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Insects use path integration (PI) to maintain a home vector, but can also store and

recall vector-memories that take them from home to a food location, and even allow

them to take novel shortcuts between food locations. The neural circuit of the Central

Complex (a brain area that receives compass and optic flow information) forms a plausible

substrate for these behaviors. A recent model, grounded in neurophysiological and

neuroanatomical data, can account for PI during outbound exploratory routes and the

control of steering to return home. Here, we show that minor, hypothetical but neurally

plausible, extensions of this model can additionally explain how insects could store and

recall PI vectors to follow food-ward paths, take shortcuts, search at the feeder and

re-calibrate their vector-memories with experience. In addition, a simple assumption

about how one of multiple vector-memories might be chosen at any point in time can

produce the development andmaintenance of efficient routes betweenmultiple locations,

as observed in bees. The central complex circuitry is therefore well-suited to allow for a

rich vector-based navigational repertoire.

Keywords: vector, path integration, memory, insect, navigation, neural modeling, traplining, central complex

1. INTRODUCTION

It is well established that central place foraging insects, such as bees and ants, keep track of their
displacement when they venture outside their nest by a process called path integration (PI) (Collett
and Collett, 2000a,b). By combining compass and speed information, they continuously update a
home vector that allows for a direct return to their nest after arbitrary outward routes (Müller and
Wehner, 1988; Collett and Collett, 2000b). However, insects do not use their PI system only for
homing. For instance, they can also store PI vector-memories and use them to return to a known
food location (Wehner et al., 1983; Collett et al., 1999; Wolf andWehner, 2000), and take shortcuts
between multiple food locations (Menzel et al., 2005).

A recently published neural model (Stone et al., 2017) closely follows the connectivity of the
insect Central Complex neuropil (CX) and uses properties of identified neurons in this circuit
that respond to polarized light compass information and optic flow information to integrate an
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outbound path. In this model, the home vector, at any point
in time, is assumed to exist as a distributed sinusoidal activity
pattern across two sets of 8 columns, where the phase indicates
direction, and amplitude indicates distance. The model also
provides a mechanism for using such a PI memory to drive
the animal directly back home. Offset connections between
columns produce a comparison of the current heading to the
home vector direction, and indicate whether steering left or
right would improve the alignment. As the circuit continues to
integrate movement, the home vector amplitude will decrease
as it approaches the home position. When it becomes zero, an
emergent search behavior will result, unless there is a mechanism
to recognize home. Themodel accounts for changing travel speed
and is also robust to decoupling between the agent body axis and
direction of movement (Stone et al., 2017), something that bees
(Riley et al., 1999), wasps (Stürzl et al., 2016) and ants (Pfeffer
and Wittlinger, 2016; Collett et al., 2017; Schwarz et al., 2017)
can do.

The steering mechanism in this model is generalizable beyond
the use of a home vector. Different sources of information about
the “desired” heading or destination could be switched in, or
additively combined onto the steering neurons, and the system
will automatically steer to reduce the difference between the
current and desired directions. While it is interesting to speculate
how this might include information from sources other than PI
(e.g., learnt terrestrial cues), here we focus on cases where the
alternative activation is derived from a “vector-memory.” That
is, we assume that, as in other models (Cruse and Wehner, 2011;
Hoinville et al., 2012), the animal can store the current state of its
home vector (the neural activation pattern) when it encounters
salient places in its environment, and can later recover this
vector-memory to guide future behavior (Figure 1A).We suggest
some simple (hypothetical) neural circuitry that would add this
capability to the CX model (Figure 1B) (we assess its biological
plausibility in the discussion) and show it can support several
interesting phenomena observed in insect navigation.

Memory-directed movement: Insects that have found a food
source on a previous excursion can return to it on a direct route. It
is assumed this involves storage of a memory of the PI state when
the food was reached (Wehner et al., 1983; Collett et al., 1999;
Wolf and Wehner, 2000). We hypothesize that such a memory
could be integrated as a simple inhibitory influence in the CX
steering circuit to produce food-ward steering and search around
the food location (Figures 2, 3).

Vector-memory re-calibration: Insects experiencing a PI
inconsistency when returning from food to the nest due to a
forced displacement, appear to make a partial adjustment of
their memory of the food location (Collett et al., 1999; Wehner
et al., 2002; Bolek et al., 2012) (although the extent of this “re-
calibration” seems to vary with experimental conditions). We
suggest how this updating of a food-ward vector-memory could
occur (Figure 4).

Shortcutting: Bees have been observed tomake novel shortcuts
between remembered food locations (Menzel et al., 2005). It has
previously been demonstrated that this can be obtained by vector
addition, i.e., combining the current state of the home vector
(from an arbitrary location such as a first food source) with a

vector-memory from home to another food source (Cruse and
Wehner, 2011). This produces a vector directly from the current
location to the food. We show that such shortcutting would be
a straightforward consequence of switching between memories
in the CX circuit; importantly, this demonstrates how vector
addition could be implemented in the insect brain (Figure 5).

Multi-location routes: Bees often feed on multiple locations
(e.g., feeders or flowers patches) before returning home, and
have been shown to take efficient multi-location routes, or
“traplines,” that minimize the overall journey distance (Ohashi
et al., 2006; Lihoreau et al., 2012b; Buatois and Lihoreau, 2016).
We investigate a simple rule by which the neural circuit output
can be used to choose the next location to visit, and test whether
this produces multi-location routes similar to bees (Figure 6).

Route ontogeny: Finally, we explore how such multi-location
routes might develop over repeated foraging excursions through
a combination of random exploration and vector-memory
recall (Figure 7).

2. METHODS

2.1. Environment and Agent
We simulate (using Python 2.7) an agent moving in a 2D
environment. Movement in these simulations is discretised in
time and space. Units are therefore arbitrary, and different
walking “speeds” may be achieved by changing the length of
the spatial step that the agent moves at a time. In the following
paper, we describe the agent’s movement as time steps (t),
where the “speed” is generally kept constant during tests, but
variable during random walks (see Supplementary Material

section “Random Walks”). The environment typically contains
a nest, one or multiple feeders, as well as optional obstacles.
The nest and feeders are circular with a small defined radius
(relative to the typical environment size) within which the agent
is assumed to have “landed” successfully at the target, and a
larger radius, or “catchment area” which is assumed to provide
an olfactory signal (or other attractive signal) that could steer
the agent to the target. Obstacles can have circular, rectangular
or wall-like shapes and prevent the agent from passing through
the area they occupy (e.g., walls enclosing the agent in an arena)
by emitting a very short range repulsion signal that can steer the
agent away.

