
HAL Id: hal-02105083
https://hal.science/hal-02105083v1

Submitted on 20 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Barvinok’s naive algorithm in Distance Geometry
Leo Liberti, Ky Vu

To cite this version:
Leo Liberti, Ky Vu. Barvinok’s naive algorithm in Distance Geometry. Operations Research Letters,
2018, 46 (5), pp.476-481. �10.1016/j.orl.2018.06.006�. �hal-02105083�

https://hal.science/hal-02105083v1
https://hal.archives-ouvertes.fr

Barvinok’s naive algorithm in Distance GeometryI

Leo Liberti

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

Ky Vu

Chinese University of Hong Kong, P.R. China

Abstract

In 1997, A. Barvinok gave a probabilistic algorithm to derive a near-feasible solution of a quadratically (equation) constrained
problem from its semidefinite relaxation. We generalize this algorithm to handle matrix variables instead of vectors, and to two-
sided inequalities instead of equations. We derive a heuristic for the distance geometry problem, and showcase its computational
performance on a set of instances related to protein conformation.

Keywords: distance geometry, concentration of measure, protein structure

1. Introduction

We consider the following

Distance Geometry Problem (DGP). Given an integer K >

0 and a simple graph G = (V, E, d) where d : E → R+,
decide whether there is a realization x : V → RK such that

∀{i, j} ∈ E ‖xi − x j‖
2
2 = d2

i j. (1)

Let n = |V | and m = |E|. The DGP is well known in the lit-
erature [1, 2], as it serves as a model for several applications
(e.g. to sensor networks [3], molecular conformation [4, 5] and
more [6]). A natural extension of the DGP is the interval ver-
sion (denoted by iDGP), where d : E → IR+ associates inter-
vals (instead of scalars) to edges. This variant is the one often
used in applications, since intervals naturally model data uncer-
tainty and noise [7].

We adapt the naive algorithm proposed by A. Barvinok in [8,
§5] to the DGP setting. Barvinok’s main insight is that the solu-
tions of a Semidefinite Programming (SDP) relaxation are “not
too far” from the feasible set of the Quadratically Constrained
Problem (QCP) which gives rise to the SDP relaxation: it suf-
fices to factor the SDP solution and multiply it by a random
vector having components sampled from a normal distribution.
The very natural idea we propose is to use the naive algorithm
first, then use this approximate solution as a starting point for
a local Nonlinear Programming (NLP) solver deployed on the

IWe are grateful to A. Barvinok for helpful suggestions and discussions, as
well as to an anonymous referee for helping us improve the paper. The first
author (LL) has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement n. 764759 (ITN “MINOA”).

Email addresses: liberti@lix.polytechnique.fr (Leo Liberti),
vukhacky@gmail.com (Ky Vu)

original QCP, hoping it will converge to a realization satisfying
the feasibility of Eq. (1).

Barvinok’s naive algorithm is a randomized algorithm based
on the concentration of measure phenomenon. It applies to SDP
relaxations of systems of quadratic equations, i.e. pure feasi-
bility, equation-only QCPs having vector solutions, or, equiva-
lently, n×1 matrix solutions. This algorithm cannot be natively
applied to the DGP, since a realization x is naturally represented
by an n×K matrix x = (xik | i ≤ n, k ≤ K) the i-th row of which
is the position vector of vertex i ∈ V in RK . This matrix may
in general have rank greater than one. In [8], Barvinok gives a
proof sketch which only applies to n×1 matrices. Of course, an
n × K matrix can also be represented as an n′ × 1 matrix where
n′ = nK, but this would entail a QCP (and hence also an SDP
relaxation) with nK × nK data matrices, which is practically
prohibitive to solve. Moreover, the naive algorithm cannot be
applied to the iDGP since it is constrained by quadratic inequal-
ities rather than equations.

We make two contributions in this paper, one theoretical and
the other computational. (i) We propose a generalization of
Barvinok’s result [8] in two directions: the n × K case, and
the case of QCP inequalities of the form dL ≤ x>Qx ≤ dU

(where x is n × K). (ii) We establish the practical usefulness
of Barvinok’s result on a set of medium and large-scale DGP
instances extracted from the Protein Data Bank (PDB) [9]. We
also remark that our proof is detailed, and fills many gaps in
Barvinok’s “proof sketch” found in [8]. The rest of this paper
is organized as follows. In Sect. 2 we present Barvinok’s naive
algorithm. In Sect. 3 we state and prove our generalization of
Barvinok’s concentration of measure result. In Sect. 5 we dis-
cuss our computational results.

Preprint submitted to Operations Research Letters July 6, 2018

2. The naive algorithm

Consider a system of quadratic equations:

∀i ≤ m x>Qix = ai. (2)

Barvinok’s naive algorithm works as follows:

1. solve the SDP relaxation [∀i ≤ mtrace(QiX) = ai ∧ X � 0]
of Eq. (2), get a solution X∗;

2. factor X∗ = TT>;
3. sample each component of a vector y ∈ Rn from the stan-

dard Gaussian distribution N(0, 1);
4. let x′ = Ty.

