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Abstract: Microbes influence a wide range of host social behaviors and vice versa. So far, however,
the mechanisms underpinning these complex interactions remain poorly understood. In social
animals, where individuals share microbes and interact around foods, the gut microbiota may have
considerable consequences on host social interactions by acting upon the nutritional behavior of
individual animals. Here we illustrate how conceptual advances in nutritional ecology can help the
study of these processes and allow the formulation of new empirically testable predictions. First,
we review key evidence showing that gut microbes influence the nutrition of individual animals,
through modifications of their nutritional state and feeding decisions. Next, we describe how these
microbial influences and their social consequences can be studied by modelling populations of
hosts and their gut microbiota into a single conceptual framework derived from nutritional geometry.
Our approach raises new perspectives for the study of holobiont nutrition and will facilitate theoretical
and experimental research on the role of the gut microbiota in the mechanisms and evolution of
social behavior.
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1. Introduction

Interactions between hosts and their microbiota, that together form the “holobiont” [1–3], influence
various aspects of an animal’s biology, including nutrition [4] and behavior [5]. Growing evidence
indicates that the microbiota can also have important consequences on the ways hosts interact with
each other, for instance by triggering aggregations [6,7], guiding mate choice [8,9] or allowing kin
discrimination [10]. How these complex host-microbe interactions are mediated is an open question.
Recent studies point towards an effect of microbes on brain areas involved in the control of social
interactions [11], or in the production of chemical signals mediating communication [12,13]. Here we
argue that microbes that colonize the gut of animals may also influence a wide range of social behaviors
through their impact on the nutritional needs and foraging decisions of animals.

Nutrition is central to all host-gut microbiota interactions [14]. On the one hand, gut microbes
can influence the nutritional strategies of their hosts by expanding the host’s capability to digest and
assimilate key nutrients [15,16], or by supplementing the host with nutrients that are difficult to find
in the environment [17]. Termites, for instance, depend on complex microbial communities to exploit
wood and soil nutrients that are otherwise not digestible by insects [18]. Microbes can also modify the
feeding preferences of their hosts, for instance by attracting animals towards a diet that is suboptimal
for the hosts but beneficial for the microbes [19]. On the other hand, nutrient intake by the hosts

Genes 2018, 9, 534; doi:10.3390/genes9110534 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0001-8308-9968
https://orcid.org/0000-0002-3621-9210
http://www.mdpi.com/2073-4425/9/11/534?type=check_update&version=1
http://dx.doi.org/10.3390/genes9110534
http://www.mdpi.com/journal/genes


Genes 2018, 9, 534 2 of 13

shapes the composition of their gut microbiota [18,20,21]. Variations in protein and carbohydrate
intake modify the relative abundance of microbes in an animal’s gut [22], a change that can be observed
within a few hours in mice [23], or a few days in humans [4].

Over recent years, state space models of nutritional geometry [24,25] (Figure 1) have been
increasingly used to study the nutritional interactions between gut microbes and their hosts, an
approach known as “nutritional immunity” [14]. In these models, animals and foods are represented
in a nutrient space defined by two or more key food components for the animal (typically, but not
exclusively, the macronutrients carbohydrates, proteins and fats; for a recent review see [26]). Foods are
radials defined by the ratio of the food components under consideration (nutritional rails). The animal
is characterized by a nutritional state (NS), a snapshot of its nutritional condition, and by an intake
target (IT), an optimal state at which fitness is maximized. The challenge for the animal is to consume
available foods in amounts and balances allowing it to reach and maintain its IT [25]. Knowing the
nutritional composition of foods, and the NS and the IT of the animal, it is thus possible to predict the
feeding strategy that will most efficiently enable the animal to meet its nutritional needs (see examples
in Figure 1A).

