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1  | INTRODUC TION

Biologists and ecologists routinely study quantities that are not di‐
rectly measurable (probabilities of survival, capture, etc.…), espe‐
cially in wild populations, and thus need to use models to calculate 
estimates of these quantities. In addition, ecologists are often inter‐
ested in assessing the effect of covariates on these quantities, such 
as the comparison of survival before and after the implementation 

of conservation and management measures. Typically these model‐
produced estimates of say survival probability are calculated from 
the same model and hence not independent, that is, coming with as‐
sociated variances and covariances. Thus, using the model‐produced 
estimates in traditional statistical tools, such as for example t test 
(Gossett, 1908), ANOVA (Anderson & Ager, 1978), correlation co‐
efficient, or linear models, highly violates the rule of independence 
of these tools. The latter therefore becomes inefficient to deal with 
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Abstract
Many biological quantities cannot be measured directly but rather need to be esti‐
mated from models. Estimates from models are statistical objects with variance and, 
when derived simultaneously, covariance. It is well known that their variance–covari‐
ance (VC) matrix must be considered in subsequent analyses. Although it is always 
preferable to carry out the proposed analyses on the raw data themselves, a two‐
step approach cannot always be avoided. This situation arises when the parameters 
of a multinomial must be regressed against a covariate. The Delta method is an ap‐
propriate and frequently recommended way of deriving variance approximations of 
transformed and correlated variables. Implementing the Delta method is not trivial, 
and there is a lack of a detailed information on the procedure in the literature for 
complex situations such as those involved in constraining the parameters of a multi‐
nomial distribution. This paper proposes a how‐to guide for calculating the correct 
VC matrices of dependant estimates involved in multinomial distributions and how to 
use them for testing the effects of covariates in post hoc analyses when the integra‐
tion of these analyses directly into a model is not possible. For illustrative purpose, 
we focus on variables calculated in capture–recapture models, but the same proce‐
dure can be applied to all analyses dealing with correlated estimates with multinomial 
distribution and their variances and covariances.
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these dependent estimates because the variance–covariance (VC) 
structure is ignored.

The ideal option is to build the proposed analysis in the model 
(option 1, Figure 1). However, it can sometimes become complicated 
or even not possible to test hypotheses of interest using the currently 
available models. Biologists are therefore required to run alternative 
post hoc analyses on the model‐produced estimates. Some papers 
previously discussed this issue of doing statistics on statistics in post 
hoc analysis either in a frequentist framework (Burnham & White 
2002; Grosbois et al., 2008; see Dugger et al., 2015 for an example 
of the use of these models) or in the Bayesian framework (Brooks 
& Deroba, 2015; Link 1999; Link & Barker 2004) in which a hierar‐
chical approach was recommended (Cooch, Conn, Ellner, Dobson, & 
Pollock, 2012; Royle & Dorazio 2008; Sutherland, Brambilla, Pedrini, 
& Tenan, 2016).

A typical example is the study of movement as a function of 
the distance. In ecology, dispersal of plant seeds or movement of 
animals are generally more frequent between neighboring sites. 
To actually test this idea, one may want to relate the frequency of 
movements between any two locations to the distance separating 
them. For animals, frequency of exchanges can be measured from 
capture–recapture (CR) data gathered on a small number of sites. An 
appropriate multisite model (Cormack, 1964; Jolly, 1965; Nichols & 
Kendall, 1995; Pradel, Gimenez, & Lebreton, 2005; Seber, 1965), on 
which we will focus here for illustrative purpose, produces estimates 
of the probability that an animal moves or stays from a given site of 
departure toward a site of arrival. The natural idea is then to regress 
the probability of movement against the distance between the de‐
parture and arrival sites directly in the model (option 1, Figure 1). 
However, because only the surveyed sites are observable as arrival 
sites, the multisite models can only estimate conditional probabil‐
ities of movement (conditional on the fact that the animals do not 
move out of the set of surveyed sites). As the different possible tran‐
sition probabilities (including the probability of not departing) must 
sum to 1, one of those probabilities chosen arbitrarily, but usually the 
probability of not departing, is the complement of the others. In this 

case, it is not an actual parameter of the model and cannot be forced 
into the relationship with the distance. The same problem will arise 
every time that the quantities to be constrained are parameters with 
a multinomial distribution, that is, variables with more than two mo‐
dalities such as the breeding status based on the number of offspring 
produced or the settlement probabilities in different areas.