A concentration of measure argument shows that, with proba-
bility at least 0.9,

∀i ≤ m dist(x′, Ai) ≤ c
√
‖X∗‖2 ln(n),

where Ai = {x ∈ Rn | Qix = ai}, dist(·, ·) is the Euclidean
distance from a point to a set, ‖X∗‖2 is the largest eigenvalue of
X∗, and c is a constant which only depends (linearly) on logn m.

As mentioned in the introduction, applying this algorithm to
the DGP requires the representation of n × K realization matri-
ces using vectors in RnK , which, in turn, requires each Qi to be
nK×nK, thereby increasing the size of matrices involved in the
DGP solution. This provides our first motivation for extending
the naive algorithm to work with realizations x represented nat-
urally as n× K matrices. The second motivation is given by the
desire of solving the iDGP rather than the (exact) DGP. iDGP
solutions are realizations satisfying L2

i j ≤ ‖xi − x j‖
2
2 ≤ U2

i j for
each edge {i, j} ∈ E, where [Li j,Ui j] is an interval weight on
{i, j}.

3. Extension of the naive algorithm to the n × K case

Our proposed generalization of the naive algorithm, so that it
can find n × K realization matrices, is very simple: we replace
Step 3 with:

3. sample each component of an n × K matrix y from
the standard Gaussian

distribution N(0, 1/K) (where 1
K is the variance).

We shall see that this has the desired effect. We call the algo-
rithm obtained by this replacement extended naive algorithm.

3.1. Concentration of measure and the isoperimetric inequality
In [8], Barvinok gives the following definition:

Definition 1. A measure space (X, µ) has the measure concen-
tration property if there exist positive constants c and C (called
concentration constants) such that the following holds: for any
Lipschitz function f : X → R with | f (x) − f (y)| < Mdist(x, y)
for some M > 0 and all x, y ∈ X, and for any ε > 0:

µ
{
x ∈ X | | f (x) − E(f)| > ε

}
< c e−Cε

2/M2
(3)

where E(f) is the expectation of f defined as E(f) =
∫
X

f (x)dµ.

A notable example of measure concentration is given by the
Gaussian distribution in Rn. Let µ be the probability measure
on Rn with Gaussian density defined by φ(x) = (2π)−n/2 e−‖x‖

2/2.
It is a well known fact that there is measure concentration with
c = 2 and C = 2/π2.

The well-known isoperimetric inequality states that, if µ has
the measure concentration property, then for any closed set A
that is large enough, then even a small neighborhood A(ε) of A
(defined as A(ε) = {x ∈ X | dist(x, A) ≤ ε} for any ε ≥ 0) can
contain almost the whole measure of the space X. This result
is stated as [8, Lemma 1.1.2]; the proof is said to “go along the
lines of Sect. 7.6 in [10]”. Here we will present a direct proof
for it, using elementary arguments.

Proposition 2. Assume (X, µ) has measure concentration with
constants c,C, and let A ⊆ X be a closed set. For any given p ∈

(0, 1), if ε ≥
√

log c−log µ(A)+
√

log c−log p
1
2

√
C

then we have µ(A(ε)) >
1 − p.

Proof. Let us define the function f : X → R+ by f (x) =

dist(x, A) = miny∈A dist(x, y). It is well-known that f is a 1-
Lipschitz function. Then the measure concentration property
(3) of (X, µ) implies that, for the given ε > 0:

µ
{
x ∈ X

∣∣∣ | f (x) − E(f)| > ε/2
}
< c e−Cε

2/4. (4)

Note that, by the choice of ε in the hypothesis, we have
c e−Cε

2/4 < max{µ(A), p}, since it is equivalent to ε >

max
(√

log c−log µ(A)
1
2

√
C

,

√
log c−log p

1
2

√
C

)
. Thus, (4) implies that

µ
{
x ∈ X

∣∣∣ | f (x) − E(f)| ≤ ε/2
}
> 1 − µ(A). (5)

On the other hand

µ
{
x ∈ X

∣∣∣ f (x) = 0
}

= µ
{
x ∈ X | dist(x, A) = 0

}
= µ(A). (6)

Therefore, by (5) and (6), there must exist at least one x ∈ A
such that | f (x) − E(f)| ≤ ε

2 . But in this case, f (x) = 0, and thus
we have E(f) ≤ ε

2 . Now we have µ(Ac
ε) = µ

{
x ∈ X | f (x) >

ε
}
≤ µ

{
x ∈ X | | f (x) −E(f)| > ε

2
}
< c e

−Cε2
4 < p, where Ac

ε is the
complement of the set Aε. This concludes the proof.

3.2. Analysis of the naive algorithm

In this section we prove a generalization of Barvinok’s anal-
ysis of his naive algorithm which applies to n × K matrices and
systems of quadratic inequalities such as:

∀i ≤ m Li ≤ x>Qix ≤ Ui. (7)

Consider the SDP relaxation of Eq. (7):

∀i ≤ m Li ≤ trace(QiX) ≤ Ui

X � 0.