The agent’s size is one spatial unit. It is assumed to have
sensory information about its heading direction in an absolute
external reference frame, as could be supplied in real insects
for example by a celestial compass (over a short time duration,
or with internal clock correction, Labhart and Meyer, 2002).
It is also assumed to have information about its instantaneous
speed of movement in its heading direction as could be supplied
by optic flow, step counting, or efference copy. These provide
inputs to the CX model for path integration and control of
steering. Lastly, the agent is equipped with two “detectors,”
oriented at 90 degrees, that provide no input whatsoever to the
neural model we describe, but only act as modulators of the
agent’s turning intensity in response to “attraction” or “repulsion”
signals emitted by objects in the environment such as the nest,
feeders, or obstacles.
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The agent’s starting position for each simulation is (unless
specified otherwise) set at the nest. Its position is updated
iteratively depending on its speed v and heading θ :

xt = xt−1 + vt−1 cos(θt−1)
yt = yt−1 + vt−1 sin(θt−1)

(1)

The speed and heading can be controlled by a
random walk process (see “Random Walk” section in
Supplementary Material) or have a fixed speed (vt = 0.15)
and a heading given by the outputs of the CX steering neurons
(see section 2.2), depending on a flag that sets the current
motivational state (see below). Or, when an obstacle or a goal is
detected, the heading is given as follows:

Mleft ∝ (RleftAobj)

Mright ∝ (RrightAobj)
(2)

θ = (Mright −Mleft)+ noise (3)

with Mleft and Mright the modulation for left and right sides,
respectively, which are proportional to the left and right readings
Rleft and Rright of the two detectors, multiplied by the detected
object’s attractiveness Aobj. The added noise is drawn from a
VonMises distribution centered on 0:

noise ∼ VonMises(0, κ) (4)

where κ = 100.0 is the concentration of the VonMises
distribution. Note that this is considered to be a basic reflex
behavior of the agent, which by-passes the CX circuit. Finally,
in such case of a environment-driven steering modulation, the
agent’s speed is also modulated by an increased drag value
(multiplied by a factor of 1.5), providing better turns.

2.2. Central Complex Model
For convenience, we provide here an overview of the
mathematical description of the CX model, but we deliberately
omit the detailed biological justification, which is covered
at length in Stone et al. (2017). Layers 1–4 are identical
to the previous model. A “vector-memory” neuron has
been added, which can store the output state of layer 4,
and in turn, modulate this output before it reaches layer
5 (steering).

In overview, the circuit consists of a set of direction cells
(layer 3) that divide the azimuthal space and are activated by the
current heading of the agent (layers 1 & 2). Mutual inhibition in
layer 3 forms a ring attractor circuit creating a stable distributed
pattern in the form of a sinusoid. A set of integrator cells (layer
4) receive speed input but are inhibited by their corresponding
direction cells and thus accumulate distance traveled opposite to
the heading direction, creating a distributed representation of the
home vector. The vector-memory allows the current state of the
home vector to be stored when the agent is at salient locations
(feeders). The state is stored in the synaptic weights of one neuron
for each memory location. Homing is controlled by steering cells
(layer 5) that compare the integrator cell activation to the current
direction cell activation to determine if the animal should turn

left or right. Vector-memory can be used to selectively influence
this comparison process.

This circuit uses firing rate model neurons, in which the
output firing rate r is a sigmoid function of the input I:

r =
1

(1+ e−(aI−b))
(5)

where parameters a and b control the slope and offset of the
sigmoid. On this value is added a Gaussian noise N(0, σ 2

r ),
with σ = 0.1. This output firing rate is, across all layers,
subject to a clipping between 0 and 1 to prevent the applied
noise to depart from the range [0, 1]. The input I is given
by the weighted sum of activity of neurons that synapse
onto neuron j:

Ij =
∑

i

Wijri (6)

The value of the parameters for slope, offset and connection
weights for each layer are provided in Supplementary Material.

2.2.1. Layer 1 - Speed Input
To implement input to our speed-sensing (TN2) neurons, we
simulate forward-to-backward optic flow sensing, taking into
account the diagonally offset preferred angles of identified TN-
cells in the CX noduli in each hemisphere (Stone et al., 2017):

ITNL = [cos(θ + φ), sin(θ + φ)] · v
ITNR = [cos(θ − φ), sin(θ − φ)] · v

(7)

where v is the velocity vector of the agent, · the dot product,
θ ∈ [0, 2π) is the current heading of the agent and φ

is the preferred angle of a TN-neuron, i.e., the point of
expansion of optic flow that evokes the biggest response. For
our model, a default preferred angle of φ = (π/4) was
used. TN2 neurons have their value clipped between 0 and
1 so that they respond in a positive linearly proportional
manner to ITN , but have no response to negative flow
(backward motion):

rTN2 = min(1,max(0, ITN)) (8)

In practice for this paper we assume that the agent is moving in
the direction it is facing, i.e., v = [cos(θ), sin(θ)]v, which will
produce an equal response in each TN2 neuron, i.e., ITNL =

ITNR = cos(φ)v regardless of the heading θ .

2.2.2. Layer 1 - Directional Input
The first layer of Directional input consists of 16 input
neurons, each of which has a preferred direction α ∈

{0,π/4,π/2, 3π/4,π , 5π/4, 3π/2, 7π/4} with each of the 8
cardinal directions represented twice over. We identify these
with polarization sensitive TL neurons in the insect central
complex (Stone et al., 2017). On each time step they receive
input corresponding to the cosine of the difference between their
preferred heading and the agent’s current heading θ ∈ [0, 2π):

ITL = cos(α − θ) (9)
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2.2.3. Layer 2
The second layer consists of 16 neurons that receive inhibitory
input proportional to the output of the first directional input
layer. This simple inversion of the response across the array
is not actually crucial but is included to model the properties
observed in CL1 neurons connecting the polarization input to the
protocerebral bridge (Stone et al., 2017).

ICL1 = −rTL (10)

2.2.4. Layer 3 - Compass
The third layer consists of 8 neurons that get input from each
pair of CL neurons that have the same directional preference.
These neurons are identified with the TB1 neurons in the
protocerebral bridge of the CX, which also make mutually
inhibitory connections with each other in a specific pattern that
resembles a ring-attractor circuit (Stone et al., 2017). Thus, their
input is given by:

ITB1 = WCL1,TB1rCL1 +WTB1,TB1rTB1 (11)

where WCL1,TB1 is a [0, 1] matrix mapping pairs of CL neurons
to single TB1 neurons, and WTB1,TB1 is a matrix of inhibitory
weights between TB1 neurons where:

WTB1i ,TB1j =
d(cos(αi − αj)− 1)

2
(12)

where αi and αj are the preferred directions of their respective
TB1 inputs, and d = 0.33 is a scaling factor for the relative effect
of this inhibition compared to the direct CL1 excitation.

2.2.5. Layer 4 - Speed Accumulation
The fourth layer consists of 16 neurons, which we associate with
the CPU4 cells that occur in each column of the CX central
body upper. These receive input from both the protocerebral
bridge (TB1) and the noduli (TN2). The input for these
neurons is an accumulation of heading of the agent, obtained
by inhibitory compass modulation of the speed signal from the
speed-sensitive neurons:

ICPU4t = ICPU4t−1 + acc× (rTN2t − rTB1t − decay) (13)

where rTN2 is the speed-sensitive response, rTB1 the compass-
sensitive response; and acc = 0.0025 and decay = 0.1 determine
the relative rates of memory accumulation and memory loss.
The charge of all integrator cells starts at ICPU4t0 = 0.5 and,
as it accumulates, is clipped on each time step to fall between
0 and 1. Note that accumulation occurs on the input, i.e., it is
not affected by the non-linearity of the neuron’s output function.
Also note that the decay shifts the whole activity pattern toward
0, rather than moving the relative amplitude in each accumulator
toward the others. As such, this does not act as a leaky integration
of the path (as proposed in e.g., Sommer and Wehner, 2004
and as modeled in e.g., Vickerstaff and Di Paolo, 2005), as the
relative amplitude will still encode the veridical home vector,
unless the leak (or the accumulation) are enough to cause the
values to be clipped at 0 (or 1). The 8 TB1 neurons each provide
input to two CPU4 neurons which will thus have identical

activity (other than added random noise, see below) as we
assume the agent moves in its heading direction thus generating
symmetric optic flow. As these neurons integrate the velocity
(i.e., speed and direction) of the agent, the activity across this
layer at any point in time provides a population encoding of the
home vector.

