Perspective Cuts for the ACOPF with Generators
 Esteban Salgado, Claudio Gentile, Leo Liberti

To cite this version:

Esteban Salgado, Claudio Gentile, Leo Liberti. Perspective Cuts for the ACOPF with Generators. New Trends in Emerging Complex Real Life Problems ODS, Taormina, Italy, September 10-13, 2018, pp.451-461, 2018, 9783030004729 . hal-02105077

HAL Id: hal-02105077

https://hal.science/hal-02105077

Submitted on 20 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Perspective cuts for the ACOPF with generators

Esteban Salgado, Claudio Gentile, and Leo Liberti

Abstract

The alternating current optimal power flow problem is a fundamental problem in the management of smart grids. In this paper we consider a variant which includes activation/deactivation of generators at some of the grid sites. We formulate the problem as a mathematical program, prove its NP-hardness w.r.t. activation/deactivation, and derive two perspective reformulations.

1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is one of the most important problems arising in the energy industry. It models the propagation of power flows in electrical grids. It is often used as second-level subproblem in bilevel problems modelling the decision of electricity prices subject to production and demands [14]. Multilevel problems with ACOPF at different time-scales are also considered [1]. The ACOPF received a lot of attention over the years, and specifically after smart grids were introduced [2].

The ACOPF asks for the best power flow over an electrical network modelled by a digraph $\mathscr{D}=(\mathscr{N}, \mathscr{L})$, where \mathscr{N} is the set of buses and \mathscr{L} the set of lines. It is well known that the natural formulation can be simplified using only voltage variables [10]. The ACOPF is usually cast as a Mathematical Programming (MP) problem

[^0]over the complex numbers (which make their appearance due to the cyclic nature of alternating currents). The standard ACOPF can be reformulated as a (larger) MP over the reals, by separating real and complex parts [17].

While the standard version of the ACOPF only has continuous variables, more realistic variants include binary variables which activate/deactivate various electrical components. In this paper we consider the possibility of activating/deactivating electrical generation at some of the buses. This defines an ACOPF variant which we call ACOPF with Generators (ACOPFG) [15].

Note that the ACOPF is NP-hard even without binary variables, as shown in [13]. Experimentally, however, it was found that many standard benchmarks, as well as randomly generated instances, can be solved efficiently. It is shown in [12] that this happens whenever the duality gap is zero. One might then question whether the ACOPFG is NP-hard simply because of the addition of the binary activation variables. The first contribution of this paper is to prove that this is indeed the case.

While ACOPF objective functions vary in the literature, it is common to consider quadratic objectives with respect to voltage. In this paper, however, we focus on a more general objective function, quadratic with respect to active power and quartic (without cubic terms) w.r.t. voltage [10]. The second contribution of this paper is the application of two perspective reformulations (PR) to the ACOPFG with the more general (quartic) objective [8, 6].

2 MP formulation

We consider the network digraph \mathscr{D} mentioned in Sect. 1. Let $n=|\mathscr{N}|$ and $\ell=|\mathscr{L}|$. We identify a subset \mathscr{G} of generator buses, and let $n^{\prime}=|\mathscr{G}|$. We note that, in modern "smart grids", generators may produce and consume electricity. Because we are dealing with alternating currents, power is represented by a complex number. The real part is the active power while the complex part is reactive.

Notationwise, we use $[\underline{\alpha}, \bar{\alpha}]$ to denote lower/upper bounds to a quantity, and α^{*} to denote complex conjugate.

The parameters of our problem are as follows:

- $\forall b \in \mathscr{N} S_{b} \in \mathbb{C}$ is the power demand at bus b;
- $\forall g \in \mathscr{G} \mathfrak{S}_{g}=\left[\underline{S}_{g}, \bar{S}_{g}\right]$ is the (complex) interval where g can generate power if active;
- $\forall b \in \mathscr{N} \mathfrak{v}_{b}=\left[\underline{v}_{b}, \bar{v}_{b}\right]$ is the (real) interval where the voltage magnitude at bus b can range;
- $\forall(a, b) \in \mathscr{L} \bar{l}_{a b}$ is the maximum current which can flow through the line (a, b);
- Y is a complex $n \times n$ bus admittance matrix (it plays a role analoguous to the reciprocal of resistance in Ohm's law);
- Y^{0}, Y^{1} are complex $\ell \times n$ line admittance matrices (they "encode" some electrical properties of the lines).