}
(8)

For technical reasons we assume that the number m of con-
straints of Eq. (2) is bounded by a polynomial of nK, i.e.
m ≤ (nK)s for some fixed number s > 0. This is a natural

2

assumption in many cases, e.g. we have s = 2 in the DGP. With
this assumption, then log m is proportional to log(nK).

We remark that the quadratic form in Eq. (7) can be written as
∀i ≤ m Qi(x) = x>Qix =

∑
1≤ j,`≤n qi

j` x j · x`, where qi
j` are real

coefficients and z · y stands for the inner product of the vectors
z and y. By the naive algorithm, we let x′ = Ty, where T is an
n×n factor of the SDP solution and y is an n×K random matrix
sampled from the Gaussian distribution N(0, 1

K). Its j-th row
vector is defined by x′j = T j y for 1 ≤ j ≤ n, where T j is the
j-th row of T . Our objective is to prove that x′ is an approximate
solution for the quadratic system (7). In other words, let A be
the set of all feasible solution for (7); we shall then prove that
dist(x′,A) is small with high probability. The following lemma
states that the expectation of quadratic functions Qi(x′) satisfies
the system (7).

Proposition 3. LetX be the set of all n×K real matrices. Given
above notations, we have∫

X

Qi(Ty) µ(dy) = trace(QiX∗) ∈ [Li,Ui].

Proof. For each 1 ≤ i ≤ m we have∫
X

Qi(Ty) µ(dy) =

∫
X

∑
1≤ j,`≤n

qi
j`
(
T jy

)(
T`y

)>µ(dy)

=
∑

1≤ j,`≤n

qi
j`

∫
X

T j(yy>)T`>µ(dy).

Since entries in the matrix y are sampled independently, for
each j, ` ≤ n and h, k ≤ K, we have:∫

X

y jky`h µ(dy) =

 1
K if j = ` and k = h,
0 otherwise.

For each j, ` ≤ n, moreover, we note that T j(yy>)T`> is a lin-
ear combination of all terms of the form y jky`h (for h, k ≤ K).
Therefore, in the integral below, we can simply cancel all the
quantities yiky jh out whenever k , h or i , j. This yields:

∫
X

T j(yy>)T`> µ(dy) =

∫
X

T j

‖y1‖
2 . . . 0

.

.

.
. . .

.

.

.
0 . . . ‖yn‖

2

 T`> µ(dy) (9)

Since, for all p ≤ n, ‖yp‖
2 =

∑K
k=1 y2

pk, Eq. (9) can then be
rewritten as

n∑
p=1

∫
X

T jpT`p‖yp‖
2µ(dy) =

n∑
p=1

K∑
k=1

∫
X

T jpT`py2
pkµ(dy)

n∑
p=1

K∑
k=1

T jpT`p

∫
X

y2
pk µ(dy)︸ ︷︷ ︸
=1/K

= 1
K

n∑
p=1

K∑
k=1

T jpT`p = T jT`
> = X∗j`.

Therefore, we have∫
X

Qi(Ty) µ(dy) =
∑
j,`≤n

qi
j`X
∗
j` = trace(QiX∗) ∈ [Li,Ui] (10)

due to the feasibility of X∗ for the system (8).

Note that, in Eq. (10), trace(QiX∗) is also the trace of the
quadratic form Qi(Ty) with respect to the variable y: indeed,
we have Qi(Ty) = (Ty)>Qi(Ty) = y>(T>QiT)y, whence
trace(Qi(Ty)) = trace(T>QiT) = trace(QiTT>) = trace(QiX∗).

In order to proceed, we will need to use the following result,
which was proved in Barvinok’s paper (a Fact in page 51). Here
we extend the result to the n× K dimension case, and provide a
proof for completeness.

Lemma 4. Let Q(y) = y>Qy be a quadratic form on y ∈ Rn×K ,
A− = {y ∈ Rn×K | Q(y) ≤ trace(Q)}, and A+ = {y ∈
Rn×K | Q(y) ≥ trace(Q)}. Then for all sufficiently large n we
have µ(A−) > 1

3nK and µ(A+) > 1
3nK .

Proof. Denote nK by N. Without loss of generality, we can
assume that trace(Q) ≥ 0. Consider a coordinate system
(x1, . . . , xN) such that Q is diagonal, i.e. Q(x) = c1x2

1 + . . . +

cN x2
N . Now consider a norm-preserving cyclic transform σ :

(x1, x2, . . . , xN)→ (x2, x3, . . . , xN , x1). With the convention that
xk = xk−N if k > N, then we have for all vectors x ∈ RN :

N∑
k=1

Q(σk(x)) =

N∑
k=1

N∑
i=1

cix2
i+k =

N∑
i=1

ci

N∑
k=1

x2
i+k = trace(Q)‖x‖2.

