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Perspective cuts for the ACOPF with generators

The alternating current optimal power flow problem is a fundamental problem in the management of smart grids. In this paper we consider a variant which includes activation/deactivation of generators at some of the grid sites. We formulate the problem as a mathematical program, prove its NP-hardness w.r.t. activation/deactivation, and derive two perspective reformulations.

Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is one of the most important problems arising in the energy industry. It models the propagation of power flows in electrical grids. It is often used as second-level subproblem in bilevel problems modelling the decision of electricity prices subject to production and demands [14]. Multilevel problems with ACOPF at different time-scales are also considered [START_REF] Bacher | Power system models, objectives and constraints in optimal power flow calculations[END_REF]. The ACOPF received a lot of attention over the years, and specifically after smart grids were introduced [START_REF] Bienstock | Electrical Transmission System Cascades and Vulnerability: an Operations Research Viewpoint[END_REF].

The ACOPF asks for the best power flow over an electrical network modelled by a digraph D = (N , L ), where N is the set of buses and L the set of lines. It is well known that the natural formulation can be simplified using only voltage variables [START_REF] Josz | Application of polynomial optimization to electricity transmission networks[END_REF]. The ACOPF is usually cast as a Mathematical Programming (MP) problem over the complex numbers (which make their appearance due to the cyclic nature of alternating currents). The standard ACOPF can be reformulated as a (larger) MP over the reals, by separating real and complex parts [START_REF] Salgado | Fast relaxations for alternating current optimal power flow[END_REF].

While the standard version of the ACOPF only has continuous variables, more realistic variants include binary variables which activate/deactivate various electrical components. In this paper we consider the possibility of activating/deactivating electrical generation at some of the buses. This defines an ACOPF variant which we call ACOPF with Generators (ACOPFG) [START_REF] Ruiz | A progressive method to solve large-scale AC optimal power flow with discrete variables and control of the feasibility[END_REF].

Note that the ACOPF is NP-hard even without binary variables, as shown in [START_REF] Lehmann | AC-Feasibility on tree networks is NP-hard[END_REF]. Experimentally, however, it was found that many standard benchmarks, as well as randomly generated instances, can be solved efficiently. It is shown in [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF] that this happens whenever the duality gap is zero. One might then question whether the ACOPFG is NP-hard simply because of the addition of the binary activation variables. The first contribution of this paper is to prove that this is indeed the case.

While ACOPF objective functions vary in the literature, it is common to consider quadratic objectives with respect to voltage. In this paper, however, we focus on a more general objective function, quadratic with respect to active power and quartic (without cubic terms) w.r.t. voltage [START_REF] Josz | Application of polynomial optimization to electricity transmission networks[END_REF]. The second contribution of this paper is the application of two perspective reformulations (PR) to the ACOPFG with the more general (quartic) objective [START_REF] Frangioni | Perspective cuts for a class of convex 0-1 mixed integer programs[END_REF][START_REF] Frangioni | Approximated perspective relaxations: a project&lift approach[END_REF].

MP formulation

We consider the network digraph D mentioned in Sect. 1. Let n = |N | and = |L |. We identify a subset G of generator buses, and let n = |G |. We note that, in modern "smart grids", generators may produce and consume electricity. Because we are dealing with alternating currents, power is represented by a complex number. The real part is the active power while the complex part is reactive.

Notationwise, we use [α, α] to denote lower/upper bounds to a quantity, and α * to denote complex conjugate.

The parameters of our problem are as follows:

• ∀b ∈ N S b ∈ C is the power demand at bus b;

• ∀g ∈ G S g = [S g , S g ] is the (complex) interval where g can generate power if active;

• ∀b ∈ N v b = [v b , v b ]
is the (real) interval where the voltage magnitude at bus b can range; • ∀(a, b) ∈ L ı ab is the maximum current which can flow through the line (a, b); • Y is a complex n × n bus admittance matrix (it plays a role analoguous to the reciprocal of resistance in Ohm's law); • Y 0 ,Y 1 are complex × n line admittance matrices (they "encode" some electrical properties of the lines).