The decision variables are:

- $\forall g \in \mathscr{G} s_{g} \in \mathbb{C}$ is the power generated at g;
- $\forall g \in \mathscr{G} z_{g} \in\{0,1\}$ denotes the deactivation (0) or activation (1) of generator g;
- $\forall b \in \mathscr{N} v_{b} \in \mathbb{C}$ is the voltage at bus b;
- $\forall(a, b) \in \mathscr{L} i_{a b} \in \mathbb{C}$ is the current on the line (a, b).

At each generator $g \in \mathscr{G}$, the injected complex power $s_{g}-S_{g}=v_{g} \sum_{(g, a) \in \mathscr{L}} i_{g a}^{*}$, and at each non-generator bus $b \in \mathscr{N} \backslash \mathscr{G}$, we have $-S_{b}=v_{b} \sum_{(b, a) \in \mathscr{L}} i_{b a}^{*}$. Kirchoff's law and a generalized form of Ohm's law allow us to derive $i=Y v$, which implies that the RHS of the above equations can be reformulated to $v_{b}\left(Y^{*} v^{*}\right)_{b}=$ $\sum_{(a, b) \in \mathscr{L}} v_{b} v_{a}^{*} Y_{a b}^{*}$ for each $b \in \mathscr{N}$ [17]. This allows us to express current in function of voltage and power. We obtain the following constraints:

$$
\begin{align*}
\forall g \in \mathscr{G} \sum_{(g, a) \in \mathscr{L}} Y_{g a}^{*} v_{g} v_{a}^{*} & =s_{g} z_{g}-S_{g} \tag{1}\\
\forall b \in \mathscr{N} \backslash \mathscr{G} \sum_{(b, a) \in \mathscr{L}} Y_{b a}^{*} v_{b} v_{a}^{*} & =-S_{b} \tag{2}\\
\forall(a, b) \in \mathscr{L}, \omega \in\{0,1\} \quad \sum_{h \neq k \in \mathscr{N}}\left(Y_{a b h}^{\omega}\right)^{*}\left(Y_{a b k}^{\omega}\right)^{*} v_{h}^{*} v_{k} & \leq \bar{l}_{a b} \tag{3}\\
\forall g \in \mathscr{G} \quad s_{g} & \in \mathfrak{S}_{g} \tag{4}\\
\forall b \in \mathscr{N} \quad\left|v_{b}\right| & \in \mathfrak{v}_{b} \tag{5}\\
\forall g \in \mathscr{G} \quad z_{g} & \in\{0,1\} . \tag{6}
\end{align*}
$$

We remark that complex power variables s only appear in Eq. (1) and (4). We can eliminate them by replacing Eq. (1) and (4) with the following inequalities:

$$
\begin{equation*}
\forall g \in \mathscr{G} \quad \underline{S}_{g} z_{g} \leq \sum_{(g, a) \in \mathscr{L}} Y_{g a}^{*} v_{g} v_{a}^{*}+S_{g} \leq \bar{S}_{g} z_{g} \tag{7}
\end{equation*}
$$

Moreover, if we define z over all of \mathscr{N} and fix $z_{b}=0$ for all $b \notin \mathscr{G}$, Eq. (7) quantified on \mathscr{N} can also replace Eq. (2).

