

http://rstb.royalsocietypublishing.org/
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Figure 2. Contextual repeatability R (unadjusted) and 95% bootstrapped confidence intervals for each dataset. Y-axis presents first author, species name, the type of
cognitive task and the type of cognitive performance measurement. Cognitive measurement is used to quantify a cognitive process using accuracy such as proportion
correct (ACC); the number of trials to reach a learning criterion (TTC); success-or-failure binary outcome (SUC); latency (LAT); normalized performance scores (NOR);
the number of correct trials or errors over a fixed number of trials (NBT). The types of cognitive task include: mechanical problem solving (PS); discriminative learning
(DL); reversal learning (RL); inhibition (IN); memory (ME); use of human cue (HC); external attention (EA); internal attention (IA); learning (LE); physical cognition
(PC) that includes visual exclusion performance, auditory exclusion performance and object permanence; and spatial orientation learning (SOL).
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datasets from the same species), laboratory groups (experiments

conducted by the same principal investigator) and experiments

(experiments on the same subjects; see the electronic supplementary

material, general methods for more details).

We controlled for the possibility that phylogenetic history influ-

ences the repeatability of cognitive abilities (i.e. closely related

species may be more likely to show similar estimates of cognitive

repeatability) by using a covariance matrix based on an order-

level phylogenetic tree (using Open Tree of Life [60] and ‘rotl’ R

package [61]) but only in the intercept-only model as meta-

regression models failed to converge with this additional infor-

mation. We ran the intercept-only meta-analysis with and without

controlling for the effect of phylogeny and found that phylogenetic

relationships had negligible effects on average repeatability of

cognitive abilities (electronic supplementary material, table S5),

justifying its exclusion in subsequent meta-regression models.

For meta-regressions, we report conditional R2 (sensu [62]),

which quantifies the proportion of variance explained by fixed

(moderators) and random effects along with p-values from
omnibus tests [59], which test the significance of multiple mod-

erator effects. When omnibus tests were significant ( p , 0.05),

we ran the same meta-regression model without the intercept

to compute and plot beta coefficients associated with each level

of the moderator (electronic supplementary material, figures

S10 and S11) and performed multiple pairwise comparisons to

estimate statistical differences between all combinations of mod-

erator levels. We corrected for multiple comparisons using a false

discovery rate adjustment of p-values [63].

We assessed the extent of variation among effect sizes in each

meta-analytic model (intercept only) by calculating heterogen-

eities (I2). Along with the overall heterogeneity (I2
total), which

represents between-study variance divided by the total variance

[64], we also provide estimates of heterogeneity for each random

factor (species, laboratory and experiment) following [65]. I2

values of 25, 50 and 75% are generally considered to be low,

moderate and high levels of heterogeneity, respectively [64].

Finally, we statistically tested for selection bias in the dataset

by conducting a type of Egger’s regression [66]. Given that effect
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sizes were not always independent from each other (i.e. some

came from the same study), we employed a mixed-model version

of Egger’s regression using the full models (seven moderators as

fixed effects) with the sampling s.e. of each effect size as a mod-

erator [65,67]; a regression slope of the s.e. significantly different

from zero indicates selection bias [66]. Such a significant effect

usually indicates that large effect sizes with large sampling

variance (small sample size) are more prevalent than expected,

potentially overestimating the overall effect size (i.e. R).
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3. Results
(a) Dataset summary
Repeatability estimates computed from primary data are

presented together with published R values in electronic sup-

plementary material, table S1 for temporal repeatability and

electronic supplementary material, table S2 for contextual

repeatability. For temporal repeatability, we used 22 studies

on 15 species in which 4 to 375 (mean: 56.3, median: 40) indi-

viduals performed a median of 2, 95%CI [1.91, 2.11] repeated

tests, leading to a total of 106 repeatability analyses (40 R; 40

Rn; and 26 Rni). For contextual repeatability, we used 27

studies on 20 species in which 4 to 297 (mean: 41, median:

24) individuals performed a median of 2, 95%CI [1.80, 2.15]

repeated tests, leading to a total of 107 repeatability analyses

(38 R; 32 Rn; and 37 Rni).

(b) Repeatabilities for individual studies
Repeatability of cognitive performance varied widely

between studies and was distributed from negative (i.e.

higher within-individual than between-individual variability,

computed for unadjusted R only) to highly positive repeat-

ability (close to 1) for unadjusted R (figures 1 and 2;

electronic supplementary material, figure S2). Confidence

intervals also varied greatly among species and cognitive

tasks, particularly for unadjusted R of temporal repeatability

(figure 1) and contextual repeatability (figure 2). Such hetero-

geneity in R between datasets, wide confidence intervals,

as well as high variation in sample size and number of

repetitions, suggests that mean estimates would be better

assessed through meta-analysis regression.