Nutritional immunology studies have extended this framework by considering microbes as
trophic analogues of animals [27]. In this approach, an animal’s gut microbiota can be modelled in
a nutrient space and characterized by a specific NS and IT [26]. Here, however, the NS of the gut
microbiota varies with the nutritional behavior of its host. Using nutritional geometry designs, the
performance responses of the host and the gut microbiota can be derived by experimentally mapping
the expression of fitness traits of both holobiont components in separate nutrient spaces (see examples
in Figure 1B). Therefore, in principle, it is possible to predict how the nutrient intake of a host will
affect its fitness and the development of different microbe types (strains or species) in its gut [26].
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attracted and feed together on the same foods. Animals must trade-off between choosing food to 
address their own nutritional needs and following others. This can be achieved by collectively 
reaching a group-level intake target (IT global) midway between the two sub-group ITs. 

Figure 1. Nutritional geometry models for individual animals, holobionts, and animal groups.
(A) Model for a hypothetical animal (modified from [25]). The nutrient space is defined by two nutrients.
Nutritional rails (grey lines) represent the ratio of nutrients X and Y in two foods. Yellow dots represent
the nutritional state (NS) and the intake target (IT) of the animal. In this example, foods 1 and 2 are
individually imbalanced (ratio different from the animal’s IT) but collectively complementary (fall in
opposite sides of the animal’s IT): The animal can reach its IT by combining its intake from the two
foods. Sequences of arrows show two possible strategies. (B) Model for a hypothetical holobiont
(modified from [26]). The performance responses of holobiont components (host and gut microbes) to
nutrient intake are shown in separate heatmap landscapes. The strength of response of each holobiont
component is indicated by a color code (warmer colors show strongest responses). In this example,
changes in nutrient intake have different influences on the fitness of the host (maximum for high X
low Y intake) and the gut microbiota (maximum for low X low Y intake) indicating the potential for
a conflict in food requirements. (C) Model for a hypothetical group of animals (modified from [28]).
The group is composed of two sub-groups of highly interacting individuals (blue and red circles).
In this example, each individual has its own NS but individuals of the same sub-group have the same
IT (sub-group 1: IT1; sub-group 2: IT2). All individuals are socially attracted and feed together on the
same foods. Animals must trade-off between choosing food to address their own nutritional needs and
following others. This can be achieved by collectively reaching a group-level intake target (IT global)
midway between the two sub-group ITs.
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Concepts of nutritional geometry have also been used to explore the effects of nutrition on
social interactions, an approach called “social nutrition” [28–30]. Here, nutrition models are used to
study how nutrition affects many social behaviors and structures, such as collective movements [31],
cooperative foraging [32], or reproductive division of labor [33]. In social species, individuals must
often trade-off between choosing foods that address their own nutritional needs and following
others’ choices to maintain social cohesion, which can generate a variety of social responses [28].
These interacting effects between nutrition and social behaviors can be modelled by considering
all individuals constituting a social group in a common nutrient space (Reference [28]; Figure 1C).
Each individual is defined by its own NS and attempts to reach its IT. The ability of the different
group members to do so depends on the nature and the frequency of their social interactions
(e.g., attraction [34], competition [35,36], cooperation [37]). In social insects, for example, nutrient
balance is achieved collectively by the foragers that collect nutrients to reach a colony IT composed
of the different ITs of all colony members, including the other workers that need carbohydrates for
energy, and the larvae that need proteins for growth [38].

In this review, we argue that concepts of nutritional geometry can bring new fundamental insights
into emerging research on microbiota and social behaviors, by integrating nutritional interactions at
different levels (between hosts and their gut microbes, and among hosts) in a common theoretical
framework. We hypothesize that, by acting on the nutritional decisions of their hosts, gut microbes can
influence a wide range of social behaviors, which in turn impact the composition of the gut microbiota
communities. We develop this hypothesis, by first reviewing research demonstrating the links between
the gut microbiota and the feeding behaviors of their hosts. We then describe how these multi-level
interactions can be modelled in nutritional geometry to generate new empirical predictions about
the influence of the gut microbiota on social behaviour. External microbes living on the surface of
the animals may also influence a range of social behaviors [10,39–43]. However, it is unlikely that
nutritional requirements of these microbes influence host nutritional decisions; at least before they are
ingested by individuals, for instance through self-cleaning behaviors [44]. For these reasons, here we
only focus on microbes that colonize the gut.