In the ACOPF literature $[12,11,4,15]$ we consider the following generation cost function, to be minimized:

$$
\begin{equation*}
f(s, z)=\sum_{g \in \mathscr{G}} z_{g}\left(c_{g 2}\left(\operatorname{Re}\left(s_{g}\right)\right)^{2}+c_{g 1} \operatorname{Re}\left(s_{g}\right)+c_{g 0}\right) \tag{8}
\end{equation*}
$$

Again we can replace s by v using Eq. (1) and removing constant terms in order to express Eq. (8) as a function of voltage: essentially, we obtain $f(v, z)$ from Eq. (8) by replacing s_{g} with $\sum_{(g, a) \in \mathscr{L}} Y_{g a}^{*} v_{g} v_{a}^{*}+S_{g}$.

Let F be the feasible subset of \mathbb{C}^{n} defined by Eq. (2)-(6) and (7). We call $\mathrm{ACOPFG}_{\mathbb{C}}$ the formulation $\min _{(v, z) \in F} f(v, z)$.

Finally, we can obtain a real formulation as follows:

1. replace each quadratic constraint $v^{H} M v \diamond \alpha+j \beta$ (where $\diamond \in\{=, \leq, \geq\}$ and $j=\sqrt{-1}$) by the pair of constraints

$$
v^{H} M^{+} v \diamond \alpha+j \beta \wedge v^{H} M^{-} v \diamond \alpha+j \beta
$$

where $M^{+}=\frac{1}{2}\left(M+M^{H}\right)$ and $M^{-}=\frac{1}{2}\left(M-M^{H}\right) ;$
2. replace each complex matrix M by the real matrix $\left(\begin{array}{cc}\operatorname{Re}(M) & -\operatorname{Im}(M) \\ \operatorname{Im}(M) & \operatorname{Re}(M)\end{array}\right)$;
3. replace each complex vector v by the real vector $(\operatorname{Re}(v) \operatorname{Im}(v))^{\top}$.

We call this reformulation $A C O P F G_{\mathbb{R}}$.

3 Complexity

Assume $c_{g 2}=0$ for all $g \in \mathscr{G}$ in Eq. (8). By ignoring activation variables we obtain the ACOPF, which is a Quadratically Constrained Quadratic Program (QCQP). Since the ACOPF is NP-hard [3], it follows by inclusion that the ACOPFG is also NP-hard. On the other hand, it was shown in [12] that many practical ACOPF instances turn out to be easy rather than hard. We remark that "easy", in this setting, does not necessarily mean "in P", since the decision version of the QCQP is not known to be in NP (unless there are no quadratic constraints, in which case the problem class is known to be in NP [19]). The meaning of "easy" in this context is that global optima can be obtained by means of a local, rather than global, optimization procedure.

The question we answer in this section is whether the addition of the binary activation variables constitute an actual additional difficulty. To show that this need not necessarily be the case, we consider a linear system

$$
\left.\begin{array}{rl}
A x & \leq b \tag{9}\\
x & \leq 1 \\
x & \in \mathbb{R}_{+}^{n},
\end{array}\right\}
$$

where A is totally unimodular. Finding a feasible solution can obviously be done in polynomial time by the, say, interior point algorithm (irrespective of total unimodularity), and so this formulation is in \mathbf{P}. If we add n additional binary activation variables $y_{1}, \ldots, y_{n} \in\{0,1\}$ and n additional activation/deactivation constraints

$$
\begin{equation*}
\forall j \leq n \quad x_{j} \leq y_{j}, \tag{10}
\end{equation*}
$$

then the new system has a constraint matrix:

$$
\left(\begin{array}{cc}
A & 0 \\
I_{n} & 0 \\
I_{n} & -I_{n}
\end{array}\right)
$$

which is easily seen to also be totally unimodular [20]. Therefore this new MixedInteger Linear Programming (MILP) formulation is in \mathbf{P}. This provides an example where adding boolean activation variables does not make the underlying problem more difficult.