The decision variables are:

• ∀g ∈ G s g ∈ C is the power generated at g; • ∀g ∈ G z g ∈ {0, 1} denotes the deactivation (0) or activation (1) of generator g;

• ∀b ∈ N v b ∈ C is the voltage at bus b; • ∀(a, b) ∈ L i ab ∈ C is the current on the line (a, b).
At each generator g ∈ G , the injected complex power s g -S g = v g ∑ (g,a)∈L i * ga , and at each non-generator bus b ∈ N G , we have -S b = v b ∑ (b,a)∈L i * ba . Kirchoff's law and a generalized form of Ohm's law allow us to derive i = Y v, which implies that the RHS of the above equations can be reformulated to

v b (Y * v * ) b = ∑ (a,b)∈L v b v * a Y * ab for each b ∈ N [17]
. This allows us to express current in function of voltage and power. We obtain the following constraints:

∀g ∈ G ∑ (g,a)∈L Y * ga v g v * a = s g z g -S g (1) 
∀b ∈ N G ∑ (b,a)∈L Y * ba v b v * a = -S b (2) 
∀(a, b) ∈ L , ω ∈ {0, 1} ∑ h =k∈N (Y ω abh ) * (Y ω abk ) * v * h v k ≤ ı ab (3) ∀g ∈ G s g ∈ S g (4) ∀b ∈ N |v b | ∈ v b (5) ∀g ∈ G z g ∈ {0, 1}. (6) 
We remark that complex power variables s only appear in Eq. ( 1) and ( 4). We can eliminate them by replacing Eq. ( 1) and ( 4) with the following inequalities:

∀g ∈ G S g z g ≤ ∑ (g,a)∈L Y * ga v g v * a + S g ≤ S g z g . (7) 
Moreover, if we define z over all of N and fix z b = 0 for all b ∈ G , Eq. ( 7) quantified on N can also replace Eq. ( 2).

In the ACOPF literature [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF][START_REF] Kuang | Alternative LP and SOCP hierarchies for ACOPF problems[END_REF][START_REF] Chen | Bound tightening for the alternating current optimal power flow problem[END_REF][START_REF] Ruiz | A progressive method to solve large-scale AC optimal power flow with discrete variables and control of the feasibility[END_REF] we consider the following generation cost function, to be minimized:

f (s, z) = ∑ g∈G z g (c g2 (Re(s g )) 2 + c g1 Re(s g ) + c g0 ). (8) 
Again we can replace s by v using Eq. ( 1) and removing constant terms in order to express Eq. ( 8) as a function of voltage: essentially, we obtain f (v, z) from Eq. ( 8) by replacing s g with ∑ (g,a)∈L Y * ga v g v * a + S g . Let F be the feasible subset of C n defined by Eq. ( 2)-( 6) and [START_REF] Frangioni | Improving the approximated projected perspective reformulation by dual information[END_REF]. We call

ACOPFG C the formulation min (v,z)∈F f (v, z).
Finally, we can obtain a real formulation as follows:

1. replace each quadratic constraint v H Mv ♦ α + jβ (where ♦ ∈ {=, ≤, ≥} and j = √ -1) by the pair of constraints

v H M + v ♦ α + jβ ∧ v H M -v ♦ α + jβ , where M + = 1 2 (M + M H ) and M -= 1 2 (M -M H ); 2.

replace each complex matrix M by the real matrix

Re(M) -Im(M) Im(M) Re(M) ;

3. replace each complex vector v by the real vector (Re(v) Im(v)) .

We call this reformulation ACOPFG R .

Complexity

Assume c g2 = 0 for all g ∈ G in Eq. [START_REF] Frangioni | Perspective cuts for a class of convex 0-1 mixed integer programs[END_REF]. By ignoring activation variables we obtain the ACOPF, which is a Quadratically Constrained Quadratic Program (QCQP).

Since the ACOPF is NP-hard [START_REF] Bienstock | Strong NP-hardness of AC power flows feasibility[END_REF], it follows by inclusion that the ACOPFG is also NP-hard. On the other hand, it was shown in [START_REF] Lavaei | Zero duality gap in optimal power flow problem[END_REF] that many practical ACOPF instances turn out to be easy rather than hard. We remark that "easy", in this setting, does not necessarily mean "in P", since the decision version of the QCQP is not known to be in NP (unless there are no quadratic constraints, in which case the problem class is known to be in NP [START_REF] Vavasis | Quadratic programming is in NP[END_REF]). The meaning of "easy" in this context is that global optima can be obtained by means of a local, rather than global, optimization procedure.