2. Influence of Gut Microbiota on Host Nutrition

The gut microbiota can modify the feeding preferences of their host. For instance, gnotobiotic fruit
flies experimentally colonized with a specific bacterium species, and given a choice between several
food sources with the same nutritional composition but seeded with different bacteria species, show an
attraction towards the source seeded with the bacterium species present in their gut, whereas axenic
(microbe free) flies show no preference [19]. This gut bacteria-mediated food preference is expressed
by flies even if the food source is suboptimal (nutritionally imbalanced) and unseeded by bacteria,
suggesting that the microbiota can cause important fitness costs by pushing the host away from its
intake target [19].

How exactly gut microbes affect host nutritional behaviors is not clear. A major hypothesis
is that microbes act through the gut-brain axis, a communication channel between the gut and the
central nervous system [45,46], which involves regulatory processes that modify the gut microbial
compositions and brain activity [46–48]. The gut-brain axis is involved in stress regulation, emotion,
social bonding (reviewed by [49]), and eating disorders [50–52]. In mice, gut bacteria maintain the
expression of receptors of fat that are altered in axenic individuals [53]. Axenic mice also show an
increase in the number of sweet taste receptors in the gastro-intestinal tract compared to wild type
non-axenic mice [54].

In principle, these complex interactions between gut microbiota composition and host feeding
behaviors can be investigated using nutritional geometry. Previous studies have explored these effects
by considering hosts and microbes in separate nutrient spaces (e.g., [26]; Figure 1B). Here we propose
to integrate both components of the holobiont in a single nutrient space (Figure 2). In this approach,
the host and the gut microbes have their own NS (animal host: NSA, microbes: NSM) defining a global
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holobiont nutritional state (NSH). The two components also have their own IT (animal host: ITA;

microbes: ITM), defining a holobiont intake target (ITH). Every time the host ingests food, its microbial
community is affected and can potentially change in composition (e.g., relative abundance of microbes
or types of microbes [22]), which dynamically influences both the NSH and the ITH.
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Figure 2. Influence of the gut microbiota on host nutrition. In these hypothetical examples, hosts and
microbes are represented in a common nutrient space defined by two nutrients. Food types (grey lines)
are defined by their ratio in nutrients X and Y. The animal host (yellow dot) and the microbes (blue and
red dots), together forming the holobiont (grey surface), are charatcerized by their own nutritional
states (animal: NSA; microbe: NSM; holobiont: NSH) and intake targets (animal: ITA; microbe: ITM;
holobiont: ITH). (A) The animal is colonized by a single microbe type that does not influence its feeding
behavior. The animal can reach the ITA by combining its intake of the two complementary foods
(black arrows). The optimal ITH for both holobiont components is never reached. (B) The animal is
colonized by a single microbe type that influences its feeding behaviors. The animal can reach an ITH

that falls between ITA and ITM depending on the relative influence of the host and the microbes on
feeding decisions. (C) The animal is colonized by two microbe types (assemblage of microbes) that
both influence its feeding behavior. The animal can reach an ITH that falls between ITA, ITM1 and ITM2

depending on the relative influence of the host and the two microbe types on feeding decisions. In this
example, microbe type 1 has a stronger influence on the feeding decisions of the host than microbe
type 2. The same logic can be extended to richer microbial communities where a global effect of the
microbial community can affect the animal feeding behavior.

Several theoretical scenarios can then be considered. If the microbiota has no effect on the host
feeding preferences, the host selects foods in order to reach and maintain its ITA (Figure 2A). In this
case, the ITH cannot be reached. If the microbiota affects the host feeding preferences (e.g., [19]), the
feeding behavior of the host mirrors the compromise between selective forces imposed by the host
and the microbiota to reach their own intake targets. Nutrient intake by the host then depend on the
relative influences of the two holobiont components in determining feeding decisions. If the nutritional
interests of the host and its microbiota are in conflict any approach of the ITH towards the ITA moves
the ITM away from its optimum, and vice versa. Depending on the composition of the microbial
community, some microbe types may have more influence than others on the host behavior, and drag
the nutrient intake towards their own ITM. Consequently, if only one microbe type colonizes the host
(e.g., controlled experiments using gnotobiotic animals), host nutrient intake should follow nutritional
rails leading somewhere between the ITA and the ITM and eventually ending on ITH (Figure 2B).
In more natural conditions, where several microbe types colonize the host and compete (or cooperate)
among themselves [55], the host nutrient intake should fall between the ITA and the different ITMs