Having established that the question makes sense, we present a reduction of the weakly NP-complete SUBSET-SUM problem to a subclass of ACOPFG. Given an instance $\left(\sigma_{1}, \ldots, \sigma_{n}, S_{0}\right)$ of SUBSET-SUM, we must decide whether there is a subset $I \subseteq\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\sum_{i \in I} \sigma_{i}=S_{0} \tag{11}
\end{equation*}
$$

This is equivalent to asking whether the following linear diophantine equation has a solution $x \in\{0,1\}^{n}$:

$$
\begin{equation*}
\sum_{i \leq n} \sigma_{i} x_{i}=S_{0} \tag{12}
\end{equation*}
$$

We now show that we can naturally express Eq. (12) using the ACOPFG formulation of Sect. 2. We consider a simple network \mathscr{D} with $\mathscr{G}=\{1, \ldots, n\}$ generators with demand $S_{g}=0$ for $g \leq n$ and a single non-generator bus (indexed by 0) with demand S_{0} (so that $\mathscr{N}=\{0, \ldots, n\}$). The set \mathscr{L} of lines is $\{(g, 0) \mid 1 \leq g \leq n\}$, namely each generator is linked to the only non-generator bus. Each generator $g \in \mathscr{G}$ has generation interval $\mathfrak{S}_{G}=\left[\sigma_{g}, \sigma_{g}\right]$, i.e. each generator can either be inactive, or else, if active, must produce exactly σ_{g}. Then Eq. (7) becomes:

$$
\begin{equation*}
\forall g \leq n \quad Y_{g 0}^{*} v_{g} v_{0}^{*}=\sigma_{g} z_{g} \tag{13}
\end{equation*}
$$

Since we know σ_{g} is real and positive, we arrange Y^{*} so that the complex part of the LHS of Eq. (13) is zero; in particular, we arrange $Y_{g 0}^{*} v_{0}^{*}$ to yield a $j^{2}=-1$ coefficient (this can be easily done when we derive $\mathrm{ACOPFG}_{\mathbb{R}}$). So we get:

$$
\begin{equation*}
\forall g \leq n \quad \operatorname{Re}\left(Y_{g 0}^{*} v_{g} v_{0}^{*}\right)=-\sigma_{g} z_{g} \tag{14}
\end{equation*}
$$

Furthermore, Eq. (2) is:

$$
\sum_{(g 0) \in \mathscr{L}} Y_{g 0}^{*} v_{0} v_{g}^{*}=-S_{0}
$$

whence, by Eq. (14), we have:

$$
\sum_{g \leq n}\left(-\sigma_{g} z_{g}\right)=-S_{0}
$$

which is exactly Eq. (12).

4 Perspective reformulation

The objective function Eq. (8) can be restated using additional variables $p_{g}=$ $\operatorname{Re}\left(v_{g} \sum_{(g, a) \in \mathscr{L}} v_{a}^{*} Y_{g a}^{*}+S_{g}\right)$. In practice use the convex constraints

$$
\begin{equation*}
\forall g \in \mathscr{G} \text { s.t. } c_{g 2}>0 \quad p_{g} \geq \operatorname{Re}\left(v_{g} \sum_{(g, a) \in \mathscr{L}} v_{a}^{*} Y_{g a}^{*}+S_{g}\right), \tag{15}
\end{equation*}
$$

which are justified by the objective function direction. We now reformulate Eq. (8) using these new variables:

$$
\begin{equation*}
f(p, z)=\sum_{g \in \mathscr{G}}\left(c_{g 2} p_{g}^{2}+c_{g 1} p_{g}+c_{g 0} z_{g}\right) \tag{16}
\end{equation*}
$$

The reformulations proposed below can all be carried out on a per-generator basis. In the rest of this paper, we assume they are only applied to generators $g \in \mathscr{G}$ for which $c_{g 2}>0$.