To circumvent this difficulty, we propose a second option (op‐
tion 2, Figure 1), that is, applying a generalized least square (GLS) 
approach to the estimates produced by the unconstrained multisite 
model. A proper estimation of the VC matrix is therefore needed 
as a key element for accounting for statistical uncertainty or cor‐
relation in parameters estimates that are included in these post hoc 
analyses. Some scientific articles commonly apply the Delta method 
(Dorfman, 1938; Ver Hoef, 2012), a method for deriving variance 
approximations of transformed and correlated variables. The Delta 
method theory was fully explained and its use recommended to biol‐
ogists (Cooch & White, 2016; MacKenzie, 2006; Williams, Nichols, & 
Conroy, 2002). Powell (2007) described the Delta method in a more 
accessible way to ecologists, but it was less detailed in describing 
correlated estimates and providing applications with covariates. The 
use of the Delta method is rarely made the focal point in scientific 
papers, much less with multinomial variables. This lack of detailed 
procedures in the literature could lead to incorrect use where de‐
pendent estimates are considered as independent ones (Pape Møller 
& Szép, 2002). Indeed, Fernández‐Chacón et al. (2013) was, to our 
knowledge, the only study that used and described a correct use of 
the variance–covariance (VC) matrix in post hoc analyses to study 
impacts of a covariate on a parameter with a multinomial distribution.

The aim of the present work is to propose a how‐to guide for 
calculating the correct VC matrices of dependant estimates with 
multinomial distribution and how to use them when covariates are 
tested in post hoc analyses. We first briefly describe the general 
statistical requirements on link functions and the Delta method and 
refer to corresponding theoretical papers. Second, we focus on the 
specificities of CR analyses and how to assess the effect of covari‐
ates on parameters involved in the multinomial distribution (e.g., 

F I G U R E  1   Schematic of statistical 
approach
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multinomial logit link function), a case in which covariates could not 
be integrated directly in a new model. We provide R code (Team, 
2015) in the (Appendix S1) Supporting information to reproduce 
these post hoc analyses and serve as practical guide for other po‐
tential applications.

2  | HOW DOES THE DELTA METHOD 
WORK IN SIMPLE C A SES?

Such as other biological quantities, demographic probabilities (e.g., 
survival or detection probabilities) can, by definition, vary between 
0 and 1. Commonly in statistical analyses, these quantities are trans‐
formed with link functions, which provides a mapping of (0,1) space 
to the real number axis, so between −∞ and +∞, which is useful for 
most basic statistics (e.g., linear model). In CR analyses, several link 
functions can be used (Table 1), but the most commonly used is the 
logit function, such as:

where θ can be estimates of any demographic parameters and βs 
represent the transformed θ (hereafter named mathematical param‐
eters). To get back the demographic parameters θ, that is, on the [0,1] 
probability scale, the back‐transformation, also called the inverse 
logit function (Table 1), is:

Then, to assess the impact of a covariate x on demographic pa‐
rameters, CR models are constructed to constrain estimates of these 
parameters to be a function of x. In the case of a linear relation, the 
logit link function, as well as the other link functions of Table 1, can 
thus be written as:

where βi is the intercept and βs the slope of this linear relation.
Similarly, the back‐transformation is:

Several of these biological quantities cannot be measured simply 
but rather need to be estimated from models. Estimates of these 
quantities θ derived from models, as well as the mathematical pa‐
rameters (�), come with variance and covariance. This non‐indepen‐
dence is expressed through a VC matrix (V(θ) and V(�) respectively), 
which needs to be taken into account to perform proper analyses. 
However, as stated above, the θ are very often transformed to be 
used in statistical analyses, for example, with link functions in the 
case of transformations of probability. These scale modifications, 
when using a link function, influence the shape of the likelihood and 
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thus the estimate of the variance (Cooch & White, 2016). It is not as 
simple as back transforming the V(�) to obtain V(θ).

Yet, a convenient and straightforward method for obtaining vari‐
ance and covariance of one or more transformed demographic pa‐
rameters is the Delta method that uses the one‐dimensional Taylor 
series approximation (Cooch & White, 2016; Williams et al., 2002). 
We can approximate V(θ), the VC matrix of any demographic param‐
eters, by:

where β represent the mathematical parameters, that is, the 
transformed θ after applying the link function, V(β) is the VC matrix 
of the βs, Dθ is the matrix of the first derivatives of the demographic 
parameters (θ) and Dθ

T is the transpose of Dθ.
The logit link function (such as others, see Table 1) is well adapted 

to variables with binomial distributions, thus convenient in CR analy‐
ses where several phenomena are essentially binary (e.g., survived or 
died, breeder versus non‐breeder, captured or not). However, other 
phenomena, namely transitions in multistate models, are essentially 
multinomial.