of all the microbe types, weighted for their relative influence on host feeding decisions (Figure 2C).
In all cases, the microbiota can influence the NSA, by expanding the host’s capacity to assimilate
nutrients [15,16], or by supplementing the host with new nutrients [17]. This may modify the host
feeding choices, and lead the holobiont to reach the ITH. These interactions are expected to be highly
dynamic since the composition of the gut microbiota can rapidly change as the host consumes different
foods [4,22].
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3. Integrating Gut Microbes, Host Nutrition and Social Behavior

In addition to influencing individual host behavior, microbes can affect the type and frequency
of social interactions among hosts, for instance by triggering aggregations (e.g., drosophila [6];
cockroaches [7]), guiding sexual interactions (e.g., hyenas [9], drosophila [8]), or mediating kin
recognition (e.g., ants [39]). Conversely, social behaviors can facilitate microbe transmission among
hosts and shape their microbial communities by increasing the diversity of microbe types per
individual [56] and by homogenizing communities across individuals [13]. Hosts that live together
or interact frequently tend to have more similar microbiota than those that rarely encounter
(e.g., baboons [57], meerkats [58], birds [59,60], bees [61]).

Based on these observations, we argue that gut microbes can play a major role in mediating
host social interactions. By acting on the nutritional decisions of animals, microbes may affect
the nature and frequency of social interactions among their hosts within groups or populations.
Transfer of microbes between social partners may homogenize gut microbiota profiles within groups
and further promote these interactions. Below we build on concepts of nutritional geometry to integrate
host-microbiota interactions ([14,26]; Figures 1A,B and 2) and host social behavior ([28,29]; Figure 1C)
in a common framework.

In this approach, multiple hosts and microbes are modelled in a single nutrient space, together
forming a population of holobionts (Figure 3). As previously, holobionts have their own NSH and ITH.
Each time an animal ingests food, its microbial community can be altered, thereby affecting both the
NSH and the ITH. The microbiota composition can affect the nutritional decisions of each animal host
depending on whether or not microbe types influence their feeding preferences. Here, however, the
feeding decisions and microbiota composition of each holobiont also depend on the social interactions
between holobionts. Social attraction, for instance, is expected to favor collective feeding and physical
contacts leading to the homogenization of NSH and ITH among holobionts. In contrast, competition or
social avoidance are expected to generate a high variability in NSH and ITH among holobionts, due to
a reduced transmission of microbes.

Using this conceptual representation helps identify theoretical scenarios about how the gut
microbiota may affect social interactions in groups exhibiting various levels of social complexity.
In solitary species, where individuals rarely interact, the microbiota can be vertically transmitted across
generations from mothers to offspring [62,63] or acquired from the environment [64]. In this case, we
expect the NSH and the ITH of independently feeding individuals to be firstly influenced by vertical
transmission and then primarily dependent on food intake, resulting in high variability across the
nutrient space (Figure 3A). The degree of variability of the NSH and the ITH across the population of
holobionts should mirror the diversity of the microbes available in the environment and the breadth of
the hosts’ diet. This variability may be increased if microbes influence the nutritional decisions of the
animal hosts, for instance by modifying their feeding preferences towards different food types [19].
In highly heterogeneous environments, such microbial influence on host feeding behaviors may further
reduce the frequency of social interactions among animals searching for different food types, and
reinforce the tendency for solitary behaviors.