Let BN = {x ∈ RN | ‖x‖ ≤
√

N}. Then , for any x ∈ BN , we
have

∑N
k=1 Q(σk(x)) ≤ N trace(Q). It follows that there must

be at least one index k ≥ 0 such that Q(σk(x)) ≤ trace(Q),
which means that σk(x) ∈ A−. The ball BN admits a parti-
tion into equivalent classes based on σ (i.e. each class of the
form {x, σ(x), . . . , σN−1(x)}). Therefore µ(A−) ≥ µ(BN)

N . Simi-
larly, we can also prove that µ(A+) ≥ 1−µ(BN)

N . It is known that
limN→∞ µ(BN) = 1

2 : indeed, this limit is equal to

lim
N→∞

∫
‖x‖2≤N

1
(2π)N/2 e

−‖x‖2
2 dx =

1
2

= lim
N→∞

Prob(X1 + . . . + XN ≤ N),

where X1, . . . , XN ∼ χ2(1) are i.i.d. random variables. De-
note by µ and σ the expectation and variance of X1 (note that
µ = 1 since it is equal to the expectation of the standard
normal distribution). The above limit can now be written as

limN→∞ Prob
(

X1+...+XN−µ

σ
√

N
≤ 0

)
= Φ(0) = 1

2 , where Φ(x) is the

standard normal cdf evaluated at x (due to the Central Limit
Theorem). Now, since limN→∞ µ(BN) = 1

2 , there is N large
enough such that we 1

3 ≤ µ(BN) ≤ 2
3 . Combining with the ear-

lier inequalities µ(A−) ≥ µ(BN)
N and µ(A+) ≥ 1−µ(BN)

N , the required
inequalities follow.

We now state and prove the extension of Barvinok’s concen-
tration of measure result to the n × K case.

Theorem 5. Let X∗ be a solution of the SDP relaxation (8) and
x′ be the output of the extended naive algorithm. For each i ≤ m
we introduce the sets Di = {x ∈ Rn×K | Qi(x) = trace(QiX∗)}.
Then for large enough n, with probability at least 0.9, x′ satis-
fies dist(x′,Di) ≤ C0

√
‖X∗‖2 ln(nK), where C0 is a constant.

3

Proof. We define the following sets for each i ≤ m:

A−i = {y ∈ Rn×K | Qi(Ty) ≤ trace(QiX∗)}

A+
i = {y ∈ Rn×K | Qi(Ty) ≥ trace(QiX∗)}

Ai = {y ∈ Rn×K | Qi(Ty) = trace(QiX∗)}.

From Lemma 4, we have µ(A−i) ≥ 1
3nK and µ(A+

i) ≥ 1
3nK

for all sufficiently large n. Now we can apply Proposition 2
for p = 1

20m to obtain µ(A−i (ε)) ≥ 1 − 1
20m whenever ε ≥

1
√
C

(√
ln c − ln µ(A−i)+

√
ln c − ln 1

20m

)
(the measure concentra-

tion constants can be taken to be c = 2 and C = 2/π2). Since√
ln c − ln µ(A−i) ≤

√
ln c − ln(

1
3nK

) =
√

ln c + ln(3nK) = O(
√

ln(nK))√
ln c − ln

1
20m

=
√

ln 20c + ln(m) ≤
√

ln 20 c + ln(nK)s = O(
√

ln(nK)),

if we choose some ε = O(
√

ln(nK)) with a large enough
constant, then we have µ(A−i (ε)) ≥ 1 − 1

20m and similarly
µ(A+

i (ε)) ≥ 1 − 1
20m for i ≤ m. By the union bound we have

µ(A+
i (ε) ∩ A−i (ε)) ≥ 1 − 1

10m .
We now claim that A+

i (ε) ∩ A−i (ε) = Ai(ε) for all i ≤ m.
Indeed, since Ai ⊂ A+

i and Ai ⊂ A−i , we have Ai(ε) ⊆ A+
i (ε) ∩

A−i (ε). For the other inclusion, take any ŷ ∈ A+
i (ε) ∩ A−i (ε). It

means that there exists y+
i ∈ A+

i and y−i ∈ A−i such that ‖ŷ−y+
i ‖ ≤

ε and ‖ŷ − y−i ‖ ≤ ε. By definition it then follows that

Qi(Ty−i) ≤ trace(QiX∗) and Qi(Ty+
i) ≥ trace(QiX∗).

Since Qi(Ty) is a continuous function of y, on the interval de-
fined by two endpoints y+

i and y−i , there must exist some y′ such
thatQi(Ty′) = trace(QiX∗), i.e. y′ ∈ Ai. The claim follows since

‖ŷ − y′‖ ≤ max{‖ŷ − y+
i ‖, ‖ŷ − y−i ‖} ≤ ε.

From the claim above, µ(Ai(ε)) ≥ 1 − 1
10m for i ≤ m. Apply-

ing the union bound for all m sets Ai(ε) with i ≤ m, we have

µ
(⋂m

i=1 Ai(ε)
)
≥ 1 − m 1

10m = 0.9. Hence, our randomly gener-

ated point y is in Ai(ε) for each i ≤ m with probability at least
90%. Therefore

x′ = Ty ∈ T
(
Ai(ε)

)
⊆ Di + ε‖T‖ ⊆ Di(ε‖T‖) ⊆ Di(ε

√
‖X∗‖2),

which proves the theorem.

We remark that in Thm. 5 the constant C0 depends on s (as-
sumed fixed).