The question we answer in this section is whether the addition of the binary activation variables constitute an actual additional difficulty. To show that this need not necessarily be the case, we consider a linear system

Ax ≤ b x ≤ 1 x ∈ R n + ,    ( 9 
)
where A is totally unimodular. Finding a feasible solution can obviously be done in polynomial time by the, say, interior point algorithm (irrespective of total unimodularity), and so this formulation is in P. If we add n additional binary activation variables y 1 , . . . , y n ∈ {0, 1} and n additional activation/deactivation constraints

∀ j ≤ n x j ≤ y j , (10) 
then the new system has a constraint matrix:

  A 0 I n 0 I n -I n   ,
which is easily seen to also be totally unimodular [START_REF] Wolsey | Integer Programming[END_REF]. Therefore this new Mixed-Integer Linear Programming (MILP) formulation is in P. This provides an example where adding boolean activation variables does not make the underlying problem more difficult.

Having established that the question makes sense, we present a reduction of the weakly NP-complete SUBSET-SUM problem to a subclass of ACOPFG. Given an instance (σ 1 , . . . , σ n , S 0 ) of SUBSET-SUM, we must decide whether there is a subset I ⊆ {1, . . . , n} such that

∑ i∈I σ i = S 0 . (11) 
This is equivalent to asking whether the following linear diophantine equation has a solution x ∈ {0, 1} n :

∑ i≤n σ i x i = S 0 . (12) 
We now show that we can naturally express Eq. ( 12) using the ACOPFG formulation of Sect. 2. We consider a simple network D with G = {1, . . . , n} generators with demand S g = 0 for g ≤ n and a single non-generator bus (indexed by 0) with demand S 0 (so that N = {0, . . . , n}). The set L of lines is {(g, 0) | 1 ≤ g ≤ n}, namely each generator is linked to the only non-generator bus. Each generator g ∈ G has generation interval S G = [σ g , σ g ], i.e. each generator can either be inactive, or else, if active, must produce exactly σ g . Then Eq. ( 7) becomes:

∀g ≤ n Y * g0 v g v * 0 = σ g z g . (13) 
Since we know σ g is real and positive, we arrange Y * so that the complex part of the LHS of Eq. ( 13) is zero; in particular, we arrange Y * g0 v * 0 to yield a j 2 = -1 coefficient (this can be easily done when we derive ACOPFG R ). So we get:

∀g ≤ n Re(Y * g0 v g v * 0 ) = -σ g z g . (14) 
Furthermore, Eq. ( 2) is:

∑ (g0)∈L Y * g0 v 0 v * g = -S 0 ,
whence, by Eq. ( 14), we have:

∑ g≤n (-σ g z g ) = -S 0 ,
which is exactly Eq. ( 12).

Perspective reformulation

The objective function Eq. ( 8) can be restated using additional variables

p g = Re(v g ∑ (g,a)∈L v * a Y * ga + S g ). In practice use the convex constraints ∀g ∈ G s.t. c g2 > 0 p g ≥ Re(v g ∑ (g,a)∈L v * a Y * ga + S g ), (15) 
which are justified by the objective function direction. We now reformulate Eq. ( 8) using these new variables:

f (p, z) = ∑ g∈G (c g2 p 2 g + c g1 p g + c g0 z g ). ( 16 
)
The reformulations proposed below can all be carried out on a per-generator basis.

In the rest of this paper, we assume they are only applied to generators g ∈ G for which c g2 > 0.

The power p g is subject to the following activation constraints:

p g ≤ P g z g ∧ p g ≥ P g z g ( 17 
)
where P g = Re(S g ) and P g = Re(S g ). The PR reformulation [START_REF] Frangioni | Perspective cuts for a class of convex 0-1 mixed integer programs[END_REF] can be applied to ( 16) as follows:

f (p, z) = ∑ g∈G c g2 p 2 g z g + c g1 p g + c g0 z g . ( 18 
)
The function ( 18) can be optimized using the perspective cuts (PC) method [START_REF] Frangioni | Perspective cuts for a class of convex 0-1 mixed integer programs[END_REF], which works as follows: (i) first we add new variables t g representing the nonlinear part of the cost in ( 18) by considering the following constraints

t g ≥ c g2 p 2 g z g , (19) 
and replacing [START_REF] Salgado | Alternating current optimal power flow with generator selection[END_REF] with f (t, p, z) = ∑ g∈G (t g +c g1 p g +c g0 z g ); (ii) then constraints [START_REF] Vavasis | Quadratic programming is in NP[END_REF] can be replaced by PCs:

t g ≥ c g2 (2 pg p g -p2 g z g ), (20) 
where pg are fixed values of the real power p g varying in the feasible interval P g ≤ pg ≤ Pg when z g = 1. The addition of PCs does not add further difficulties in the problem formulation except for the condition that they should be generated iteratively as their number is not finite. We can alternatively apply the AP2R technique [START_REF] Frangioni | Approximated perspective relaxations: a project&lift approach[END_REF][START_REF] Frangioni | Improving the approximated projected perspective reformulation by dual information[END_REF], which works in two phases. The first phase is a projection where the optimal value of z g for the continuous relaxation of Eq. ( 18) subject to Eq. ( 17) is found depending on p g . The second phase is a lifting where the variables z g are lifted back. The resulting problem can be solved using an off-the-shelf MIP solver. This is equivalent to replacing [START_REF] Salgado | Alternating current optimal power flow with generator selection[END_REF] and ( 17) with:

min ∑ g∈G z g (p int g ) 2 + fg (π g + p int g ) -fg (p int g ) + c g1 p g + c g0 z g ∀g ∈ G (P g -p int g )z g ≤ π g ≤ (P g -p int g )z g ∀g ∈ G π g = p g -p int g z g ,      (21) 
where fg (x) = c g2 x 2 and p int g is p int g = max(P g , min( c g0 /c g2 , P g )).

(

The final AP2R reformulation consists in Eq. ( 21), Eq. ( 2)-( 6), the complex part of Eq. ( 7), and Eq. ( 15).

Computational results

We tested PRs with 4 cuts and AP2R (implemented using AMPL [START_REF] Fourer | AMPL: A Modeling Language for Mathematical Programming[END_REF]): both on the ACOPFG formulation ACOPFG R in Sect. 2 (Table 1) and on the dual Diagonally Dominant Programming (DDP) outer-approximation proposed in [START_REF] Salgado | Alternating current optimal power flow with generator selection[END_REF] (Table 2) solved using CPLEX [START_REF]ILOG CPLEX 12.6 User's Manual[END_REF]. We compared these results with local optima of the ACOPF (all active generators) obtained by MatPower [START_REF] Zimmermann | MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education[END_REF] and by solving the ACOPFG R using Baron [START_REF] Sahinidis | [END_REF] to global optimality (within a limited CPU time of 1h 1 Results on ACOPFG R ('x': solution not found within time limit).

In the "Perspective reformulation" columns we show: number of iterations, CPU seconds (limited to 1h), PR objective value obtained on 1st iteration and final value, original objective function value at optimum, percentage of active generators at optimum. In the "AP2R" and "Mi-Quartic" columns we show CPU time, objective function value and percentage of active generators. In "Solution's distances" we report a scaled distance of the optima found by PR/AP2R w.r.t. Mi-Quartic, namely p ω -p MI-Quartic Table 2 Results on dual DDP [START_REF] Salgado | Alternating current optimal power flow with generator selection[END_REF] ('x': solution not found within time limit).

While it is clear that the tests with ACOPFG R are inconclusive, those on the dual DDP approximation give very tight bounds in relatively little time.

  ). The test set includes small to medium scale instances taken from MatPower; results on one larger-scale instance are reported in Table2. All results were obtained on an Intel i7 dual-core CPU at 2.1GHz with 16GB RAM.

	Perspective reformulation (ACOPFGR)		AP2R (ACOPFGR)	MATPOWER		Mi-Quartic	Solution's distances
	Instance it time first value last value % active real value time %active value real value	value	time %active best value Persp/Mi-Quartic AP2R/Mi-Quartic
	WB2 2 24 878.182 878.182	100	878.182	13	100	878.18 878.182	877.78	13	100	878.182	0	0
	WB3 2 169 417.244 417.244	100	417.244 109 100 417.244 417.244	417.25	108 100	417.244	0	0
	WB5 2 3600 947.056 947.056	100	947.056 2269 100 947.056 947.056	1082.33	2454 100	947.056	0	0
	6ww 1 3600 2913.58 2913.58	x	2881.28 3600 100 10948.7 3135.18	3134.35	3600 100	3135.18	0.1584	0
	case9 2 3600 2062.65 5115.72	100	5430.38 3600 66.7 10948.74 7335.42	5296.69	3600 100	5296.69	0.2561	0.6234
	case14 1 3600 5250.22 5250.22	x	5375.94 3600 80	6589.72 5287.72	8081.53	3600 60	5476.90	0.1370	0.8304
	case30 1 3600 430.906 430.906	x	536.307 3600 66.7 503.508 503.508	576.89	3600 83.3 515.807	0.4234	0.3503
	Table											
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