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Abstract.  The relative role of density-dependent and density-independent variation in vital
rates and population size remains largely unsolved. Despite its importance to the theory and
application of population ecology, and to conservation biology, quantifying the role and
strength of density dependence is particularly challenging. We present a hierarchical formula-
tion of the temporal symmetry approach, also known as the Pradel model, that permits estima-
tion of the strength of density dependence from capture—mark-reencounter data. A measure of
relative population size is built in the model and serves to detect density dependence directly
on population growth rate. The model is also extended to account for temporal random vari-
ability in demographic rates, allowing estimation of the temporal variance of population
growth rate unexplained by density dependence. We thus present a model-based approach that
enable to test and quantify the effect of density-dependent and density-independent factors
affecting population fluctuations in a single modeling framework. More generally, we use this
modeling framework along with simulated and empirical data to show the value of including
density dependence when modeling individual encounter data without the need for auxiliary

data.
Key words:
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INTRODUCTION

Because a population cannot grow indefinitely, it is
expected that density will eventually check population
growth (Malthus 1798). At the opposite, low levels of
density have also been found to sometimes limit popula-
tion growth (Allee et al. 1949). The first phenomenon
(negative density dependence) will result in population
fluctuations around the carrying capacity (Sibly and
Hone 2002) while the second (positive density depen-
dence) will precipitate population decline. It follows that
the way density regulates population dynamics influ-
ences persistence time of threatened populations as well
as the sustainable harvest rate of exploited populations
(Lande et al. 2003). The study of the strength and form
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of density dependence is thus fundamental to the under-
standing of processes that regulate temporal and spatial
variation in population size (Lack 1954, Ricker 1954,
Andrewartha and Birch 1986).

It has always been challenging to demonstrate density
dependence in real populations. There are practical, the-
oretical, and technical difficulties in tackling the prob-
lem (Lebreton 2009). First, population size and hence
density is notoriously difficult to measure accurately;
second, density is only a proxy for interactions among
individuals and is thus a noisy measure of what actually
occurs; but probably the main obstacle is statistical: suc-
cessive densities and changes in density are obviously
strongly related, a fact that must be acknowledged in
any model. Early attempts focused on fitting the theoret-
ical logistic growth model (Verhulst 1838, Pearl and
Reed 1920) but were inconclusive (Slobodkin 2001).
Among the extant approaches, retrospective studies ana-
lyze variation of population growth rate over time by

Article €02595; page 1


info:doi/10.1002/ecy.2595
info:doi/10.1002/ecy.2595
mailto:

2
N
S
§~3|
s
N
Q
Y=
—
Nt
—
N
——
A

Article e02595; page 2

focusing on the realized population growth rate between
two successive time steps as p; = N, |/N;, where N; is
population size at time i. However, abundance estima-
tion in open populations can be biased when the error in
the counts around the true population size (observation
error) is not accounted for, leading to spurious detection
of density dependence (Dennis et al. 2006, Freckleton
et al. 2006, Lebreton 2009). State-space models is
another approach that can reduce bias in parameter esti-
mates when population counts are the only data avail-
able (Clark and Bjernstad 2004), however separating
observation variance from process variance is only possi-
ble when the observation error is relatively small (Knape
2008). In addition, negative autocorrelation between
successive estimators may lead to an overestimation of
temporal variance of population growth rate (an overes-
timation of N; biases p; low but biases p,_; high).

Some methods, based on individual encounter histo-
ries, are currently available to assess the impact of density
on demographic rates while accounting for imperfect
detection. Schofield and Barker (2008) and Schofield
et al. (2009) propose to study the effect of density on
recruitment and survival. However, density dependence
may be effected differently in different years. For instance,
for a given density, it may entail a reduced survival in
years of high fecundity whereas survival will remain high
in years of low fecundity. Methods that allow to study the
effect of density directly on population growth rate are
thus needed. The approach proposed by Schofield et al.
(2009) can be reparameterized so that recruitment rate is
defined as the difference between population growth rate
and survival (Nichols 2016) thus allowing modeling in
terms of population growth rate.

Integrated population models (IPMs; Besbeas et al.
2002) allow estimation of the strength of density depen-
dence not only on demographic rates but also on the
derived population growth rate (Abadi et al. 2012).
However, IPMs rely on the combination of different
sources of information, which may not always be simul-
taneously available, and testing for density dependence
directly on population growth rate is possible only using
a two-step approach where growth rate estimates are
regressed on population size. To our knowledge, there
are no model-based approaches currently available that
enable to formally test and quantify the strength of den-
sity dependence directly on population growth rate from
capture—mark-reencounter (CMR) data in a single mod-
eling framework.