3.3. The DGP case: removing the dependence on K

Note that the results obtained above are for the general
quadratic case. For the DGP case, the problem has a specific
block structure which allows us to improve upon them. We will
show in this section that the dependence on K in Lemma 4 and
Theorem 5 can be removed.

The equality constraint in Eq. (1) corresponding to {i, j} ∈ E
can be explicitly written as

∑
k x2

ik +
∑

k x2
jk − 2

∑
k xik x jk = d2

i j.
This is a quadratic form on the n × K matrix variable x. If we

write it in matrix form xT Qi jx = d2
i j, the matrix Qi j has the

regular structure

Qi j =

Qn

i j 0 0 . . . 0
0 Qn

i j 0 . . . 0
0 0 Qn

i j . . . 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 . . . Qn
i j

with K diagonal blocks, where each for each i, j Qn

i j is an
n × n matrix with zeros everywhere except for the entries

(i, i), (i, j), (j, i), (j, j) set to
(

1 −1
−1 1

)
. Now we can rewrite

Lemma 4 for this specific block matrix, in which the depen-
dence on K is removed:

Lemma 6. Let Q(y) = y>Qy be a quadratic form on y ∈ Rn×K ,
where Q consists of K diagonal identical symmetric blocks
Qn ∈ Rn×n, namely Q = diag(Qn, . . . ,Qn︸ ︷︷ ︸

K

). Let A− = {y ∈

Rn×K | Q(y) ≤ trace(Q)} and A+ = {y ∈ Rn×K | Q(y) ≥
trace(Q)}. Then for all sufficiently large n we have µ(A−) > 1

3n
and µ(A+) > 1

3n .

Proof. Without loss of generality, we can assume that
trace(Q) ≥ 0. By changing of the coordinate system if nec-
essary, we can assume that each block Qn is diagonal, i.e. Qn =
diag(λ1, . . . , λn). Now consider an orthogonal transform σ that
sends(x1, x2, . . . , xnK) to

(x2, . . . , xn, x1; xn+2, . . . , x2n, xn+1; x2n+2, . . . , x3n, x2n+1; . . . ; xnK , xnK−n+1).

Then σ generates a cyclic group of order n. Averaging over n
shifts, we get

∑n
k=1 Q(σk(x)) = 1

K trace(Q)‖x‖2. Let N = nK and
let BN = {x ∈ RN | ‖x‖ ≤

√
N}. Then , for any x ∈ BN , we have∑n

k=1 Q(σk(x)) ≤ N
K trace(Q) = n trace(Q). It follows that there

must be at least one index k ≥ 0 such that Q(σk(x)) ≤ trace(Q),
which means that σk(x) ∈ A−. The ball BN admits a partition
into equivalent classes based on σ (i.e. each class of the form
{x, σ(x), . . . , σn−1(x)}). Therefore µ(A−) ≥ µ(BN)

n . Similarly, we
can also prove that µ(A+) ≥ 1−µ(BN)

n . From Lemma 4, we have
proved that limN→∞ µ(BN) = 1

2 . Therefore, when N = nK is
sufficiently large, then we have µ{y ∈ Rn×K | Q(y) ≤ trace(Q)} >
1
3n and µ{y ∈ Rn×K | Q(y) ≥ trace(Q)} > 1

3n as claimed.

Now we can obtain an improvement for the result in Theo-
rem 5. We will state it without proof here because the proof is
exactly the same except for the application of Lemma 6 instead
of Lemma 4.

Theorem 7. Let X∗ be a solution of the SDP relaxation (8)
for the DGP (1) and x′ be the output of the extended naive
algorithm. For each i ≤ m we introduce the set Di =

{x ∈ Rn×K | Qi(x) = trace(QiX∗)}. Then for large enough
n, with probability at least 0.9, x′ satisfies dist(x′,Di) ≤
C0
√
‖X∗‖2 ln(n), where C0 is a constant.

Note that the logarithmic term under the square root in the
RHS was improved from nK to n.

4

4. A different approach to the iDGP case

In this section, we argue that with appropriate assumptions
on the solution X∗ and the interval bounds [Li,Ui], we can ob-
tain a different bound, which depends on ln m instead of ln nK,
which might . We will use the following result, which is proved
in [11].

Proposition 8. Let Q : RN → R be a positive semidefinite
quadratic form, i.e. Q(x) = x>Qx for a positive semidefinite

matrix Q. Let ‖Q‖ =

√
µ2

1 + . . . + µ2
N be the Schatten 2-norm of

Q, in which µ1, . . . , µN are the eigenvalues of Q. Then
1. For any τ ≥ 0 we have

µ
({

x ∈ RN | Q(x) < trace(Q) − τ
})
≤ exp

(
−

τ2

4‖Q‖2

)
. (11)

2. For any τ ≥ 0 such that τµi ≤ ‖Q‖2 for all i ≤ N, we have

µ
({

x ∈ RN | Q(x) > trace(Q) + τ
})
≤ exp

(
−

τ2

8‖Q‖2

)
. (12)