The power p_{g} is subject to the following activation constraints:

$$
\begin{equation*}
p_{g} \leq \bar{P}_{g} z_{g} \quad \wedge \quad p_{g} \geq \underline{P}_{g} z_{g} \tag{17}
\end{equation*}
$$

where $\bar{P}_{g}=\operatorname{Re}\left(\bar{S}_{g}\right)$ and $\underline{P}_{g}=\operatorname{Re}\left(\underline{S}_{g}\right)$. The PR reformulation [8] can be applied to (16) as follows:

$$
\begin{equation*}
\hat{f}(p, z)=\sum_{g \in \mathscr{G}}\left(c_{g 2} \frac{p_{g}^{2}}{z_{g}}+c_{g 1} p_{g}+c_{g 0} z_{g}\right) \tag{18}
\end{equation*}
$$

The function (18) can be optimized using the perspective cuts (PC) method [8], which works as follows: (i) first we add new variables t_{g} representing the nonlinear part of the cost in (18) by considering the following constraints

$$
\begin{equation*}
t_{g} \geq c_{g 2} \frac{p_{g}^{2}}{z_{g}} \tag{19}
\end{equation*}
$$

and replacing (18) with $\tilde{f}(t, p, z)=\sum_{g \in \mathscr{G}}\left(t_{g}+c_{g 1} p_{g}+c_{g 0} z_{g}\right)$; (ii) then constraints (19) can be replaced by PCs:

$$
\begin{equation*}
t_{g} \geq c_{g 2}\left(2 \check{p}_{g} p_{g}-\check{p}_{g}^{2} z_{g}\right) \tag{20}
\end{equation*}
$$

where \check{p}_{g} are fixed values of the real power p_{g} varying in the feasible interval $\underline{P}_{g} \leq \check{p}_{g} \leq \check{P}_{g}$ when $z_{g}=1$. The addition of PCs does not add further difficulties in the problem formulation except for the condition that they should be generated iteratively as their number is not finite.

We can alternatively apply the AP2R technique [6, 7], which works in two phases. The first phase is a projection where the optimal value of z_{g} for the continuous relaxation of Eq. (18) subject to Eq. (17) is found depending on p_{g}. The second phase is a lifting where the variables z_{g} are lifted back. The resulting problem can be solved using an off-the-shelf MIP solver. This is equivalent to replacing (18) and (17) with:

$$
\begin{gather*}
\min \sum_{g \in \mathscr{G}}\left(z_{g}\left(p_{g}^{\mathrm{int}}\right)^{2}+\check{f}_{g}\left(\pi_{g}+p_{g}^{\mathrm{int}}\right)-\check{f}_{g}\left(p_{g}^{\mathrm{int}}\right)+c_{g 1} p_{g}+c_{g 0} z_{g}\right) \tag{21}\\
\forall g \in \mathscr{G} \\
\forall g \in \mathscr{G}
\end{gather*} \quad\left(\underline{P}_{g}-p_{g}^{\mathrm{int}}\right) z_{g} \leq \pi_{g} \leq\left(\bar{P}_{g}-p_{g}^{\mathrm{int}}\right) z_{g},
$$

where $\check{f}_{g}(x)=c_{g 2} x^{2}$ and $p_{g}^{\text {int }}$ is

$$
\begin{equation*}
p_{g}^{\mathrm{int}}=\max \left(\underline{P}_{g}, \min \left(\sqrt{c_{g 0} / c_{g 2}}, \bar{P}_{g}\right)\right) \tag{22}
\end{equation*}
$$

The final AP2R reformulation consists in Eq. (21), Eq. (2)-(6), the complex part of Eq. (7), and Eq. (15).

5 Computational results

We tested PRs with 4 cuts and AP2R (implemented using AMPL [5]): both on the ACOPFG formulation ACOPFG $_{\mathbb{R}}$ in Sect. 2 (Table 1) and on the dual Diagonally Dominant Programming (DDP) outer-approximation proposed in [18] (Table 2) solved using CPLEX [9]. We compared these results with local optima of the ACOPF (all active generators) obtained by MatPower [21] and by solving the $\mathrm{ACOPFG}_{\mathbb{R}}$ using Baron [16] to global optimality (within a limited CPU time of 1 h). The test set includes small to medium scale instances taken from MatPower; results on one larger-scale instance are reported in Table 2. All results were obtained on an Intel i7 dual-core CPU at 2.1 GHz with 16 GB RAM.