2.2.6. Vector-Memory
This is the only new component in circuit compared to Stone
et al. (2017). It is a hypothetical addition and as yet we do
not suggest any specific identified neural analog. We store the
vector-memory in the synaptic weights of a hypothetical memory
neuron that inhibits the output of the CPU4 integrator cells: i.e.,
the memory neuron has 16 inhibitory output synapses, one per
CPU4 output fiber (see Figures 1B, 2A).

The weight of these synapses are set according to the
corresponding activity of the CPU4 output fiber at the moment
of learning, as could be signaled by a reinforcer neuron. More
precisely, we store the ICPU4 values after passing through a
sigmoid function of the same slope and bias parameters as
the CPU4 response (see Supplementary Material, “Neurons
parameters”), but without any added noise. This is to avoid
encoding the instantaneous noise level (i.e., the one of the last
time step only), and can be interpreted as the learning taking
place over a short time interval to more precisely estimate the
current CPU4 activity. The noise is then added dynamically (at
each time step) during recall, like in the rest of the system.
The obtained values are negated in sign (since the synapses are
inhibitory). In other words, the agent’s current home vector gets
stored in the 16 synaptic weights of the memory neuron when
the reinforcer neuron is triggered (Figure 1D). The learning
of the vector-memories is set at particular time or locations:
in this paper, these are associated with the discovery of food.
As described below, this will allow the agent to return to the
position at which the vector was stored. For some experiments
we allow the agent to store more than one such vector-memory,
into separate memory neurons, corresponding to different
food locations.

Thus, the vector-memory synapses can be represented as a
16-values vectorWVM :

WVM = −

{

rCPU4noiseless , if signaled to store

baseline, otherwise
(14)

with baseline being a vector of 16 zero-state values (= 0.5, since
firing rate is encoded between 0 and 1).

2.2.7. Vector-Memory Recalibration
We also introduce a potential re-calibration of the vector-
memories, based on the state of Layer 4 when the agent reaches
the nest. In the absence of error (either noise or induced through
an experimental manipulation) this state should be zero, so any
remaining activation in the Layer 4 thus encodes a possible
“error vector” accumulated across the whole path (inbound
and/or outbound).

This “error vector” can be used to modulate the vector-
memory synapses. For this, another hypothetical process very
similar to the learning described above, is used: a “recalibrator”
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neuron, triggered when the agent arrives at the nest, modulates
the vector-memory synapses that were last active, similarly to the
reinforcer neuron used for learning, only differing in the sign of
the modulation. That way, the potential “error vector” remaining
in the CPU4 population causes the re-calibration of the last active
vector-memory (Figure 4A).

Thus, the vector-memoryWVM update:

WVMrec = WVM + rrec(b− rCPU4N ) (15)

where baseline b = 0.5, rCPU4N is the output of the integrator
when theNest is reached, rrec is the activation of the “recalibrator”
neuron, or in other words the efficiency of this re-calibration. For
instance, with an efficiency rrec = 1, the updated vector-memory
will be fully corrected for the error. For rrec = 0.5 the result will
be an average between the previously stored vector-memory and
a fully error-corrected one.

2.2.8. Layer 5 - Steering Output
This layer contains 16 neurons which receive input from the
compass (layer 3), and the home vector (layer 4) modulated by
the vector-memory neuron. These inputs can be switched on or
off depending on the agent’s state, e.g., whether it is attempting
to return home or to return to the location where a vector
was stored. The input from the compass layer 3 is inhibitory,
following the same pattern as the layer 3 to layer 4 connections.
The connections from layer 4 to layer 5 are offset, by one column
to the left for one set of 8 neurons CPU1L, and by one column
to the right for the other set of 8 neurons CPU1R. The vector-
memory synapses modulate the output from layer 4 to layer 5.

We identify the steering neurons with the CPU1 neurons in
the central body upper of the CX, which anatomically reveal
the offset pattern used in the model. Inside layer 5 are also
pontine neurons that receive the same pattern of input from
layer 4, and provide inhibitory output that balances and filters the
activity across both hemispheres (see Stone et al., 2017 for more
detail). For convenience we neglect the pontine neurons in the
equation below because they do not affect the circuit when using
symmetric speed input:

ICPU1 =











WTB1,CPU1rTB1, when exploring

WTB1,CPU1rTB1 +WCPU4,CPU1rCPU4, when homing

WTB1,CPU1rTB1 +WCPU4,CPU1rCPU4 +WVMrVM using vector-memory

(16)

where WCPU4,CPU1 is the connectivity matrix from CPU4 to
CPU1 cells, WVM is synapses weight vector of the vector-
memory and rVM is the activation of a specific vector-memory
neuron (basically rVM = 1 when using that vector-memory,
rVM = 0 otherwise).

The output of CPU1 cells project to the left and right lateral
accessory lobes, which are pre-motor centers. We thus use the
difference in CPU1L and CPU1R sets to provide a steering signal
for the agent:

θt = θt−1 + 0.5(

8
∑

i=1

rCPU1Li −

8
∑

i=1

rCPU1Ri ) (17)

Note first that in the “exploring” state, the left and right activity
will be identical and hence will not affect the steering. In the
“homing” state, the circuit effectively performs a comparison of
the population vectors representing current heading (compass)
(TB1) and the integrator CPU4, but the connectivity pattern
between the integrator and the steering cells means that the
desired heading signal is offset in both directions by one column.
Hence the left and right activity of the steering cells will represent
whether the left or right offset provides a better alignment, and
the difference between them can be used to steer, as described
in Equation (17). As the integrator keeps running, the steering
signal will disappear (or be dominated by noise) when the agent
nears home, producing a search pattern.

In the “using vector-memory” state, the output of the
integrator is balanced by inhibition from a vector-memory stored
at a feeder location (see above). If starting from the nest, with the
integrator containing a zero home vector, this negative influence
means the agent acts as though its own location (for the purpose
of steering) is exactly opposite to where the feeder is located,
and the steering circuit will drive it “home” from its actual
location (the nest) toward the food. Since the path integration
continues to run in parallel, accurately reflecting the agent’s
actual displacement, when the food location is reached the input
from the integrator to the steering layer will cancel out the
negative influence from the vector-memory and the agent will
start its search pattern, just as it would at the end of a regular
“homing” state.

2.3. Experimental Paradigms
2.3.1. Memory-Directed Movement
To observe the efficiency of the memory-directed movements,
the task is realized in two parts: First, the agent performed
random walks of different lengths, originating from the nest
(x = 0, y = 0), and stored for each of these the final integrator
state as a new vector-memory. Then, after being reset to the
nest (coordinates reset to x = 0, y = 0; integrator reset to
baseline = 0.5), a vector-memory was recalled and allowed to
drive the behavior. We used a feeder catchment area of 20-steps

radius: as soon as the agent entered the feeder catchment area, its
proximity sensors guided it to the feeder location. We typically
ran N = 1, 000 trials at 20 random-walk lengths, equally spaced
between 100 and 10,000 steps.