Unlike any other approach that exists to estimate and
model population growth and associated vital rates
using CMR data from open populations, the temporal
symmetry approach, also known as the Pradel model
(Pradel 1996), combines the standard-time and the
reverse-time approaches in a unique likelihood, allowing
inference on population growth rate. Like other
approaches (Schwarz 2001, Pledger et al. 2003, 2010,
Link and Barker 2005), the Pradel model simultaneously
incorporates the survival and recruitment processes,
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where the latter includes both local recruitment and
immigration, and estimated mortality includes perma-
nent emigration. However, the Pradel model likelihood
can be parameterized with population growth rate p as a
structural parameter, thus allowing to test biological
hypotheses directly on p. In addition, a Bayesian formu-
lation of the Pradel model permits the hierarchical mod-
elling of the biological and sampling processes and
allows the extension of the original fixed time effects
structure to random time effects (Tenan et al. 20145).

At this point, density can be integrated in the model,
only as an external covariate. This is not very satisfac-
tory as the changes in density and population growth
are obviously related and considering an external mea-
sure of density and the population growth rate parame-
ters of the model as independent is obviously wrong. In
this paper we derive a measure of relative population
size directly from the CMR data, and use it to detect
density dependence within the same model. In this way,
we circumvent the statistical difficulty inherent in den-
sity-dependent models of having the same quantity,
namely density, at the same time estimated and the dri-
ver of its own changes.

Here we propose a new Bayesian hierarchical formula-
tion of the temporal symmetry approach that allows
quantification of the effect of population size on
population growth rate and, more generally, the study
of density-dependent and density-independent (i.e.,
environmental) factors that affect temporal variation of
population growth rate. Such decomposition into deter-
ministic and stochastic components is important to the
assessment of the effects of environmental change on
population dynamics.

We illustrate the modeling approach with simulated
data, to investigate the effectiveness of detecting density-
dependent effects on population growth rate, and we
apply the approach to encounter histories of a long-lived
seabird. More generally, we use the modeling framework
along with simulated and empirical data to explore the
value of including density dependence when modeling
individual encounter data.

METHODS

The temporal symmetry model

Consider a homogeneous population of individuals
sampled using a CMR protocol at a single study site
during s successive occasions. We follow the notation of
the original paper of Pradel (1996) and assume that nei-
ther removals nor introductions derive from the cap-
ture-recapture procedure. In the full likelihood
developed for the temporal symmetry model, informa-
tion of individual capture histories is summarized, for
each occasion i =1, ..., s, as the number of (1) total
animals observed (#;), (2) observed for the first time (u;),
and (3) observed for the last time (v;). The parameters of
the full likelihood in Pradel (1996) are ¢;, the survival
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probability from i to i + 1; p,, the probability of being
captured/encountered at time 7; y,, the seniority probabil-
ity, i.e., the probability that an animal present at i was
already present at i—1; &, the probability of not being
seen before i when present at 7; y;, the probability of not
being seen after time i/ when present at i. Parameters v;
and §; are the reverse-time analogues of @; and y; used in
the Cormack-Jolly-Seber (CJS) model.

We can express the expected number of animals alive
at both occasions i and i + 1 in forward- and reverse-
time order respectively and equate them: N;p; = N 1Vi+1,
where N, denotes abundances at sampling occasion i
(Fig. 1a). Population growth rate can thus be derived as
a function of survival and seniority probability with the
following approximate equality: p; = Niu1/N; & @ilYi+1.

We focus on the likelihood parameterization that
incorporates population growth rate p as a structural
parameter, in addition to survival ¢ and detection prob-
ability p. We refer to Appendix S1 for further details on
model formulation.

Modeling density dependence

In order to extend the temporal symmetry model to
account for density dependence on population growth
rate, we note that population size (N.1) at time step

FiG. 1.