In gregarious species, where individuals interact more frequently and often eat in groups, both
vertical transmission and horizontal transmission (through social contacts) of microbes may occur,
thereby reducing the variability in microbiota composition among hosts of the same group [65]. In this
case, we expect a low variability of the NSH and the ITH across the holobionts (Figure 3B). If hosts do
not interact evenly among each other, for instance following kinship or familiarity biases [66–68], the
homogenization of the microbiota may give rise to sub-groups of interacting holobionts with more
similar NSHs and ITHs, a mechanism further promoting social interactions within these sub-groups [7],
and the emergence of a social structure.
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Figure 3. Integrating microbiota, host nutrition and social behavior. Populations of holobionts are
represented in a nutrient space defined by two nutrients. Foods (grey lines) are defined by their ratio
in nutrients X and Y. Animal hosts (yellow dots), gut microbes (blue and red dots), and holobionts
(grey surfaces) are characterized by their nutritional states (animal: NSA; microbe: NSM; holobiont:
NSH) and intake targets (animal: ITA; microbe: ITM; holobiont: ITH). Black arrows illustrate the feeding
decisions of each holobiont or sub-groups of interacting holobionts. Three hypothetical scenarios depict
the expected nutritional interactions between gut microbes and hosts in groups of increasing social
complexity. (A) In solitary species, where individuals feed independently and do not interact, the
diversity of environmental microbes may generate a high variability in the NSH and the ITH of the
different holobionts. Each holobiont can reach its ITH by alternating its intake of the two complementary
foods. (B) In gregarious species, where individuals feed together and regularly interact, horizontal
transmission of microbes may reduce inter-holobionts variability of NSHs and ITHs. In this example
where individuals do not interact evenly, horizontal transmission favors the emergence of sub-groups
(black circles) of highly interacting individuals with similar gut microbiota that can collectively reach
their ITH. (C) In advanced societies, where individuals with different nutritional needs (e.g., young
and adults, queens and workers) permanently co-occur, differential social interactions and continuous
homogenization of gut microbiota through social contacts favor the emergence of classes of highly
interacting individuals with distinct NSHs and ITHs (e.g., castes). Holobionts can cooperate with other
holobionts from the same class to reach their common ITH.

In the most complex societies, characterized by strong social cohesion, frequent interactions
and durable social structures, both vertical and horizontal transmissions of microbes occur. In such
groups, microbes often need repeated inoculations to reach a mature functional form or assemblage
useful to the host [69]. Here, continuous homogenization of gut microbiota through social contacts
and differential social interactions among social partners may favor the emergence of specialized
classes of highly interacting individuals with distinct NSHs and ITHs. This may be the case in social
insects, where individuals at different developmental stages (e.g., larvae and adults) and belonging to
different castes (breeders and workers) are characterized by highly divergent NSHs and ITHs [32,70,71].
Intra-class social interactions can lead hosts belonging to the same class towards situations where
similar feeding choices strongly affect the microbiota composition, which in turn affect the hosts
social behaviors. This feedback creates class specific NSHs from which the different holobionts
cannot “escape”, since the specific condition of the hosts leads to an increase in the ITH distances
(Figure 3C). At this stage, holobionts head on a nutritional rail that can be costly to change thus
impeding movements of individuals from one class to another. A typical example is observed in ant
colonies where individuals from different castes have different nutritional needs and transitions from
one caste to another is accompanied by morphological, physiological and behavioral changes [72].
Alternately, intra-class variations of host nutritional choices can incur costs to the resident microbiota
that can be detected by the loss of certain bacterial types, or the replacement by others. It can thus be
predicted that associations between hosts and their gut microbiota are more specialized and stable in
social hosts than in solitary hosts.
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4. Conclusions

Nutritional geometry is a powerful approach in the study of nutritional interactions across
organizational levels from molecules to individuals, groups and communities [28,73,74]. As we
have described above, concepts of nutritional geometry can help in modelling how gut microbiota
composition, host feeding behaviors and host social interactions integrate within a single theoretical
framework. By identifying nutritional interactions and feedback loops between these three different
components, this approach allows the formulation of new hypotheses to explore the role of the gut
microbiota in the mechanisms and evolution of host social behaviors (Figure 4).
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social interactions.