A basic measure used was the proportion of successful trials.
We considered a food-ward route successful if the agent reached
the feeder coordinates within a given time limit of 5,000 steps. It is
expected that the agent reaches the target in a straighter path and
then performs random search around the expected location. We
also evaluated the systematic search patterns produced, either by
an agent returning home after a random walk, or an agent using
a vector-memory from the nest location to return to the food (see
“Systematic search” section in Supplementary Material). In this
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FIGURE 1 | Basis of the concept of inhibition by Vector memory. (A) Example of the vector-memory and shortcut rationale: 0. The agent found a feeder (F2) on a

previous trip and stored the corresponding home vector (solid purple) as a vector-memory. (1a) The agent leaves the Nest, performs a random walk (solid gray), and

finds the feeder (F1). (1b) It stores the home vector (solid green) as a vector-memory. (1c) It uses the home vector to return to the Nest. (2a) The agent recalls the F1

vector-memory, “imagining” it is on the far side while actually at home (dashed green). (2b) It tries to “home” (dashed orange) which means it actually moves back to

F1 (solid orange). (3a) At F1, no food is found: it lifts the recall of the F1 vector-memory and recalls the F2 vector-memory instead (dashed purple). (3b) It thus tries to

“home” in a new direction (dashed red) which results in an actual movement from F1 to F2 (solid red). Lifting the F2 vector-memory recall allows it to home correctly

(solid purple). (B) Principal connections of all cell types included in the Central Complex model: Shown are all connections of one direction cell (TB1), irrespective of

columnar identity of individual cells (only two out of six connections to other TB1 cells are shown). The vector-memory neuron shows inhibitory synapses to the output

fibers of the integrator (CPU4) cells, each of these synapses’ weight being set according the corresponding CPU4 cell activity at the time of learning. (C) Example

snapshots of the population activity of the 16 integrator (CPU4) neurons, at two different positions, with or without vector-memory recall: Solid lines thus correspond

(Continued)
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FIGURE 1 | to the output of the integrator, dashed lines to the output of the integrator under the effect of a vector-memory neuron. At the Nest (solid blue), the

integrator is in the zero-state (flat line). At the feeder (solid orange), the integrator encodes the position in polar coordinates across the population: sinusoid amplitude

is the distance, phase is the angle. Under the inhibition by the vector-memory neuron, when the agent is at the Nest (dashed blue) the apparent coordinates encode

for the Nest-to-Feeder vector. At the feeder, still under the effect of the vector-memory neuron (dashed orange), the integrator output and the inhibition cancel out,

causing the apparent zero-state. (D) Example of the 16 synaptic weights of a vector-memory neuron, before and after learning: Before learning (leftmost vector), the

synapses all have a weight of (negative) 0.5. After learning, some synapses get depressed toward 0 (inactive), others get reinforced toward negative 1.0. Each of these

weights is changed according to the corresponding integrator (CPU4) cell activity at the time of learning.

case, there was no actual nest or feeder object (or associated
catchment area) and instead we allowed the search to continue
for 10,000 steps.

2.3.2. Memory Re-calibration
We tested the idea of a vector-memory recalibration in simulated
open-jaw experiments, by forcing an incongruity between the
outbound and the inbound routes similarly to the experiments
of Collett et al. (1999) with ants, and Otto (1959) with bees.

In this task, the agent had first to discover a single feeder
location by performing a random walk from its nest in an
enclosed area to generate the corresponding vector-memory.
Subsequently, we let the agent travel again from the nest to the
goal location using its vector-memory. Once this was successfully
achieved, we simulated a passive displacement by instantaneously
changing its coordinates to a novel release location. We then
forced the agent’s path back to the nest by using wall obstacles
disposed in a gutter-like arrangement (see Figure 4B). When the
agent reached the nest, its integrator would have recorded the
forced displacement but not the passive displacement and will
therefore not be at the zero-state. The error vector thus encoded
was used to make a correction in the vector-memory as described
in section 2.2.

The re-calibrated vector-memory was then used in the test
task, for N = 100 repetitions. We recorded the paths taken for
the averaged re-calibration (efficiency rrec = 0.5), as well as for
10 different values of efficiency. Note that since we only forced
an error during the inbound part, this re-calibration becomes
a direct way to change the relative weight of the outbound and
inbound routes.

2.3.3. Shortcutting
At any point in a vector-memory enabled walk, the agent is driven
by the combined effect of the recalled vector-memory and the
current home vector. The agent will try to “home” to the location
where these are balanced, even if it is forced to take a detour, or
has previously moved by itself to another location (e.g., using the
vector-memory of a different feeder). Effectively, this constitutes
the subtraction of two vectors: one directed from the agent’s
current location to the nest, and the second directed from the
target feeder location toward the nest, so that its behavior follows
the vector between their end-points. In other words, the agent
should take a direct shortcut to the second food source.

In our shortcutting experiment, the agent first had to discover
independently two feeders, by performing two independent
random walks (being reset at the nest in-between these walks),
storing the two corresponding vector-memories. Then, it used
one of these two memories to go back to the associated feeder
as described above in the section 2.3.1 experiment. If the first

goal is reached, the inhibition from this memory is lifted and
the second vector-memory is activated. We evaluated the success
rate in reaching the second goal, the path straightness during the
shortcut, and the angular error when leaving the first feeder.

As in the section 2.3.1 experiment, we generated a large set
of vector-memories, by launching sequentially 1,000 outbound
random walks, of length varying between 100 and 10, 000 steps,
binned in 20 equally spaced intervals (i.e., 50 independent
random walks per length). We then drew N = 1, 000 couples of
feeders from this bank so that the straight-line distance between
the two feeders ranged between 100 and 2, 000 steps, binned in 20
equally spaced intervals (i.e., 50 independent repetitions for each
of the 20 distances bins), while making sure that the Nest - Feeder
1 distance was as uniformly distributed as possible.

2.3.4. Multi-Location Routes
In our multi-location routes experiments, the agent had as a task
to take a multi-feeder route, based on a bank of previously stored
vector-memories, before going back to the nest.

The order of feeder visits is based on the fact that the distance
between the current location and a given memory location can
be obtained from the input to the steering cells after inhibition by
a specific vector memory (i.e., the subtraction of the 16 synapse
weight values from the 16 CPU4 values). The amplitude of the
sinusoidal signal across the 16 values directly correlates with
the distance between current and memory location. We used
an approximation that would be simple to obtain neurally: the
sum of the CPU4 activation values after the subtraction of a
given vector memory. Note that alternative approximations for
the relative distance could be used, such as the value of the cell
that is the most active among the 16 cells.

Given k vector-memories, if each is subtracted in turn from
the current integrator state rCPU4, then for each we can define a
global activity value Scorek (after clipping the resulting activity
between 0 and 1):

Scorek =

16
∑

i=1

(rCPU4ti
− rVMki

) (18)

The agent selects the vector-memory generating the smallest
Scorek and sets it as the current vector-memory to drive behavior.
However, the scoring process is carried out continuously, so at
any time it might change to another vector-memory if its score
happens to be lower than the current active one. If the agent
reaches a feeder at the vector-memory location, it marks that
vector as unavailable for recall for the remainder of the trip. Once
no vector-memories are available, it will automatically follow its
current PI to go home.
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We tested this task in three different feeders arrays: a
pentagonal array with 5 feeders where nearest neighbor and the
optimal routes are equivalent (Lihoreau et al., 2012b), an array
with 6 feeders where the nearest neighbor and the optimal route
differ (Lihoreau et al., 2012a) in which real bees were found
to select the optimal route, and another array with 10 feeders
(Ohashi et al., 2006) but in which real bees were not found to
select the optimal route.

To see what sequence of feeder visits would emerge for an
agent highly familiar with these arrays, we first allowed the agent
to discover and store a vector for each feeder in multiple random
walks, repeated for an arbitrary high number of discoveries (at
least 100 discoveries per feeder). We then averaged the 100
discoveries to obtain a highly accurate vector-memory for each
feeder. Then in the tests, an outward trip corresponds to an
agent leaving the nest, exploring or following its memories, and
going back to the nest either once all feeders have been found
or once a time limit is reached. One trial consists of 50 of these
outward trips.