(a) Graphical representation of the relationship
between population size at time 7 (N;), population growth rate
(p), seniority (y), and survival (¢) probabilities in the temporal
symmetry model. (b) Relationship among the parameters of the
density-dependent temporal symmetry model. Number of sur-
vivors and recruits are denoted by 4 and B, respectively. The
empty gray cell represents the portion of individuals that, along
with some individuals among the recruits at i, will exit the pop-
ulation between iand i + 1.
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i + 1 is composed of survivors from time i, i.e., individu-
als that were already present in the population at time 7
(A;—;+1) and recruits (B,+;), where B;y; includes both
local recruits and immigrants (Fig. 1b). We can describe
the relationship between the number of individuals in
common at the two successive time steps (4;_;+;) and
population size N; by using a binomial distribution with
probability parameter the survival probability ¢;:

Ai—iv1 ~Bin(N;, ¢;). (1)

We can also describe the relationship between 4,4+
and N,y using a negative binomial distribution involv-
ing the seniority probability, that is the probability that
an animal present at / + 1 was already present at time i:

Bjy1 ~Neg-Bin(4i—it1,v,41)- (2

In other words, N, is the number of independent
Bernoulli trials that must be performed with probability
of success y;+; until the 4, 4+ survivors are obtained.
Bj+1 is thus the number of failures in this hypothetical
experiment.

The estimate of population size, N;, obtained in this
way can be used for the assessment of density depen-
dence, circumventing the statistical difficulties identified
with external estimates (Lebreton 2009). There are yet
two specific difficulties with this estimate: it is well
known that, in the fully time-dependent Jolly-Seber
model, initial population size is not estimable; a second
difficulty is that population size estimation is very sensi-
tive to capture heterogeneity (Link 2003). The first diffi-
culty can be circumvented by imposing some constraint
that renders initial population size estimable, but, unless
there is a good reason for imposing such a constraint, a
safer approach consists in assessing density dependence
only at the occasions where population size is estimable.
The second difficulty will be nullified if density depen-
dence is examined on relative population sizes. Indeed,
unlike population size, change in population size, i.e.,
population growth rate, is extremely robust to capture
heterogeneity (Marescot et al. 2011). Using a linear rela-
tionship for the way population size affects population
growth rate achieves this aim as the scale factor relating
any measure of relative population size and absolute
population size is then confounded with the slope of the
effect. For the sake of robustness, we thus suggest privi-
leging a log linear relationship of the form

log(p;) = o+ BN; + € 3)

with &; ~ Norm(0, 6), or alternatively
log(p;) = o+ Blog(N;) + ¢ 4)
in which case the log scale factor will be confounded

with the intercept. Other forms of the relationship in
Eq. 4 could also be explored.
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In this way, we can examine whether higher or lower
population sizes affect population growth rate differ-
ently (i.e., whether there is some form of density depen-
dence) in a fairly robust way. The random term here (g;)
accounts for temporal variance of population growth
rate unexplained by density dependence, as well as for
the fact that population size is but a proxy for the inter-
actions among the individuals in the population (Lebre-
ton 2009). Environmental covariates that may move the
level at which density dependence operates may also be
introduced in the relationship. In this paper, we intend
to examine the performance of the core part of the
model using simulations. We take year 2 as a reference
year, use the cumulative growth rate since this year as a
(relative) index of population size, P; = N/N,, and relate
P, to population growth rate p; as follows:

log(p;) = o + B, log(Pi) +€pi (%)
with €, ; ~ Norm(0, cf,). A Poisson prior distribution is
used for N;. Note that N, is the first estimable popula-
tion size and, for that reason, it represents a logical
benchmark for accumulating population growth. How-
ever, years other than the second one can be chosen as a
reference for the index of population size. Finally, note
that p; must be larger than ¢; to ensure the seniority
parameter to lie between 0 and 1. This additional con-
straint thus applies to the random variables €, ;.

Simulation study

We used simulated data to assess the performance of
the estimators in detecting density dependence. We also
examined the frequency of estimated spurious density-
dependent effects in the simulation replicates. For each
scenario, we generated 100 data sets of individual capture
histories from an initial population size N; = 200, for
s = {5, 10, 15} sampling occasions, different degrees of
density dependence (B, = {0.0, —0.2, —0.4, —0.8}) and of
population growth rate intercept (py = exp (o,) = {0.98,
1.00, 1.40}). We considered a total of 36 scenarios deriving
from all possible combinations of s, B,, and p,, following
the model in Eq. 5 and with unexplained temporal ran-
dom variation o, = 0.1. The model in Eq. 5 was also used
to fit the simulated data. Survival and detection probabil-
ity were simulated and modeled with random time varia-
tion, i.e., logit(p,) = o, + &, and logit(p,) = o, + &, ,, with
€pi~Norm(0, 53) and €, ; ~Norm(0, 5;). The following
parameter values were used for data simulation: @y = ex-
pit(a,) = 0.5 and py = expit(o,) = 0.8, where expit is the
inverse-logit function, , = 0.1, and &, = 0.4.