	Perspective reformulation (ACOPFG ${ }_{\mathrm{R}}$)					AP2R (ACOPFGG)				$\begin{array}{\|c\|} \hline \text { MATPOWER } \\ \hline \text { value } \\ \hline \end{array}$	Mi-Quartic			Solution's distances	
Instance	it time	first value	last value	\% active	real value	time	\%active	value	real value		time ${ }^{\text {c }}$	\%active	best value	Persp/Mi-Quartic	AP2R/Mi-Quartic
WB2	224	878.182	878.182	100	878.182	13	100	878.18	878.182	877.78	13	100	878.182	0	0
WB3	2169	417.244	417.244	100	417.244	109	100	417.244	417.244	417.25	108	100	417.244	0	0
WB5	23600	947.056	947.056	100	947.056	2269	100	947.056	947.056	1082.33	2454	100	947.056	0	0
6ww	13600	2913.58	2913.58	x	2881.28	3600	100	10948.7	3135.18	3134.35	3600	100	3135.18	0.1584	0
case9	23600	2062.65	5115.72	100	5430.38	3600	66.7	10948.74	7335.42	5296.69	3600	100	5296.69	0.2561	0.6234
case 14	13600	5250.22	5250.22	x	5375.94	3600	80	6589.72	5287.72	8081.53	3600	60	5476.90	0.1370	0.8304
case30	13600	430.906	430.906	x	536.307	3600	66.7	503.508	503.508	576.89	3600	83.3	515.807	0.4234	0.3503

Table 1 Results on ACOPFG $_{\mathbb{R}}$ (' x ': solution not found within time limit).

In the "Perspective reformulation" columns we show: number of iterations, CPU seconds (limited to 1 h), PR objective value obtained on 1st iteration and final value, original objective function value at optimum, percentage of active generators at optimum. In the "AP2R" and "Mi-Quartic" columns we show CPU time, objective function value and percentage of active generators. In "Solution's distances" we report a scaled distance of the optima found by PR/AP2R w.r.t. Mi-Quartic, namely $\frac{\left\|p^{\omega}-p^{\mathrm{Ml}-\text { Quartic }}\right\|_{1}}{\left\|p^{\omega}\right\|_{1}}, \omega \in\{\mathrm{PR}, \mathrm{AP} 2 \mathrm{R}\}$.

	Perspective reformulation (dual DDP salgado3)						AP2R (dual DDP salgado3)				MATPOWER	Mi-Quartic			Solution's distances	
Instance	,	time	first value	last value	\% active	real value	time	\%active	value	real value	value	time	\%active	best value	Persp/Mi-Quartic	AP2R/Mi-Quartic
WB2	2	0.001	876.923	876.923	100	876.923	0.001	100	876.923	876.923	877.78	13	100	878.182	0.0014	0.0014
WB3	2	0.002	398.443	398.443	100	398.443	0.001	100	398.443	398.443	417.25	108	100	417.244	0.0472	0.0472
WB5	2	0.005	677.688	677.688	100	677.688	0.008	100	677.688	677.688	1082.33	1200	100	947.056	0.3563	0.3992
6ww	4	0.02	2760.751	2838.693	66.7	2844.44	0.008	66.7	57287.6	2841.61	3134.35	1200	100	3135.177	0.6108	0.6108
case9	2	0.03	2012.135	5034.028	100	5430.38	0.031	66.7	10810.8	7197.45	5296.69	120	100	5296.686	0.2422	0.8423
casel4	3	0.15	5091.340	5390.800	60	5406.53	1200	80	4746.99	4746.99	8081.53	1200	60	5476.905	0.0572	0.0325
case30	2	3.28	398.427	509.554	83.3	518.42	21	66.7	492.232	492.232	576.89	1200	83.3	515.807	0.6031	0.4068
se89pegase		297.33	5730.152	5730.152	100	5730.15	286.484	100	5730.15	5730.15	5817.60	x	x	x	x	x

Table 2 Results on dual DDP [18] (' x ': solution not found within time limit).