To evaluate performance, we looked at the geometry of the
routes the agent realized over 500 repeated trials. The success rate
was determined by the number of trials where the agent found all
feeders and returned to the nest. Considering only the successful
trials, we looked at the sequence of feeder visits, on full routes
(occurrence of each possible route connecting all the feeders), as
well as at individual feeder-to-feeder moves.

To this end, we only logged the actual visit orders and not the
vector-memory recall processes. That is to say, if an agent located
on feeder A recalled say, vector-memory of feeder B, but actually
missed feeder B and found feeder C instead, we counted this as
a path from A to C. Revisits to a same feeder were excluded (as
per the bee data, e.g., Lihoreau et al., 2012a,b) by making feeders
“disappear” from the agent’s detection once they had been visited.

2.3.5. Routes Ontogeny
In order to demonstrate that a route could emerge without
necessarily needing the accurate memories used in the previous
section, we performed the following experiment on the
pentagonal array (Lihoreau et al., 2012b) with a naive agent
(without prior knowledge of feeders locations), that gradually
learned new food locations through random discovery, while also
visiting any locations already learnt:

We here used feeders containing a food amount, and an agent
that was assumed to have a crop equal to the sum of all feeders’
food (i.e., the agent could only be fully fed after having visited
all the feeders). The agent leaves the nest in a naive state, as
it does not possess any vector-memory of the feeders in the
test environment. The rule is to use vector-memories if any
are available, by recalling them using the previously described
process, and if no vector-memory is available, perform a random
walk until a feeder is found. We also fix a time limit of 10,000
steps, to prevent any saturation that may occur with longer
random walks. When a feeder containing food is discovered
through random walk, a new vector-memory is created; if a
vector-memory is currently active when a feeder is found, this
memory is updated (replaced) by the current integrator state.
In both cases this updated/newly created vector-memory is not

made available to recall until after returning to the nest. As with
the traplining experiment, the agent returns to the nest only
once all feeders have been visited or when the time limit has
been reached.

We observed the change in the duration of the outward
trips, the change in total distance walked, and the evolution of
the visit sequences. Additionally, we looked at the amount of
outward trips needed to visit all the feeders, and to visit all the
feeders using the optimal route. Note that once all feeders have
been visited, the subsequent trips will be equivalent to those in
the section 2.3.4, although memories should gradually become
more accurate.

3. RESULTS

3.1. Memory-Directed Movement
We looked here whether the agent could return from the nest to
a location it had reached at the end of a random walk. The agent
stored a vector memory at this location, which can be dubbed
“feeder location.” We tested 20 random walk distances spanning
between 100 and 10, 000 steps, with 50 trials per walking
distance. To make sure the neurons are not saturating (see
Supplementary Material section “Saturation” and Figure S3),
we only used the randomwalks that ended in a radius of 700 steps
from the nest for analysis.

We investigated first the homing performance, by looking
whether the agent could home (i.e., reach the nest) from the
feeder location. Given an upper limit of 5, 000 steps, the success
for the homing task was of 100% (0 out 827 trials failed). We
then investigated the ability of the agent to return to the feeder
location from the nest, using its vector memory. Given an upper
limit of 5, 000 steps, the rate of success in returning to the
feeder location was 93.71% (52 out of 827 trials failed). The
paths were rather straight (Figures 2, 3), with a straightness index
(i.e., beeline/walking distance) of 0.90 for homing and 0.85 for
returning to the feeder (which is significantly different for n =

790: paired t-test t = 5.322, p < 0.001). For an analysis of
the precision and accuracy of our model in finding the goal, see
Supplementary Material: Path analysis.

3.2. Memory Re-calibration
We aimed here at capturing the ability of insects to recalibrate
the outbound vector-memory based on their last inbound run,
which we tested by displacing an insect and forcing a homing
route that produces a large outbound-inbound discrepancy,
as experimentally achieved in ants (Collett et al., 1999). Over
100 subsequent outward trips, the re-calibrated outward paths
resemble closely those of real ants. That is, the agent aims at a
location that lies in between the two experimental ones: roughly
averaging the distance and direction of the previous outbound
and inbound paths (Figure 4C).

Other studies showed that ants may weight the previous
outbound trip more than the inbound trip (Wehner et al., 2002),
or even do not recalibrate at all (Wehner and Flatt, 1972). Since
the error we introduce is only during the inbound trip, we were
able to reproduce these differential weightings of the outbound
and inbound trips by varying how much the synaptic weights of
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FIGURE 2 | Memory-directed movement. (A) Simplified representation of the

CX model with the vector-memory neuron. Layers before (Compass, green;

Speed, purple) and after (Steering, blue) the integrator are represented as

single nodes for simplicity. Only four integrator neurons (brown) are

represented, with their output fibers. The vector-memory neuron (gray)

synapses on each of these output fibers with inhibitory connections. These

synapses’ weights are set during learning according to the activity in the

corresponding integrator output fiber, for example by a classic reinforcement

process (Reinforcer neuron, red). (B) Examples of memory-directed

movements: Large panel, distant Feeder (light green outer circle, Feeder

catchment area; green inner circle, Feeder); Inset, Feeder close to the Nest

(light red outer circle, Feeder catchment area; red inner circle, Feeder). In both

examples, n = 100 individual paths (semi-transparent traces), with 1 more

clearly marked. All paths are cut at 5,000 steps if the Feeder is not found.

the vector-memory neuron are modulated by the PI state during
re-calibration: from paths aiming at the feeder for weak synaptic
change to path aiming at the release location for strong synaptic
change overriding the previous memory (Figure 4D).

3.3. Shortcutting
We tested whether vector-memories could be used to realize
novel shortcuts between two known locations. Here the agent has
stored two goals as vector-memories, discovered independently.
To test for shortcutting, the agent at the nest recalled the
memory of a first feeder and, once arrived at this goal, recalled
the memory of the second feeder. We observed whether the

FIGURE 3 | Path straightness. Violin Plots of the paths straightness.

Straightness is given as the (bee-line) distance divided by the distance walked.

Green, homing; orange, memory-directed foodward path. Thick gray bar,

interquartile range; thin gray bar, 95% confidence interval; white dot, median.

Inset indicates differences in path straightness (homing - foodward) for paired

data (same random walk).

agent was able to strike a direct path between the two feeders
(Figure 5). Here again, to prevent saturation of the neurons (see
Supplementary Material section “Saturation” and Figure S3) we
only considered trials where both feeders were within the radius
of 700 steps of the nest. Also, we considered only the agents that
successfully reached the first feeder (193 out of 212 individuals).

Given a upper limit of 5, 000 steps, the rate of success in
reaching the second feeder from the first feeder was around 89.6%
(20 out of 193 individuals failed to reach Feeder 2 from Feeder
1). We carried an analysis of the directional and positional error
of the shortcuts displayed by systematically varying the spatial
relationship between the nest and the feeders (see “Shortcutting:
Error analysis,” in Supplementary Material).

3.4. Multi-Location Routes
We tested whether a route could emerge assuming the agent had
memorized multiple feeder locations. In this section, the agent
already possesses a vector-memory for each feeder location, and
the memories do not change over trials. We use a simple heuristic
to decide which vector-memory to recall: the agent recalls the
memory that yields the weakest overall output activation after
subtraction to the current PI state. We tested three different
feeder arrays from the bee literature. For each array, we launched
500 independent trials and observed the sequences of feeders
visited within a time limit of T = 10, 000 steps (+Th = 2, 500
steps for homing).