Now we apply this proposition to the naive algorithm.
Since X∗ is a feasible solution of the SDP relaxation of the
iDGP, then by (8) we have Li ≤ trace(QiX∗) ≤ Ui for
all i ≤ m. We define some parameters λi such that λi ≤

min
{

Ui−trace(QiX∗)
trace(QiX∗) , trace(QiX∗)−Li

trace(QiX∗)

}
for i ≤ m. By this definition,

we have Li ≤ trace(QiX∗) − λi trace(QiX∗). Therefore, by ap-
plying (11) for τ = λitrace(QiX∗), we have

µ
({

y ∈ Rn×K | Qi(Ty) < Li
})
≤ µ

({
y ∈ Rn×K | Qi(Ty)

< trace(QiX∗) − λi trace(QiX∗)
})

≤ exp
(
−
λ2

i trace(QiX∗)2

4‖QiX∗‖2

)
,

which will be smaller than or equal to 1
3 if we have λi ≥

√
4 ln 3 ‖QiX∗‖

trace(QiX∗) .
Next, we do the same with the inequality in (12). By the defi-

nition of λi, we have Ui ≥ trace(QiX∗)+λitrace(QiX∗), therefore
by applying (12) for τ = λitrace(QiX∗), we have

µ
({

y ∈ Rn×K | Qi(Ty) > Ui
})
≤ µ

({
y ∈ Rn×K | Qi(Ty)

> trace(QiX∗) + λi trace(QiX∗)
})

≤ exp
(
−
λ2

i trace(QiX∗)2

8‖QiX∗‖2

)
,

which will be smaller than or equal to 1
√

3
if we have λi ≥

√
4 ln 3 ‖QiX∗‖

trace(QiX∗) (similarly to the previous case). Note that,
to ensure the assumption in (12) is satisfied, we have to fur-
ther assume that λitrace(QiX∗)σmax(QiX∗) ≤ ‖QiX∗‖2 as a suffi-
cient condition, where σmax(A) stands for the maximum singu-
lar value of A. In conclusion, the above conditions are equiva-
lent to

2
√

3 ≤ min
{Ui − trace(QiX∗)

‖QiX∗‖
,

trace(QiX∗) − Li

‖QiX∗‖
,

‖QiX∗‖2

trace(QiX∗)σmax(QiX∗)

}
.

(13)
If this condition holds, then by using the union bound we have

µ
({

y ∈ Rn×K | Li ≤ Q
i(Ty) ≤ Ui

})
≥ 1 −

1
3
−

1
√

3
=

2 −
√

3
3

. (14)

Proposition 9. Let x′ be the output of the extended naive al-
gorithm and assume that Eq. (13) holds. For each 1 ≤ i ≤ m,
denoteDi = {x ∈ Rn×K | Li ≤ Q

i(x) ≤ Ui}. Then with the proba-
bility at least 90%, x′ satisfies the dist(x′,Di) ≤ C0

√
ln m ‖X∗‖2,

where C0 is a positive universal constant.

Proof. For each 1 ≤ i ≤ m, we define a closed set Ai = {y ∈
Rn×K | Li ≤ Q

i(Ty) ≤ Ui}. From the estimation in (14), we have
µ(Ai) ≥ 2−

√
3

3 for all i ≤ m. Then for any ε and 0 < p < 1 such
that √

log c − log µ(Ai) +
√

log c − log p
1
2

√
C

≤

√
log c − log

(2−
√

3
3

)
+

√
log c − log p

1
2

√
C

= O(
√

log(1
p) ≤ ε,

we have µ(Ai(ε)) > 1 − p (by Proposition 2). Take p = 1
10m

and apply the union bound, then we have µ
(⋂m

i=1 Ai(ε)
)
>

1 − m p = 0.9. Hence, our randomly generated point y is in
Ai(ε) for each i ≤ m with probability at least 90%; thus x′ =

Ty ∈ T
(
Ai(ε)

)
⊆ Di + ε‖T‖ ⊆ Di(ε‖T‖) ⊆ Di(ε

√
‖X∗‖2). Note

that we can choose ε = O(
√

log 1
p) = O(

√
log m). Therefore

dist(x′,Di) ≤ O(
√

ln m ‖X∗‖), which proves the theorem.

We remark that in Prop. 9 the constant C0 does not depend
on s as in Thm. 5.

5. Computational results

Testing probabilistic algorithms based on the phenomenon
of concentration of measure involves the difficulty of having to
determine the minimum instance size starting from which the
algorithm will start producing useful outputs. Most proofs in-
volve unknown constants (e.g. c,C in Eq. (3)). Valid values for
these constants can be determined (see e.g. [12]), but such val-
ues often make empirical applications difficult or impossible.
This is why computational tests are sometimes employed in the
attempt to determinate practically useful values [13].

The objective of our computational testbed is to ascertain
whether Barvinok’s naive algorithm is beneficial or not. We
therefore considered two heuristics, the only difference between
them being the activation/deactivation of this algorithm as a
sub-step. We call bvk the version of this algorithm with Barvi-
nok’s naive algorithm, and sdpnlp the version without. Both
heuristics have the following structure:

1. compute the solution X∗ of the SDP relaxation of the DGP
or iDGP instance;

2. map the n × n matrix X∗ into an n × K matrix x′;
3. let x∗ be the n×K realization obtained by applying a local

NLP solver to the starting point x′.