While it is clear that the tests with ACOPFG $_{\mathbb{R}}$ are inconclusive, those on the dual DDP approximation give very tight bounds in relatively little time.

Acknowledgements. This paper has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759. The second author is partially supported by MIUR PRIN2015 project no. 2015B5F27W. The last author (LL) is grateful for financial support by CNR STM Program prot. AMMCNT-CNR n. 80058 dated 05/12/2017.

References

1. R. Bacher. Power system models, objectives and constraints in optimal power flow calculations. In K. Frauendorfer, H. Glavitsch, and R. Bacher, editors, Optimization in Planning and Operation of Electric Power Systems, pages 217-264, Heidelberg, 1993. Springer.
2. D. Bienstock. Electrical Transmission System Cascades and Vulnerability: an Operations Research Viewpoint. Number 22 in MOS-SIAM Optimization. SIAM, Philadelphia, 2016.
3. D. Bienstock and A. Verma. Strong NP-hardness of AC power flows feasibility. Technical Report 1512.07315, arXiv, 2015.
4. C. Chen, A. Atamtürk, and S. Oren. Bound tightening for the alternating current optimal power flow problem. IEEE Transactions on Power Systems, 31(5):3729-3736, 2016.
5. R. Fourer, D. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathematical Programming. AMPL Optimization LLC, 2003.
6. A. Frangioni, F. Furini, and C. Gentile. Approximated perspective relaxations: a project\&lift approach. Computational Optimization and Applications, 63(3):705-735, 2016.
7. A. Frangioni, F. Furini, and C. Gentile. Improving the approximated projected perspective reformulation by dual information. Operations Research Letters, 45:519524, 2017.
8. A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming, 106(2):225-236, 2006.
9. IBM. ILOG CPLEX 12.6 User's Manual. IBM, 2014.
10. C. Josz. Application of polynomial optimization to electricity transmission networks. PhD thesis, Univ. Paris VI, 2016.
11. X. Kuang, B. Ghaddar, J. Naoum-Sawaya, and L. Zuluaga. Alternative LP and SOCP hierarchies for ACOPF problems. IEEE Transactions on Power Systems, accepted.
12. J. Lavaei and S. Low. Zero duality gap in optimal power flow problem. IEEE Transactions in Power Systems, 27(1):92-107, 2012.
13. K. Lehmann, A. Grastien, and P. van Hentenryck. AC-Feasibility on tree networks is NP-hard. IEEE Transactions on Power Systems, 13(1):798-801, 2016.
14. P. Panciatici. Private communication, 2016.
15. M. Ruiz, J. Maeght, A. Marié, P. Panciatici, and A. Renaud. A progressive method to solve large-scale AC optimal power flow with discrete variables and control of the feasibility. In Proceedings of the Power Systems Computation Conference, volume 18 of PSCC, Piscataway, 2014. IEEE.
16. N. Sahinidis. BARON user manual v. 17.8.9. The Optimization Firm LLC, 2017.
17. E. Salgado. Fast relaxations for alternating current optimal power flow. Master's thesis, LIX, Ecole Polytechnique, 2017.
18. E. Salgado, A. Scozzari, F. Tardella, and L. Liberti. Alternating current optimal power flow with generator selection. In Proceedings of ISCO 2018, LNCS, accepted.
19. S. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36:73-77, 1990.
20. L.A. Wolsey. Integer Programming. Wiley, New York, 1998.
21. R. Zimmermann, C. Murillo-Sanchez, and R. Thomas. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Transactions on Power Systems, 26(1):12-19, 2010.

[^0]: Esteban Salgado
 Ecole Polytechnique, 91128 Palaiseau, France
 e-mail: easalgadovalenzuela@gmail.com
 Claudio Gentile
 IASI-CNR, Rome, Italy
 e-mail: gentile@iasi.cnr.it
 Leo Liberti
 CNRS LIX Ecole Polytechnique, 91128 Palaiseau, France
 e-mail: liberti@lix.polytechnique.fr