3.4.1. Positive Array (5 Feeders)
We found that 94.20% (r = 471) of all trials were successful in the
sense that all 5 feeders had been visited and the agent went back
to the nest before the time limit (Figure 6B). There are !5 = 120
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FIGURE 4 | Memory re-calibration. (A) Same representation as in Figure 2, with the difference that synapses weights are now modulated by another neuron termed

“recalibrator,” typically triggered when the agent arrives at the Nest. The weights are modulated in the opposite sign as with the “Reinforcer” neuron of Figure 2.

(B–D) Example of the re-calibration effect. (B) Visualization of the training setup. The task is for the agent to leave the Nest (N, Gray circle) and find the Feeder (F,

Green circle) by performing a random walk (gray trace). Once the vector-memory of the Feeder is acquired, the agent is reset to the Nest and goes out again on a

memory-driven food-ward walk (Orange trace). Then, it is displaced (without any “sensory input”) to the Release site (R, Purple circle) and return to the Nest in a

home-ward path (Red trace) forced by a gutter (dotted red lines). Feeder, Nest and Release site coordinates were chosen to reproduce the experimental setup in

Collett et al. (1999), at scale. Thick gray lines are enclosing walls to enclose the agent for the random walk part. (C) Unconstrained food-ward routes. n = 100

individual examples (semi-transparent traces with one example more clearly marked), guided by the re-calibrated vector memory issued from (A) with an activity of the

“recalibrator” neuron of 0.5; an averaged vector appears, replicating the food-ward paths observed by Collett et al. (1999) in ants. (D) Same re-calibration process,

but with variable activity levels for the “recalibrator” ranging from 0.0 to 1.0 (increments by 0.05). All paths are cut at 1,000 steps.

possible routes to visit the 5 feeders in this array. We found that,
respectively, 77.71% (r = 366) and 15.07% (r = 71) of the trials
used the two optimal routes (anti-clockwise and clockwise ; 5, 4,
3, 2, 1 and 1, 2, 3, 4, 5, respectively) ; both cases totalling 92.78%
(r = 437) of trials. The sub-optimal nearest-neighbor routes (1,
5, 4, 3, 2 and 5, 1, 2, 3, 4) were used only in 1.49% (r = 7) and
0.64% (r = 3), respectively. Two other routes were used in less
than 2% of trials, and 6 other routes were used in less than 1%
of trials. The other 108 possible routes to join the 5 feeders were
never used (see Supplementary Table 2 for details).

The overall distribution of direct segments effected between
pairs of feeders resembles closely that observed in real
bees tested in a similar feeder configuration (Figure 6B,
Supplementary Table 1).

3.4.2. Negative Array (6 Feeders)
In this second array, 94.00% (r = 470) of all trials were successful.
There are !6 = 720 possible routes to visit the 6 feeders of this
array (Figure 6C). Here, only 2.77% (r = 13) of the trials used
the optimal route (1, 2, 3, 4, 5, 6). However, we found that 47.23%
(r = 222) of the trials used the second to optimal route (1, 2, 4,
3, 5, 6). This route can be described as “suboptimal” in the sense
where it is not the shortest, but it is still better than the nearest-
neighbor route (1, 2, 4, 5, 6, 3), which has been used in 41.28%
(r = 194) of the trials. 2 other routes (2, 1, 4, 5, 6, 3 and 2, 1,
4, 3, 5, 6) were used in, respectively, 3.62% (r = 17) and 3.40%
(r = 16) of trials, and 4 other routes were used in less than 1%
of trials. The other 711 possible routes to visit all 6 feeders were
never used (see Supplementary Table 1 for details).
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FIGURE 5 | Shortcutting. (A) Same representation as in Figure 2, with the

difference that two distinct vector-memory neurons are available (but only one

recalled at a time). (B) Example of shortcutting: An agent walked from the Nest

N to a Feeder F1 (light blue outer circle, F1 catchment area ; blue inner circle,

F1), under the control of the first vector-memory. Once F1 was reached, the

agent recall the second vector-memory and is guided toward the Feeder F2

(light red outer circle, F2 catchment area; red inner circle, F2) by performing a

shortcut (vector addition). In both segments, n = 100 individual paths

(semi-transparent traces, with 1 more clearly marked). All paths are cut at

5,000 steps if the Feeders are not found.

The overall distribution of direct segments effected between
pairs of feeders differs from that observed in bees in this similar
feeder configuration. This difference arose mostly because the
agents did not perform a direct segment between flowers 2 and
3 as often as the bees did (Figure 6C), which we discuss later.

3.4.3. Negative Array (10 Feeders)
In this third array, 95.40% (r = 477) of all trials were successful.
There are !10 = 3, 628, 800 possible routes to visit the 10 feeders
of this array (Figure 6D). The agent explored a much larger
number of different routes (371) than in the previous arrays
(12 and 9). No preferred route emerged here, the most used
route was displayed in only 2.31% of trials. The four most used
routes are not optimal in length nor do they correspond to the
nearest-neighbor ones (see Supplementary Table 3 for details),
even though they are closer to the latter. The three next preferred
route correspond to optimal routes (clockwise and anti-clockwise
rotations, either passing through feeder 1 first, or last), and these

were used in a total of only 1.05% (r = 5) of trials. 364 other
routes have been used in less than 1% of trials each. The other
3,628,429 possible routes have never been used.

This third array appears to be strongly dependent
on stochasticity. This is probably due to a combination
of two factors: the short distance between feeders
yielding stronger directional inaccuracies (Figure 6C, and
Supplementary Table 3); and the similar distance between
different feeders options increases the stochasticity of the recall.

3.5. Routes Ontogeny
We used the positive pentagonal array to test whether such
efficient multi-location routes could emerge using a naive agent
that needs first to discover the different feeders through random
walks (Figure 7A). Each time the agent discover a feeder, it stores
a new vector-memory that will be available for the next trips.
The agent was recorded over 50 successive trips. In each trip,
the agent would “home” either after a limit of 10,000 steps or
if it has visited all the flower locations (i.e., assuming is crop
capacity is filled). Over 20 repetitions of such 50 trips’ ontogeny,
the variation and dynamics resembled that of bees in a similar
task. The median amount of number trips needed to find all
feeders was 12 (min = 3, max = 20), and the median number
of trips needed to realize an optimal route was 13 (min = 5,
max = 21). Interestingly, the optimal route did not necessarily
emerge as soon as the 5 feeders were discovered, but was achieved
within 0 to 2 trips after. This is because some memories can be at
first very noisy due to the long random walks that led to their
discovery. Across trials, the memories becomes more precise as
the agent reaches the feeders more straightforwardly, and the
optimal route eventually emerges (Figure 7A).

The overall travel distance decreases steadily until reaching a
plateau between 20 and 25 trips, close to the shortest straight-
line distance. Mean traveling speed increases in a similar
dynamic, as fewer turns and straighter segments implies faster
movements (Figure 7B).

4. DISCUSSION

Insects such as ants and bees are known to use Path Integration
(PI) to return in a straight line to their nest (Müller and Wehner,
1988; Collett and Collett, 2000b; Wehner and Srinivasan, 2003),
but also store vector-memories to return to a previously
experienced location where they have found food (Wehner
et al., 1983; Collett et al., 1999; Wolf and Wehner, 2000). These
vector-memories can potentially support additional behaviors
such as direct shortcuts between food locations, as shown in
previous theoretical models (Cruse and Wehner, 2011). Here we
demonstrate that a variety of vector-based navigation behaviors
can be obtained from simple extensions to a PI model which
follows the anatomical connectivity of the central complex (CX)
(Stone et al., 2017).