The mean across the 100 replicates of the Bayesian
point estimate of the posterior mean for each parameter
was calculated, along with the root mean squared error
and the proportion of times the 95% Bayesian credible
interval (BCI) for the estimate encompassed the real
value (coverage). We used coverage to evaluate the abil-
ity of the model to accurately estimate the parameters.
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Normal prior distributions with mean zero and vari-
ance 10 were used for the intercept of population growth
rate (o,) and the parameter for intensity of density
dependence on growth rate (B,). A Uniform(0,1) distri-
bution was used for the intercept of survival (¢y) and
encounter probability (pg). A Uniform(0,2) distribution
was used for the temporal random standard deviation of
population growth rate (c,) and survival (c,), and a
Uniform(0,4) distribution was used for the temporal
random standard deviation of encounter probability

(Sp)-

Application to bird data

We illustrate our approach by assessing the strength of
density dependence on the growth rate and survival of a
population of a long-lived seabird, the Audouin’s Gull
(Ichthyaetus audouinii). To this end, we analyzed mark—
resight data of sexually mature gulls (>3 yr old, 4,286
individuals) that were individually marked only at fledg-
ing using a plastic ring with a unique alphanumeric code
and resighted at the Ebro delta colony (Spain) during
the breeding season (April-July) in the period 1992—
2003. The same data were analyzed by Tavecchia et al.
(2007), who bring evidence for negative density depen-
dence on survival and, in a separate analysis, on popula-
tion growth rate using counts on the whole local
breeding population for the period 1981-2003.

We applied the same model described above and used
to fit the simulated data. In addition, we used the Gibbs
variable selection approach (O’Hara and Sillanpaa 2009,
Tenan et al. 2014a) to estimate the degree of support for
the inclusion of density dependence on the survival and
population growth rate linear predictor. To do so, the
parameter for the intensity of density dependence (f)
was multiplied by an “inclusion parameter” o, a latent
binary variable with a Bernoulli prior distribution with
parameter 0.5:

log(¢;) = o + w¢ By log(Pi) + €4, (©)
log(p;) = o + @B, log(P;) + €. @)

Detectability was modeled as random time varying.
Model-averaged parameter estimates were derived. Pri-
ors were the same as those used in the model fitted to
the simulated data, except for 6, and o, that were drawn
from a Uniform(0,5) distribution. See Appendix S1 and
Data S1 for details on the Bayesian variable selection.

Model implementation

The density-dependent Pradel model was fitted using
the Markov chain Monte Carlo (MCMC) framework.
Summaries of the posterior distribution were generated
from three Markov chains initialized with random starting
values, run for 3,000,000 iterations after a 100,000 burn-
in, and thinned every 300 draws to reduce data storage.
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The Bayesian implementation of the temporal symme-
try model is done by using the so-called “zeros trick”
(Spiegelhalter et al. 2007) that allows the specification of
an arbitrary likelihood in the BUGS language; for fur-
ther details see Appendix S1 in Tenan et al. (2014b).
Models were implemented in program JAGS (Plummer
2003), called from R (R Core Team 2012) using the jag-
sUI R package (Kellner 2016). For details about the
code for data simulation and modeling see Data S1.

RESULTS

Simulation study

The temporal symmetry model achieved the nominal
95% coverage for all the survival and encounter proba-
bility parameters in almost all the 36 scenarios
(Appendix S1: Table S1-S3). The lowest coverage for
population growth rate parameters was achieved in the
absence of density dependence in the simulated data
(Bp = 0) where coverage was between 0.87 and 0.94 for
the intercept po, and in the range 0.45-0.94 for the inten-
sity parameter B,. In other words, in the absence of den-
sity dependence in the simulated data, the model
detected spurious density dependence in <9% of the sim-
ulation replicates (the complementary of coverage for
B,) except for the case with s = 15 sampling occasions,
po = 0.98 (28% of spurious results) and py = 1.00 (55%
of spurious results; Fig. 2; Appendix S1: Table S1-S3).
Coverage for the temporal random standard deviation
of population growth rate (c,) was always close to or
higher than the nominal 95% value (Appendix SlI:
Table S1-S3).