(c) Meta-analysis: overall repeatability estimates,
heterogeneities and publication bias

We first used meta-analysis (intercept-only) models to compute

mean estimates of cognitive repeatability while accounting

for variation in sample size and repetition number between

studies. Intercept-only models revealed significant low–

moderate [0.15–0.28] mean estimates of cognitive repeatability

across analyses (table 1 and figure 3). Performing the same

analysis with or without controlling for phylogenetic history

suggests that class-level phylogenetic relationships had little

influence on mean cognitive repeatability estimates (electronic

supplementary material, table S4).

While confidence intervals of mean repeatability estimates

(figure 3 and table 1) indicate considerable variability in

the repeatability of cognitive performance between studies,

inconsistency between effect sizes is better captured by

heterogeneity I2 for meta-analysis [68]. We found moderate

to high total heterogeneity (32% , I2, 88%, table 1) as in

other across-species meta-analyses [68]. Indeed, a considerable
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proportion of the total heterogeneity (I2 total) is due to vari-

ations between species (I2 species). Using repeatability from

different cognitive measurements in the same experiment (I2

experiment) also produced a moderate level of heterogeneity,

suggesting that the type of cognitive measurement plays a

role in repeatability estimation.

We investigated whether our meta-analysis model

showed any bias in publication or selection using a type of

Egger’s regression. Egger’s regressions suggest significant

bias for unadjusted temporal R. Such bias is probably related

to the high number of low sample size studies. To further

evaluate the robustness of our mean estimates, we ran a sen-

sitivity analysis using a ‘leave one out procedure’ (electronic

supplementary material, general methods) in which we com-

puted mean estimates by removing a single R value for each

R value in the dataset and generating a distribution of mean

estimates. The distribution of ‘leave one out’ mean estimates

was concentrated around the original mean estimate, which

suggests that meta-analytic results are not driven by one par-

ticular R value (electronic supplementary material, figure

S10). Finally, we assessed whether mean estimates obtained

for each type of R analysis were significantly different from

each other using multiple t-test comparisons. We found that

adjusted temporal R for test order was significantly lower

than other types of R analyses before correcting for multiple

comparisons (electronic supplementary material, table S5).
However, we found no significant differences after correcting

for multiple comparisons for all combinations of R analyses.
(d) Meta-regression: effects of moderators
To better understand the factors that influence heterogeneity

of repeatability, we included the type of cognitive perform-

ance measurement, the type of cognitive task, median delay

between repetitions, origin of the subjects, experimental

context, taxonomic class and publication status as moderators

in our models of repeatability. Effects of those factors on raw

R values can be inspected visually in electronic supplementary

material, figures S3–S9. However, to assess the effects of these

factors while accounting for variation in sample size and rep-

etition number between studies, meta-analytical tools are

necessary. The total number of repeatability values compiled

for each type of R analysis (table 1) was not sufficient to run

a full model to assess the effects of all seven moderators

together. We therefore ran seven independent univariate

(multilevel) meta-regression models, which revealed that the

type of cognitive performance measurement significantly

influenced all types of R values, except for unadjusted tem-

poral values (table 2), and accounted for 14 to 100% of the

variance (R2
c). The investigation of beta coefficients associated

with each type of cognitive measurement (electronic sup-

plementary material, figure S11) suggests that normalized
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index (scores computed specifically for the study e.g. Matzel

et al. dataset) and SUC measures are significantly more

repeatable for contextual Rni estimates than other types of R
analyses. However, as this pattern is not observed for other

types of R analyses, results should be interpreted with cau-

tion. Publication status also significantly influenced

contextual repeatability and accounted for 24 to 70% of the

variance (table 2), with published R values being signifi-

cantly higher than the R values that are computed from

primary data (electronic supplementary material, figure S12).