4.1. Vector-Memories and Novel Shortcuts
The key to the functioning of the model is that, during homing,
the steering layer of the CX network continuously compares the
distributed encoding of the current heading to a left or right
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FIGURE 6 | Multi-location routes. (A) Same representation as in Figure 2, with the difference that several distinct vector-memory neurons are available, and recalled

(only one at a time) based on the selection process described in section 2.3.4. (B–D) Example of routes between multiple feeders across repeated outward trips: an

agent having the vector-memories of all the feeders in a given array is left “foraging” thanks to a simple vector-memory selection heuristic. (B) Positive array (5

feeders). (C) Negative array (6 feeders). (D) Negative array (10 feeders). Left: Occurrences of direct segments between pairs of feeders represented as arrows (width is

proportional to the occurrence of the corresponding segment). Green circles, feeders catchment areas; Green crosses, feeders centers; Gray circle, Nest catchment

area. Top-right: Most-used route for the corresponding array. Bottom-right: Example traces for a single trip.

rotation of the distributed encoding of the PI state (the desired
heading). This produces an appropriate left or right turn signal
to reduce the difference, resulting in a relatively straight path
home, at which point the PI state is balanced. In the extended
model presented here, the effect of the PI state on steering can be
modulated by inhibition from a vector-memory (Figure 1B). The
balance point will now be the location where the vector-memory
was stored (Figure 1C), so the same steering circuit produces a
direct path to food (Figure 2), as observed in insects (Wehner
et al., 1983; Schmid-Hempel and Schmid-Hempel, 1984; Collett
et al., 1999; Wolf and Wehner, 2000). Removing the inhibitory
effects of memory, once the target location is reached, allows
steering by the PI state back home again. Alternatively, switching
to inhibition by a different vector-memory produces a direct
shortcut from the current location to the next goal (Figure 5),
as observed in bees (Menzel et al., 2005). As for homing, this
steering is robust to any imposed deviation from the intended
route (Wehner and Srinivasan, 2003). The way vector-memories
are compared to the PI state, and can be selected sequentially to
produce shortcuts, is functionally equivalent to former models
based on Cartesian vectors (Cruse and Wehner, 2011; Hoinville
et al., 2012; Hoinville and Wehner, 2018) but in the present

paper it is done with a neurally more plausible ring-neuron
representation of vectors.

4.2. Dealing With Inaccuracies
Any PI mechanism necessarily accumulates errors (Cheng et al.,
1999; Wehner and Srinivasan, 2003), raising the issue of how
insects might deal with such errors. If they do not find the goal,
whether home or a food source, insect display a systematic search
for it (Fourcassié and Traniello, 1994; Merkle and Wehner, 2009;
Schultheiss and Cheng, 2012; Wolf et al., 2012). Similarly, the
proposed CX model spontaneously results in a search around
the expected goal location (Figure 2), as in the original model
for homing (Stone et al., 2017) and as well as in another model
(Hoinville and Wehner, 2018), suggesting that systematic search
may not require an additional “search module,” as often assumed
(Wehner, 2009; Cruse and Wehner, 2011; Wystrach et al., 2013).

The question of PI errors also raises the question of
whether and how insects might recalibrate their memories.
We introduced two mechanisms by which a vector memory
might become more accurate. The first follows from the analysis
above—there will be less error in the PI state if the animal
reaches a food location on a more direct path from the nest, so
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FIGURE 7 | Route ontogeny in the Positive (5 feeders) array. (A) Example traces of one agent’s outward foraging bouts over time (bouts 1->30), given the upper limit

of 10,000 steps. Green circles, feeders catchment areas ; Gray circle, Nest catchment area. First panel: Bout 1, two feeders discovered through random walk.

Second panel: Bout 4, three feeders found by memory, and one discovered through random walk. Third panel: Bout 7, first trip where all 5 vector-memories are

available immediately after leaving the nest. The route is suboptimal because the last generated vector-memory is still very noisy (feeder discovered after a long

random walk). Fourth panel: Bouts 8 to 30, the trace mostly follows the optimal route, which emerges as the memories gets more precise. (B) Dynamics of the task

(mean values over 20 repetitions) across 50 foraging bouts: distance, speed and number of feeders discovered. Corresponding insets are examples for one repetition.

increasing precision can be obtained by updating the “active”
vector-memory, when the goal is reached, with the current PI
value, as we observe in route ontogeny (Figure 7A).

There is some evidence in insects of a second mechanism.
Manipulating the return path from a food source to the nest
can affect the vector-memory (Otto, 1959; Collett et al., 1999;
Bolek et al., 2012). We showed how this could be effected
in our CX model by allowing the vector memory stored at
a goal location (the set of weights) to be adjusted, when the
agent has reached home, proportionally to the remaining PI
signal, which denotes accumulated errors. This recalibration
simply requires the same assumed synaptic connectivity than for
learning a vector-memory at the first place (Figure 4A). It only
implies a second instant in which synaptic weights are altered,
rather than an independent PI system for outbound vs. inbound
routes. Note that this adjustment could be done simultaneously
for all memories either formed or activated on the most
recent journey.

In insects, the influence of the homeward path on the
next outbound paths varies across experiments (Wehner et al.,
2002; Menzel and Greggers, 2015), or sometimes seems

non-existent (Wehner and Flatt, 1972). In our model, such
variation can be achieved by changing the strength of the
synaptic modulation applied during recalibration (Figure 4).
This effectively results in using different proportions of the PI
error when making this adjustment (Figure 4D). It remains
unclear whether these differences result from differences in
species, motivational state, environmental circumstances or
individual experience.

Of the “memory neuron” accordingly to the remaining
activity of the neurons onto which they synapse. That is,
similarly to the way we suggest vector-memory are learnt in
the first place, excepted that the synaptic modulation is in
the opposite direction, and should happen once the agent has
reached home.

4.3. Multi-Feeder Routes
We further extended the shortcut process to explain the
development and maintenance of efficient routes between
multiple feeders as exhibited by bees (Ohashi et al., 2006;
Lihoreau et al., 2012b; Buatois and Lihoreau, 2016). This required
two assumptions: 1-the agent needs to select one vector-memory
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at a time, and 2-amemory becomes unavailable once that location
has been visited. We implemented a simple continuous memory
selection mechanism, as has been previously proposed (Hoinville
et al., 2012). To do so, we used the fact that, in the CX circuit,
the inhibition of a target vector-memory onto the PI results in
activation levels which amplitude is proportional to the distance
to be traveled (Figure 1C). At each time step, the current vector-
memory recalled can thus be the one that results in the smallest
amplitude. Several proxies could be used to approximate this
amplitude, but how this is implemented neurally remain to be
seen. This produced multi-location routes in our agent that are
surprisingly similar to that of bees (Figure 6), including the
discovery of optimal (shortest possible) routes for some feeder
arrays (Lihoreau et al., 2012b), and less optimal routes for other
layouts (Ohashi et al., 2006; Woodgate et al., 2017). Alternative
hypotheses for memory-selection could exist, but a continuously
running winner-take-all mechanism seems parsimonious and
readily testable: for example, by enforcing a detour toward a
feeder B to a bee on its way to a feeder A and looking for an
eventual motivational switch from A to B.

Different ways of storing and selecting vector memories might
result in slightly different multi-feeder route outcomes, but the
key point is that bees would not need to store, nor compare
any additional information (such as path length) about previous
journeys to be able to improve their performance over time.
Importantly, in this model such multi-feeder routes do emerge,
no matter the memory selection mechanism, and without the
need to make a comparison of the total traveled distances across
successive paths, which was assumed in previous theoretical
models (Lihoreau et al., 2012b; Reynolds et al., 2013).