The bvk algorithm is obtained by replacing Step 2 with Barvi-
nok’s naive algorithm, while sdpnlp replaces Step 2 with Prin-
cipal Component Analysis (PCA):

• factor X∗ as V>ΛV , where Λ = diag(λ1, . . . , λn) are the
eigenvalues, and V is the matrix of (column) eigenvectors;

5

• since X∗ � 0, λi ≥ 0 for all i, which means that
√

Λ is real;
• let Λ′ = diag(λ1, . . . , λK , 0, . . . , 0), and let x′ = V>

√
Λ′.

It is quite usual to compare DGP algorithms on solution qual-
ity and CPU time [2, 14]. The two most established er-
ror measures are the mean distance error (MDE), defined as
1
|E|

∑
{i, j}∈E

∣∣∣‖xi − x j‖2 − di j

∣∣∣, and the largest distance error (LDE),

defined as max
{i, j}∈E

∣∣∣‖xi − x j‖2 − di j

∣∣∣. The equivalent measures for

the iDGP replace ‖xi − x j‖2 − di j in the above formulæ with
max(0, Li j − ‖xi − x j‖2) + max(0, ‖xi − x j‖2 −Ui j) [1, 14]. Both
errors only take into account the discrepancy of the computed
solution with the input data. While a low MDE can still yield
a significantly different realization (if only locally), a low LDE
usually gives a higher confidence of the reconstructed realiza-
tion being close to the input data.

As a local NLP solver, we chose the “root” option out of
the solvers in the scipy library [15]. Limited to the DGP, we
found this solver to be superior (both CPU-time and quality-
wise) to the other solvers in the library, except on really tiny
instances where it appears to fail often. In all cases, the total
CPU time is dominated by the SDP solution and by the local
NLP solution; this is natural as optimization solvers are large-
scale software packages implementing complicated algorithms,
while both Barvinok’s naive algorithm and PCA are quite sim-
ple.

Note that Step 2 is stochastic in bvk and deterministic in
sdpnlp. It therefore makes sense to consider the best outcome
(w.r.t. LDE) out of a certain number of iterations of Barvinok’s
algorithm, while PCA need only be run once. While this might
appear to penalize the former as regards the CPU time, note that
its worst-case complexity is dominated by the matrix product
(resulting in O(Kn2)), while PCA requires a matrix factoriza-
tion, which is O(n3) in general. We empirically set the maxi-
mum number of iterations of Barvinok’s algorithm to 500.

The computational results, obtained using a Python 2.7 code
on an Intel i5 CPU with 8GB RAM running Windows 10, are
presented for the DGP in Table 1, and for the iDGP in Table 2.
For the DGP, it is quite obvious from Table 1 that bvk yields

MDE LDE CPU
instance bvk sdpnlp bvk sdpnlp bvk sdpnlp

names 0.00 0.11 0.07 1.00 39.33 22.44
pept 0.00 0.10 0.03 1.81 83.91 56.65
C0020pdb 0.00 0.12 0.01 2.72 76.73 49.39
1guu-1 0.03 0.00 0.26 0.08 370.73 322.66
1guu-4000 0.03 0.12 0.73 1.15 415.66 397.87
1guu 0.02 0.01 0.29 0.33 305.54 267.52
res 5000 0.00 0.15 0.00 2.24 84.19 53.36
res 2000 0.00 0.07 0.00 1.46 85.26 53.39
res 0 0.00 0.00 0.00 0.01 93.08 62.64
res 3000 0.00 0.01 0.00 1.08 88.51 53.43
res 1000 0.00 0.10 0.00 3.05 87.88 52.98
res 2kxa 0.00 0.15 0.00 2.92 764.34 713.35
C0030pkl 0.00 0.11 0.07 2.19 1178.73 1024.86

Table 1: Computational comparison of Barvinok’s algorithm and PCA on DGP
instances.

better solutions than sdpnlp. It is easy to see that the latter
is faster than the former; it is, however, also easy to notice
that bvk seems to “catch up” for instances of increasing size.

This is consistent with the fact that we run a fixed number of
iterations of Barvinok’s naive algorithm (which is O(Kn2)) and
only one iteration of PCA (which is O(n3)). The outcome of

MDE LDE CPU
instance bvk sdpnlp bvk sdpnlp bvk sdpnlp

names 0.04 0.00 2.11 0.07 53.91 36.86
pept 0.01 0.00 0.46 0.40 133.28 99.60
C0020pdb 0.02 0.00 1.64 0.42 112.38 79.22
1guu-1 0.02 0.01 1.09 0.58 500.64 440.50
1guu-4000 0.03 0.02 1.49 1.49 522.19 461.53
1guu memory overflow
res 5000 0.01 0.00 0.69 0.08 30764.21 30465.16
res 2000 0.01 0.00 1.78 0.10 33017.88 32713.91
res 0 0.00 0.00 0.11 0.11 22897.14 22619.79
res 3000 0.00 0.00 0.05 0.08 26095.91 25846.81
res 1000 0.00 0.00 0.05 0.07 27790.87 27542.96
res 2kxa memory overflow
C0030pkl memory overflow