We found that the type of cognitive task, median delay

between tasks, experimental context, the origin of the subjects

or taxonomic class did not show consistently significant

effects across different types of R analyses. The significant

effect of cognitive task type on unadjusted contextual R
should be interpreted cautiously as it is present only for one

type of R analysis and is thus probably not robust (table 1

and figure 1). The same is also true for the marginally signifi-

cant effect of median delay between tasks; its positive beta

coefficient (0.06, see also electronic supplementary material,

figure S3) suggests that repeatability increased with the

delay between tests. This finding could be driven by high R
values from the study by Barbeau et al., in humans (electronic

supplementary material, table S1) despite a very long median

delay between trials (540 days). Indeed, the p-value associated

to median delay became non-significant when running the

same meta-regression without those data.
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4. Discussion
We aimed to explore the repeatability of cognitive perform-

ance across six animal classes. We examined repeatability

by assessing whether inter-individual variation in cognitive

performance was consistent on the same task across two or

more points in time (i.e. temporal repeatability) or whether

performances were consistent across different tasks that

are designed to capture the same cognitive process (i.e. con-

textual repeatability). Overall, our meta-analysis revealed

robust and significant low to moderate repeatability of cogni-

tive performance (R ¼ 0.15–0.28). We found that the type

of cognitive performance measurement (e.g. the number of

trials to reach a criterion, latency) affected most estimates of

repeatabilities while the type of cognitive task (e.g. reversal

learning, discrimination learning, mechanical problem sol-

ving), delay between task repetitions, the origin of animals

(wild/wild-caught or laboratory-raised/hand-raised), exper-

imental context (in the wild or laboratory), taxonomic class

and origin of R values (published versus primary data) did

not consistently show significant effects on R estimates.

(a) Are measures of cognition repeatable?
High plasticity of cognitive processes may result in low or

null estimates of repeatability. Yet, we found a significant,

but low, average R estimate for unadjusted temporal repeat-

ability of cognitive performance (R ¼ 0.18). Our highest

temporal repeatability estimate adjusted for test order and

individual determinants reached R ¼ 0.28. Although this esti-

mate remains lower than that observed for animal personality

and other behaviours (average R ¼ 0.37, R ¼ 0.29, R ¼ 0.41:

see [27–29], respectively), our findings suggest that individ-

ual variation in performance on the same cognitive task is

moderately consistent across time in a wide range of taxa.

http://rstb.royalsocietypublishing.org/
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This result is particularly striking because internal and exter-

nal influences on task performance are unlikely to be

identical between trials; such influences should inflate intra-

individual variation between trials, and therefore reduce R.

The results we obtained are in line with low to moderate her-

itability estimates of cognitive performance collected from

laboratory populations (reviewed in [69], also see [70,71])

and with selectively bred animals that have shown large

differences in, for example, numerical learning in guppies

[20], oviposition learning in Drosophila [72] and butterflies

[73], or maze navigation in rats [74]. These findings may

promote future investigation of individual variation in cog-

nitive performance, ideally as a first step towards assessing

heritability, the effect of developmental environment and

experience on this variation, and examining potential evol-

utionary consequences of this variation [6,75].

Contextual repeatability was assessed by examining

performance on novel variants of the same task (e.g.

change of stimuli dimension) or different tasks that we con-

sidered assessed the same putative cognitive process. The

use of different task variants has been advocated to further

improve our understanding of cognitive processes, for

instance in the context of assessing convergent validity of

tasks ([25,76]). Accordingly, our estimates of contextual

repeatability were moderate (R ¼ 0.20–0.27) and significant,

indicating that the use of different stimuli dimensions,

perceptual dimensions, apparatuses and tests allows accurate

measures of repeatable variation of individual cognitive per-

formance. However, our interpretation of R values assumes

that performance on each cognitive test is independent of

other traits that could be repeatable as well, such as motor

capacities, motivation or personality traits [25].

Accurate estimates of contextual repeatability may be

confounded in tasks that use different stimuli or perceptual

dimensions. For instance, adaptive specializations that result

in differential attention to particular stimuli may result in

high within-individual variation in performance over

contexts, or in low between-individual variation in one or

both contexts [42] (e.g. individuals of some species may

show greater variation in their performance when learning a

shape discrimination, but show relatively little variation

when learning a colour discrimination, even if both tasks

require visual-cue learning e.g. [77,78]). Using different tasks

or apparatuses to examine the same putative cognitive process

may also lead to low contextual repeatability if the salience of

stimuli differs between apparatuses. For example, presenting

stimuli on a touchscreen as opposed to presenting stimuli

with solid objects may vary the salience of stimuli [79]. Such

differences may inflate within-individual variance and thus

decrease repeatability. Finally, while we may assume similar

cognitive processes are involved in variants of the same

task, we may obtain low contextual repeatability if the

variants require different cognitive processes. One possible

solution is to conduct repeatability analyses on the portion

of variance likely due to a shared cognitive process by

incorporating measures of ‘micro-behaviours’. For example,

Chow and colleagues [80] used the response latencies to

correct and incorrect stimuli to reflect inhibitory control, and

the rate of head-switching (head-turning between stimuli) to

reflect attention, alongside using the number of errors in

learning a colour discrimination-reversal learning task on a

touchscreen. Assessing micro-behaviours may therefore

capture specific processes that are more closely related to the
general cognitive process than more classical approaches.