Note that in one of the arrays, the preferred route adopted by
our model was not the preferred route of the real bees, but their
second preferred one (Figure 6C). However, insects do not rely
only on vector based strategies, and additional mechanisms, such
as the use of terrestrial cues, are likely to modulate the way they
follow routes. Spontaneous bias may also influence the shape of a
route. For instance, bumblebees have a natural tendency to depart
from a flower in the same direction as they arrived (Pyke and
Cartar, 1992), which we did not implement here.

Finally, our model could also produce a realistic ontogeny
of such multi-feeder routes (note however that we tried here
only the regular pentagonal array), given the simple assumption
that an agent with no vector-memory available to recall triggers
a random walk (Figure 7A). In this case vector-memories are
gradually added as the agent discovers new flowers. As a
consequence, paths become straighter and the revisits order
becomes more efficient across successive trips (Figure 7A).
Interestingly, the ontogeny dynamics of our agents in the
pentagon array (Figure 7B) resembles that of real bees (see
Supplementary Material for more details).

4.4. Insights Into Behavior?
Our study thus shows that for direct return to a goal,
search around the goal location, shortcuts between goals
and efficient route discovery between multiple goals, vector
manipulation is a highly parsimonious explanation for observed
insect behavior because it appears strongly consistent with

the known architecture, and likely computational function, of
the CX.

Can our proposed CX implementation however provide
predictions about systematic errors in insects, over and above that
which has already been provided by canonical PImodels (Cheung
and Vickerstaff, 2010; Vickerstaff and Cheung, 2010; Cheung,
2014; Hoinville and Wehner, 2018)? We note that the effective
PI calculation carried out by our CX circuit model is equivalent
to an allocentric Cartesian encoding, and as such, theoretical
results concerning the effects of sensory or internal noise on
accuracy and precision in return to home or a vector goal
derived from mathematical models of this form (Cheung and
Vickerstaff, 2010; Cheung, 2014; Hoinville and Wehner, 2018)
should apply. This is broadly true for our simulation (see detailed
analysis in Supplementary Material). For example, we find that
directional precision (perhaps counterintuitively) increases with
nest-feeder distance, for both inbound and outbound paths, and
does not depend on the length of the random walk made before
discovery of the feeder, which is consistent with both canonical
PI models (Hoinville and Wehner, 2018) and results in ants
(Wystrach et al., 2015).

However, we note that observed error effects may be
dependent on particular, and somewhat arbitrary, choices in
our neural and/or behavioral modeling. For instance, we believe
the non-linear activation function of neurons used in the
model may explain some of the errors observed, such as an
underestimation of distance (see Supplementary Material). It
is also possible that some of our results are a consequence
of (equally arbitrary) parameters in our random walk model
(Cheung, 2014). Examination of the consequences of varying
these choices would be interesting but is beyond the scope of this
paper, which aims to provide a proof-of-principle, rather than
provide strong quantitative predictions about animal behavior.
However, one general outcome that should hold is that errors
for foodward routes should always be higher on average than
for homeward routes, as observed here (Figure 3), because the
control depends on both the current noise in PI and the noise
in the vector-memory, from the PI state when it was stored. As
the focus of this paper was to show an “in principle” mechanism
for vector memory in the insect brain, we leave more detailed
examination of how parameter choices in the CX model might
affect errors to future work.

4.5. Insights Into Neural Circuits
It is of interest to consider whether the neurobiological
assumptions made in our model could be verified:

• Wemodeled vector-memory as simple storage of a copy of the
16 discrete values in the CPU4 layer that represent the home
vector at that point in time. We suggest that a vector-memory
could be encoded by a single “vector-memory neuron” that
sends inhibitory connections to the output of all the integrator
neurons (Figure 2A). We therefore suggest the existence of
such inhibitory neuron projecting to all wedges of the CPU4
outputs or analogous CX layers that would also encode current
PI state. Note that similar global inhibitor neurons have been
evidenced in drosophila (Kim et al., 2017).
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• Learning a vector-memory would therefore consist in setting
the weights of such inhibitory connections. Each output
synapse of the vector-memory neuron should be weighted
according to the neural activity of CPU4 neuron onto which
it synapses, when at the feeder. Such synaptic modulation
could be achieved by a reinforcer neuron triggered by the
food intake at the feeder (Figure 4A). Likely candidates are
dopaminergic (Kong et al., 2010) or octopaminargic (Wolff
and Rubin, 2018) neurons that are known to project into the
central complex.

• Re-calibration would consist in modulating the output
synapses of a learnt vector-memory neuron. As for learning,
synaptic weight should be modulated according to the activity
of the CPU4, but in the opposite direction and when the
agent is at home. Such bi-directional synaptic modulation for
learning and recalibration could be achieved either by a same
or different reinforcer neuron (Aso and Rubin, 2016).

• The establishment of a new vector-memory, as well as vector
re-calibration, implies long term synaptic change between the
hypothesized memory neurons and the CPU4 neurons. Thus,
inhibiting long term memory formation in these neurons
(e.g., Chen et al., 2012) should prevent the establishment (or
re-calibration) of these vector-memories.

• Recall of a vector-memory would simply require the
activation of this vector-memory inhibitory neuron, and drive
the agent from any location to where the memory has
been stored.

• Blocking the activity of such inhibitory neuron should prevent
the use of a vector-memory, while driving it should lead the
insect to go toward the position in space where the memory
has been formed.

• The distributed encoding of vectors in our model provides
a simple way to estimate the length of the home vector: by
taking the difference in amplitude between the highest and
lowest neural activities in the CPU4 integrator layer. Doing so
on the resulting vector created by the added inhibitory input
of a vector-memory would therefore give a rough estimate of
the distance to be covered from the current location to that
memory location.

We note that none of these predictions would be trivial to test.
However, observing ormanipulating the activation of such neural
populations in the CX can already be achieved in Drosophila
melanogaster (Seelig and Jayaraman, 2015; Kim et al., 2017), and
local path integration has also been observed in this animal (Kim
and Dickinson, 2017). We further hope that modern genetic
tools will soon make this endeavor possible in insects such as
bees or ants.

5. CONCLUSION

The PI model presented in Stone et al. (2017) was mostly based
on identified neurons in the CX, whereas the extensions we have
proposed here are speculative. Nevertheless, we have provided
a proof of concept that direct return to a salient place, search
at this locations, vector recalibration, novel shortcuts and even
traplining can emerge given minimal additions to the known CX
connectivity. A direction for future work would be to consider
how such PI navigation system could be integrated with the use of
learnt terrestrial cues, which we know affects how bees and ants
behave when homing or returning to a known feeding location
(Kohler and Wehner, 2005; Wystrach et al., 2011; Mangan and
Webb, 2012; Collett et al., 2013), search at the goal (Schultheiss
et al., 2013; Wystrach et al., 2013), take shortcuts from novel
locations (Menzel et al., 2005; Collett et al., 2007; Wystrach et al.,
2012; Narendra et al., 2013; Cheeseman et al., 2014; Cheung et al.,
2014), or form traplines betweenmultiple locations (Ohashi et al.,
2006; Lihoreau et al., 2012b). The circuitry of the CX is well suited
for such an integration of multiple directional cues (Webb and
Wystrach, 2016; Collett and Collett, 2018; Hoinville andWehner,
2018), and as we show here, for a remarkably rich vector-based
navigational repertoire.
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