3  | HOW TO A SSESS THE EFFEC T OF 
COVARIATES ON PAR AMETERS WITH 
MULTINOMIAL DISTRIBUTION

In more complex CR models, such as multistate (Nichols & Kendall, 
1995) or multi‐event (Pradel, 2005) models, the probabilities of 
interest can have more than two modalities. As an example, we 
could study the impact of the distance separating any two loca‐
tions on the frequency of movements between them. In a situa‐
tion where there are 4 sites, starting from any one site, we have 
four potential movements including the probability of not moving 
(Figure 2). Since the associated probabilities must sum to 1, the 
logit link function is no longer satisfactory and has to be replaced 
by the multinomial (or generalized) logit (McFadden, 1968) link 
function. The implementation of this constraint, that the sum of 
the probabilities of movement from a given departure site is equal 
to 1, forces in effect a parameterization, where there is no direct 
correspondence between an actual parameter (β) and a particular 
movement (θ).

Although there are as many mathematical parameters (3β) as 
independent demographic parameters (3 θ), there is no one‐to‐one 
correspondence as can be seen from the equations above (any in‐
dividual θ is a function of all the components of β through the 
denominator).

An alternative parameterization separates the probability to 
disperse from the probabilities of settlement conditional on dispersal 

(Grosbois & Tavecchia, 2003). If we take the probability of moving to 
site D as the complement, then we have:

where �′
AB

 is the transition from A to B, that is, the probability 
that an individual leaving site A settles on site B the subsequent year. 
Inverting the multinomial logit function, we obtain the probabilities 
of settlement as:

There is still no one‐to‐one correspondence between the indi‐
vidual β′ and the individual θ′.

This absence of a one‐to‐one correspondence between demo‐
graphic and mathematical parameters renders obscure, if at all pos‐
sible, the way to implement a desired constraint on demographic 
parameters. Therefore, we propose to extract estimates of the 
demographic parameters from the unconstrained model along with 
their VC matrix, and then run post hoc analyses. As stated above, 
because the estimates will not be independent, traditional statistical 
techniques are not appropriate. We propose to use instead the gen‐
eralized least square (GLS; Aitken 1936) framework. However, for 
this method to perform properly we need to ensure that all values in 
the set of real numbers are admissible. This is ensured if we work on 
the logit scale. The first step is thus to calculate the simple logit of 
θ′ (or θ) above. In this transformation, each element of θ′ is mapped 
one‐to‐one onto an element of a new vector (thereafter called γ), 
which corresponds to a transition and only one and which takes its 
value between −∞ and +∞. Then, we calculate the associated VC ma‐
trix (V(γ)), for example, with the Delta method, which will be used in 
the GLS analyses. Indeed, the mathematical parameters (β′) cannot 
be used because they do not correspond to any particular transi‐
tion, and the transitions (θ′) themselves have the disadvantage to 
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F I G U R E  2   Schematic of the possible transitions between 
different breeding locations
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vary between 0 and 1, on which regression cannot be made directly 
(Figure 3).

Program MARK (White & Burnham, 1999) provides the VC ma‐
trix for the demographic parameters (V(θ′)). We only need to derive 
the VC matrix V(γ) of the logits of θ (γ), prior to the GLS analysis (Step 
2, Figure 3). If instead program E‐SURGE (Choquet, Rouan, & Pradel, 
2009) is used, only the VC matrix of the mathematical parameters 
(V(β′)) is directly available, so that there is an additional step in this 
case (Step 1, Figure 3). We describe the steps required when only 
the VC matrix of the mathematical parameters is provided as part of 
step 1 in the analyses.

Step 1: As per the Delta method, we start from 
V
(
��
)
=D�

�
∗V

(
��
)
∗D�

�

T. Using the same example as above: 

V
(
��
)
=V

(
��

A1

��

A2

)
 and V

(
��
)
=V

(
��

AB

��

AC

)
. In order to calculate V(θ′), we 

first need to calculate the matrix of the first derivatives of θ′ with 

respect to β′ (D�=
���

���). Depending on which β′ we derived with re‐

spect to, the first derivative of θ′ will differ. After some algebra 
based on Table 1, we can write the partial first derivative of θAB

′ with 
respect to each β′ such as:

and any other 
���

AB

���ij
=0 with i ≠ A and j from 1 to 2. This was ap‐

plied in all cases to get D′
�
 (Table 2), then to take the transpose, D�′

T, 
and to consequently calculate V

(
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)
.
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additional transformation on the logit scale of θ′ and their corre‐
sponding VC matrix had to be calculated. Thus, 
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)
 either previously calcu‐

lated or directly provided by the program MARK, the Delta method 
gives for example:

After applying these formula to all cases, we get V(γ), presented 
in Table 3. The one‐to‐one individual transformed estimates (γ) and 
their VC matrix (V(γ)) can now be used to perform a GLS linear re‐
gression between the movement probability estimates and a co‐
variate (e.g., distance between sites A, B, C, and D). This procedure 
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F I G U R E  3   General approach for 
assessing the impact of a covariate 
on parameters with a multinomial 
distribution. “VC” means variance–
covariance, “β” are the mathematical 
parameters, “θ” the estimates of biological 
quantities and “ϒ” the one‐to‐one 
individual transformed estimates. Red 
arrows indicate the steps (1 and 2) where 
the Delta method is applied

βA1 βA2 βB1 βB2 βC1 βC2

θAB (1 − θAB)θAB −θABθAC 0 0 0 0

θAC −θACθAB (1 − θAC)θAC 0 0 0 0

θBA 0 0 (1 − θBA)θBA −θBAθBC 0 0

θBC 0 0 −θBCθBA (1 − θBC)θBC 0 0

θCA 0 0 0 0 (1 − θCA)θCA −θCAθCB

θCB 0 0 0 0 −θCBθCA (1 − θCB)θCB

For example, θAB is the transition from A to B, that is, the probability that an individual leaving site A 
settles on site B the subsequent year.

TA B L E  2   Matrix (D�X
) of the first 

derivatives of the biological parameters 
(θs) (in rows) with respect to the 
mathematical parameters (βs) (in columns)
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is implemented in MATLAB with the function lscov and in R with 
the function lm.gls of the library MASS. The R script that allows 
doing these calculations is detailed in the supporting information 
(Appendix S1).

By way of illustration, we reproduce here the example of the 
role of distance on conditional settlement probabilities (Fernández‐
Chacón et al., 2013), that is, decision on where to go once animals 
have left their previous site. A long‐lived seabird was monitored in 
four sites. In this study, settlement probabilities were estimated with 
multi‐event mark–recapture models in E‐SURGE, taking into account 
as the complement the settlement on a catchall fifth site (ghost loca‐
tion), which serves for all individuals that go to unmonitored sites or 
skip breeding altogether. Following the approach presented above 
with five sites instead of four, we started from the β and V(β) to get 
the θ and V(θ) (Step 1), then to obtain the γ and V(γ) (Step 2), to finally 
test, with a GLS linear regression, the link between distance separat‐
ing each of the sites and settlement probabilities. In this numerical 
example, distance to the destination site did not influence settle‐
ment choices (Fernández‐Chacón et al., 2013). R routines, numerical 
steps, variance–covariance matrices, and results are provided in sup‐
porting information (Appendix S1).

4  | CONCLUSION

Although integrating the covariate directly into a given model is the 
preferred method, this is not always possible. The two‐step approach 
presented in this paper works well in the context of CR analyses and 
has the additional advantage of allowing manipulating the biologi‐
cal quantities themselves rather than the compounded parameters 
of multinomial logits. Additionally, our method is impervious to the 
difficulties that may arise in a direct analysis when the same covari‐
ate is hypothesized to act on quantities derived from more than one 
multinomial. For example, when testing the effect of distance on 
movement probability, the probability to move from site A to site B 
should be equal to that to move from B to A if distance is the sole 
determinant. Although the two quantities belong to two different 
multinomials, this is not an obstacle in our approach.

One may wonder how good is this alternative of post hoc anal‐
ysis. Preliminary analyses without multinomial distribution (not pre‐
sented) showed that integrating the covariate into the models or 
running a posteriori analyses accounting for correlated estimates 

provided the same biological conclusions. For example, assessing 
the effect of the winter NAO on annual survival either comparing 
models with the integrated covariate (Guéry et al., 2017) or with the 
GLS technique performing a linear regression between the winter 
NAO and annual survival led to similar conclusions. However, the in‐
terpretation of the details needs to be careful with the extreme case 
of parameters estimated at the boundaries (0 or 1), where the logit 
transformation is not linear anymore for these limits (logit(0) = −∞ 
and logit(1) = +∞). Indeed, the Delta method assumes that the trans‐
formation of variables is approximately linear over the expected 
range of the parameter; otherwise, it could fail to correctly approxi‐
mate the variance (Cooch & White, 2016; Williams et al., 2002).

Our study mostly uses examples from a CR framework but what 
we propose goes beyond CR models and can be used in any frame‐
work as long as one deals with parameter estimates that come from 
the same model. We hope that this paper will serve as reference and 
guideline in further needed investigations, not only in population bi‐
ology but also in all analyses dealing with correlated estimates and 
their variances and covariances.
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