Accordingly, assays of repeatability of cognitive performances

could then be examined by repeatedly recording a suite

of micro-behavioural traits as well as traditional measures of

performance in the same, or variants of the same, task.

(b) Test order and the repeatability of cognitive
performance

Animals may improve their performance with increased

learning/experience of the same task or on different but

related tasks. Hence, controlling for time-related changes

(i.e. the number of repetitions of the same task) or task pres-

entation order (i.e. test order) may produce more accurate

estimates of repeatability [81]. However, while our adjusted

estimates of temporal and contextual repeatability remained

significant when controlling for test order, they did not

increase (table 1 and figure 3). These findings suggest that

repetition number, or task order, may have a negligible

influence on repeatability, at least within the range of values

represented in our sample.

Estimates of temporal repeatability (electronic supplemen-

tary material, table S1) suggest that there may, however, be an

optimal number of repetitions when estimating individual

variation in cognitive performance. Indeed, prolonged

exposure to the same task may reduce most, if not all,

between-individual variation in performance (i.e. individuals

reach a plateau in performance with increased experience of

the same task): high repetitions of the same task (ranging

from 7 to 80 repetitions) produced moderate–low repeatability

(mean R ¼ 0.22), whereas analyses with low repetitions

(ranging from 2 to 3 repetitions) produced a moderate–high

repeatability (mean R ¼ 0.42). Consequently, increasing the

number of measures of cognitive performance strengthens

memory and learning on a given task, which may increase

within-individual variance between tests as internal and exter-

nal conditions change across repetitions. Likewise, memory

and learning may increase within-individual variance between

different tasks owing to carry-over effects. Carry-over effects

on repeatability may be controlled by running all tests in the

same order for all subjects, and by including test number or

test date for a given task [81]. The effect of test order on contex-

tual repeatability should, however, be treated with caution, as

it may be influenced by the number of R estimates based on

small sample size studies, and may also result from General-

ized Linear Mixed Model-based repeatability approaches

which force R to be positive, in comparison with unadjusted

R. Nevertheless, studying the impact of repetition number or

prior test exposure may help improve our understanding of

how experience can influence cognitive performance.

(c) Individual determinants of the repeatability of
cognitive performance

The addition of individual effects such as sex and age, when

available, appeared to increase temporal but not contextual

repeatability, relative to models that only included test

order (table 1 and figure 3). This effect on temporal repeat-

ability may partly result from differences in the processes

that underlie performance on cognitive tasks between juven-

iles and adults. For example, immature freshwater snails,

Lymnaea stagnalis, show impaired memory for the association

between a light flash and the whole body withdrawal
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response until they reach maturity [82], juvenile Australian

magpies, Cracticus tibicen, show impaired performance on a

spatial memory task when tested 100 days after fledging

compared with those birds that were tested 200 and 300

days after fledging [15], and honeybee, Apis mellifera L.,

workers show impaired spatial memory when tested

under 16 days of age as adults compared with their counter-

parts that were older than 16 days [83]. Adult Eurasian

harvest mice, Micromys minutus, also show higher repeat-

ability than juveniles on a spatial recognition task [50].

Controlling for age and developmental life-stage, either

experimentally (e.g. targeting one age group) or statistically,

may therefore play an important role in obtaining accurate

estimates of repeatability of cognitive performance.

Males and females may also experience different selective

pressures on given cognitive processes that reflect different

fitness consequences. Examples of such sex differences

include spatial orientation and reference memory in rodents

[84], colour and position cue learning in chicks [85], and fora-

ging innovation in guppies [86]. Sex differences in cognitive

processes may result from mating behaviours such as terri-

tory defence or mate searching, which may reduce between-

individual variation within the same sex. Here, we have only

examined and discussed a few of the individual factors that

can influence measures of cognitive performance across indi-

viduals, and thus potentially impact estimates of repeatability.

We suggest that the choice of variables included in analyses

of adjusted repeatability should reflect the goals of the study,

and include explanations of what aspects are controlled for

and, more importantly, why [24].

(d) Moderators of the repeatability of cognitive
performance

Variation among studies used in a meta-analysis can cause

heterogeneity in effect sizes that is directly attributable to

the experimental approach. Accounting for such variation

can provide insights into which factors influence the trait of

interest [68]. For example, we might expect that repeated

measurements that are obtained after shorter time intervals

may produce better estimates of repeatability because the

internal and external states of individuals may be more

similar [27]. However, our results suggest that the interval

between two tasks had no influence on most estimates of tem-

poral or contextual repeatability. Although animals may form

memory associations on a given test, our findings suggest a

negligible influence of carry-over effects on the relative

extent of between-versus within-individual variation.