Table 2: Computational comparison of Barvinok’s algorithm and PCA on iDGP
instances.

the experiments on the iDGP presented in Table 2 are not as
clear. We notice that three instances cause a memory overflow
error on both heuristics, which is a consequence of the NLP
solver. Again, the sdpnlp heuristic is superior to bvk as con-
cerns CPU time; and the ratio between the two values again be-
comes smaller as the size increases. In terms of solution quality,
sdpnlp is superior to bvk for all but the three largest instances,
and slightly inferior for the two largest. While the discrepan-
cies in LDE are too small to derive any meaningful conclusion,
we remark that concentration of measure phenomena always
“kick in” from some instance size onwards, but it is difficult to
establish the threshold size. The larger instances we tested all
yielded memory overflows, due to both SDP and NLP solvers.

An anonymous referee suggested a direction for future work
which we find very interesting. Our idea for deploying a local
descent method from the starting point x′ found by Barvinok’s
naive algorithm was given by the geometric intuition that, if the
distance from x′ to the feasible set of the given QCP is bounded
with high probability, then a local descent from x′ might be all
that is needed to find a feasible point of the QCP. The referee
asks the following question: are there natural conditions under
which a gradient descent from x′ is guaranteed (perhaps with
some probability) to perform nicely?

While researchers in mathematics and theoretical computer
science (TCS) produce many algorithms with interesting the-
oretical properties, their adaptation to applications and conse-
quent testing is scattered at best. Some TCS researchers have
been heard, during talks at conferences, making various state-
ments to the effect that their algorithms are not for practical
use, and that their value is wholly theoretical. We beg to differ:
whether these algorithms have a practical value or not is simply
not known (for lack of testing). While we realize that no amount
of testing can ever prove anything, an indication of usefulness
might remarkably increase the impact of a “wholly theoretical
algorithm” (witness e.g. the Goemans-Williamson randomized
approximation algorithm for max cut [16]). We hope this paper
will contribute to increase the impact of the wonderfully ele-
gant, simple and yet effective “naive algorithm” that A. Barvi-
nok invented twenty years ago.

6

References

[1] L. Liberti, C. Lavor, A. Mucherino, N. Maculan, Molecular distance ge-
ometry methods: from continuous to discrete, International Transactions
in Operational Research 18 (2010) 33–51.

[2] L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean distance ge-
ometry and applications, SIAM Review 56 (1) (2014) 3–69.

[3] N. Krislock, H. Wolkowicz, Explicit sensor network localization using
semidefinite representations and facial reductions, SIAM Journal on Op-
timization 20 (2010) 2679–2708.

[4] M. Cucuringu, A. Singer, D. Cowburn, Eigenvector synchronization,
graph ridigity and the molecule problem, Information and Inference: a
journal of the IMA 1 (2012) 21–67.

[5] A. Cassioli, B. Bordeaux, G. Bouvier, A. Mucherino, R. Alves, L. Liberti,
M. Nilges, C. Lavor, T. Malliavin, An algorithm to enumerate all possi-
ble protein conformations verifying a set of distance constraints, BMC
Bioinformatics 16 (2015) 23–38.

[6] S. Billinge, P. Duxbury, D. Gonçalves, C. Lavor, A. Mucherino, Assigned
and unassigned distance geometry: Applications to biological molecules
and nanostructures, 4OR 14 (2016) 337–376.

[7] B. Berger, J. Kleinberg, T. Leighton, Reconstructing a three-dimensional
model with arbitrary errors, Journal of the ACM 46 (2) (1999) 212–235.

[8] A. Barvinok, Measure concentration in optimization, Mathematical Pro-
gramming 79 (1997) 33–53.

[9] H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig,
I. Shindyalov, P. Bourne, The protein data bank, Nucleic Acid Research
28 (2000) 235–242.

[10] V. Milman, G. Schechtman, Asymptotic theory of finite dimensional
normed spaces, no. 1200 in Lecture Notes in Mathematics, Springer,
Berlin, 1986.

[11] A. Barvinok, A Course in Convexity, no. 54 in Graduate Studies in Math-
ematics, American Mathematical Society, Providence, 2002.

[12] A. Barvinok, Math 710: Measure Concentration, class notes (2005).
[13] S. Venkatasubramanian, Q. Wang, The Johnson-Lindenstrauss transform:

An empirical study, in: Algorithm Engineering and Experiments, Vol. 13
of ALENEX, SIAM, Providence, 2011, pp. 164–173.

[14] C. D’Ambrosio, V. K. Ky, C. Lavor, L. Liberti, N. Maculan, New error
measures and methods for realizing protein graphs from distance data,
Discrete and Computational Geometry 57 (2) (2017) 371–418.

[15] E. Jones, T. Oliphant, P. Peterson, SciPy: Open source scientific tools for
Python, [Online; accessed 2016-03-01] (2001).
URL http://www.scipy.org/

[16] M. Goemans, D. Williamson, Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite program-
ming, Journal of the ACM 42 (6) (1995) 1115–1145.

7