While nutritional studies have typically considered animal food intake and performance responses
as a proxy of the intake target of an individual, growing evidence shows that these preferences vary
among individuals, presumably because animal feeding decisions are influenced by several additional
factors, including (but not only) its microbiota and social interactions [25]. Host nutritional choices can
modify the relative abundance of microbe types in their gut by varying nutritional input available for
microbial development [22] or through direct ingestion [18]. In turn, the gut microbiota composition
can affect host nutrition by expanding [15], digesting and assimilating key nutrients for the host [17],
or by dragging the host towards suboptimal diets [19]. Microbiota can intervene in gene-expression
involved in social propensity [75], guiding mating choices [8,9], promoting aggregations [6,7], and
mediating kin discrimination [39]. Conversely, social interactions favor the homogenization of the
gut microbiota by increasing microbial transmission across individuals in the population [13,56].
Social interactions can also indirectly affect microbiota composition via the impact of collective
behaviors during foraging [76] or differential access to resources [77].

The interplay between gut microbiota, host nutrition, and social interactions (Figure 4) emphasizes
the need to study host-microbiota interactions using a more integrative approach, by considering
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populations of hosts and their feeding decisions. Using nutritional geometry, we derived speculative
scenarios about how gut microbes may affect host social interactions and how host social interactions
might constrain feeding decisions, and as a result, microbiota composition. The challenge for
future studies will be to carry out experiments on specific components in order to examine the
mechanisms underlying co-evolutionary feedback acting between hosts and their microbiota [55].
Deconstructing the nutritional needs and performance responses of the different components of
host-microbe associations will help tackle important ongoing discussions about the relevance of the
concept of the holobiont, whilst looking for potential evolutionary conflicts between microbes, host
nutrition and social behaviors.

Computational models of nutritional geometry have already begun to explore nutritional
interactions in populations of agents [73,78] and integrate multiple levels of interactions
(e.g., host-pathogen interactions [37]). From an experimental point of view, it is possible to design
manipulative experiments on host and microbiota nutrition, using behavioral assays or physiological
measures on organisms provided with artificial diets [19]. Although it remains difficult to measure
the intake target of microbe types in their natural host environment (where several microbes interact
within assemblages), manipulating the microbiota composition under controlled conditions, using
axenic [79,80] and gnotobiotic [19] animals, can help estimate the intake target of the animal host and
how it is influenced by the microbiota. In the field, it is possible to reconstruct the gut microbiota
composition of an animal and its nutrient intake by monitoring the animals’ food choices, and
analyzing food samples and feces composition (see [81,82] for details). At the collective level,
social network analyses constitute powerful tools to assess how gut microbiota influence social
interactions and structures [83,84]. By quantifying social interactions and characterizing the nutritional
needs of experimentally manipulated individuals, it is possible to picture the associations between
microbiota-induced phenotypic changes (e.g., variation in holobiont nutritional needs) and the
temporal dynamics of social interactions. This experimental approach might also be applied in
species reared in their natural environments. For instance, using animal models that naturally show
flexibility in their social behavior, either at different developmental stages or in different environments
(i.e., social tipping points; see Reference [85] for details), it is possible to evaluate the variation of the
onset of changes induced by the microbiota. Additionally, experimental manipulation of host nutrition
and control of their social interactions, for instance using model organisms [19,86,87], can also help
clarify the role of diet and social behavior in defining the effects of gut microbiota in hosts [44,60,88].
Since the basic principles of nutrition are shared by virtually all animal species [25], results from this
approach may bring insights into the influence of the microbiota in the mechanisms and evolution of
social life across a wide range of organisms.

Microbiota composition can be a key component shaping animal behaviors [5]. Thus, the interplay
between microbiota and the host is central to understand multiple host interactions. The behavioral
plasticity observed in the host can be seen as a combination of the interactions between environmental
factors, and the genomic repertoire of the microbiota (i.e., microbiome) and the one of its host [89]. It is
thus the holobiont itself that is plastic and able to cope with environmental and biological stressors
(e.g., parasite infections [61,90]), possibly driving selection of both hosts and microbiota communities.
Nutritional choice is one possible evolutionary channel of host diversity [91], shaping gut microbiota
specialization [92], and driving the emergence of diverse social organizations across multiple taxa [65].
We hope that quantitative analyses of these interactions, as facilitated with nutritional geometry, will
encourage future research in this direction.
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