We found that the type of cognitive performance measure

had a strong effect on estimates of repeatability (table 2). For

contextual repeatability, the lowest estimated R values were

obtained for latency measures, with most confidence intervals

of estimates overlapping with 0 (electronic supplementary

material, figure S11). The low repeatability of latency measures

between performance using different apparatuses may result

from ceiling effects (e.g. individuals may solve an easy task

with similar latencies but show greater variation when solving

a more difficult problem) and floor effects (e.g. individuals

may use the maximum time that is given in a trial to solve a

more difficult problem but show variation for an easy task)

[87,88]. Accordingly, the effects of internal or external vari-

ables on repeatability may be minimized by using binary

measures such as SUC. Our results indicate that certain
types of measures (e.g. latency or the number of trials) used

in some cognitive tasks are more sensitive to internal or exter-

nal contextual variables than others and thus provide less

reliable measures of R. However, we suggest that moderator

effects should be interpreted with caution, as constraints on

our sample size prevented us from controlling for other

fixed effects when revealing each moderator effect as well as

potential interaction effects. Our approach of univariate

testing may, therefore, have been more liberal than a full

model approach. While our results generally suggest that

most moderators did not explain variation in the repeatability

of inter-individual variation in cognitive performance across

studies, these factors may still be important to consider

when designing experiments for a particular species.
(e) General conclusion and future research
To summarize, we report low to moderate estimates for the

repeatability of cognitive performance, suggesting consistent

individual differences over a range of cognitive tasks and

taxa. Measurements of cognitive performance in a given

task are, therefore, moderately consistent for individuals

over time and can be studied much like other behavioural

and morphological traits. Furthermore, different experimen-

tal paradigms that assess the same underlying cognitive

capacity are reasonably concordant. This suggests that differ-

ent approaches can be used to estimate the same underlying

cognitive ability. Together, our results suggest that formally

assessing individual variation in cognitive performance

within populations could be a useful first step in research

programmes on the evolutionary biology of cognition.

While we attempt to understand the repeatability of

cognitive performance, we acknowledge that this is an

emerging and rapidly developing field. Accordingly, this

study suffers some limitations, including a modest sample

size (both for the number of studies included and for the

number of subjects provided in each study), which reduces

the robustness of the conclusions regarding the effect of

potential moderators. Moreover, this study may also suffer

some undetected bias in data collection, as the majority of

data were obtained either from colleagues that presented

at a workshop on the ‘Causes and consequences of individ-

ual variation in cognition’ or from researchers who work on

individual differences known to the workshop participants.

However, we argue that the inclusion of unpublished data is

a useful approach to gaining a better representation of the

true range of repeatabilities, given that we found published

studies to provide higher R than unpublished studies. Future

studies may, therefore, benefit from the growing body of lit-

erature on individual differences in cognition ([42,75,89,90]).

Note that other studies collecting repeated measures from

repetitions of a same test, or functionally similar tests,

could also offer valuable datasets, even when their aim is

not the quantification of consistent individual differences.

To facilitate future meta-analyses, we suggest that authors

of such papers: (i) publish their datasets using the finest-

grained information available (e.g. trial-by-trial instead of

aggregate values, such as proportion of correct choices or

trials); (ii) include information on potential moderators

(e.g. date of test, subject’s origin) and other fixed effects

(e.g. sex, age) that may need to be controlled for; and (iii)

include and standardize the term ‘cognitive repeatability’

in their keywords.
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Future avenues for research may include: (1) studying

the repeatability of reaction norms of cognitive performance

(i.e. its plasticity [44,91] over gradients of interest, for

example, deprivation level or housing conditions), so as

to assess the generality of the individual differences that

are captured by cognitive tasks across different environ-

ments and physiological states; and (2) partitioning the

variance among and within individuals, by making use of

multiple (more than 4) trials recorded for each individual

[92]. By partitioning variance in cognitive performance

at various hierarchical levels (within and between indi-

viduals), we may complement approaches that quantify

variation at other levels ( populations and species) and

hence further our understanding of the evolution of cogni-

tion. This approach may provide a greater understanding

of the factors that influence repeatability estimates, which

are based on a ratio, and thus do not allow the separation

of variance that is due to different phenotypes (among-

individual) from those due to the plasticity in the response

of each animal (within-individual). Separating these values

could provide a way to focus on the portion of variance

that is expected to be heritable, and to test hypotheses on
the factors that affect variation within individuals between

repeated trials.
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