Application to bird data

The posterior probability for the inclusion of the den-
sity-dependent effect on survival and population growth
rate was Pr(w,=1)=0.62 and Pr(o,=1)= 045,
respectively. Model-averaged posterior estimates for the
parameter expressing magnitude and direction of density
dependence indicate a negative relationship between
population size and both survival and growth rate,
despite credible intervals encompass zero (B, = —0.634,
—1.457-0.114, and B, = —0.320, —0.779-0.131; mean,
95% BCI; Appendix S1: Table S3). Density dependence
explained 40% and 35% of temporal variation in survival
and PGR, respectively. An empirical comparison of the
observed population growth rate, derived from counts of
breeding pairs, and the rate of growth estimated using
the density-dependent temporal symmetry approach
suggests a substantial agreement between the two quan-
tities (Appendix S1: Fig. S1).

DiscussioN

We provide a hierarchical formulation of the Pradel
model that explicitly incorporates an internal estimate of

DENSITY-DEPENDENT PRADEL MODEL
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relative population size, which can be used in a model-
based approach to formally test and quantify the
strength of density dependence directly on population
growth rate from capture-mark-reencounter (CMR)
data on open populations. In addition, the framework
allows the estimation of temporal variance unexplained
by density dependence, and can thus be used to quantify
the relative contribution of intrinsic factors (i.e., density
dependence) and stochastic (density-independent) events
affecting population fluctuations. In our application on
a long-lived seabird, we showed how a Bayesian variable
selection procedure can be used to assess the degree of
support for density dependence simultaneously on popu-
lation growth rate and survival probability in a GLM
approach. In addition, we could go beyond the qualita-
tive assessment of the relationship between population
size and growth rate in the Audouin’s gull provided by
Tavecchia et al. (2007) and estimate the temporal ran-
dom variance unexplained by density dependence. We
believe that explicit estimation of the latter quantity is
relevant to the understanding of population dynamics,
because the fluctuation of bird populations is often lar-
gely affected by stochastic components (Sather and
Engen 2002). Moreover, temporal variance of popula-
tion growth rate, estimated using a random effect
approach, is very relevant to extinction probability
(Nichols and Hines 2002) and evolutionary demography
(Rees and Ellner 2009).

Density dependence in population growth rate is
important for studying population fluctuations in the
long term (Knape 2008). Capture-mark-reencounter
data have been mainly used to estimate density depen-
dence in life history traits, which in turn influences den-
sity dependence in population growth rate (Both et al.
1999, Lande et al. 2002, Tavecchia et al. 2007, Reed and
Slade 2008, Fay et al. 2015). However, the connection
between vital rates and population dynamics is usually
not well defined, making estimation of density depen-
dence on population growth difficult even in the case
where life history data are available and density depen-
dence on vital rates is well estimated (Knape 2008). In
this context, the density-dependent temporal symmetry
framework represents a model-based approach to quan-
tify the strength of feedback of population size on popu-
lation growth rate and to test for the significance of the
effect. In addition, although CMR data are usually more
demanding compared to counts, we emphasize that, con-
trary to population size estimators, population growth
rate estimators of CMR models, such as in the Pradel
model, are robust to capture heterogeneity among indi-
viduals (Hines and Nichols 2002, Pradel et al. 2010).
This can be particularly useful when species cannot be
easily counted in nature (e.g., many burrowing nesting
seabirds, reptiles, and amphibians).

We also note that the realized population growth rate
(p) estimated by the Pradel model, contrary to the pro-
jected population growth rate (A) commonly derived
from a projection matrix model, accounts for the
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contribution of both local recruits and immigrants. The
possibility of considering immigration for inference on
population growth rate can be particularly important in
open populations of highly mobile species, where inter-
population dispersal can release population trajectories
from the effect of environmental stochasticity even when
the latter affects local vital rates (Tavecchia et al. 2016).

In our example, however, recruitment includes only local
recruits and no immigrants, since data are based only on
individuals marked in the same colony as fledglings. In
addition, we note that the recruitment rate of marked
individuals to the adult population (>3 yr old gulls) is
influenced by variability in the proportion of fledglings
that are ringed each year. For example, if there is a 20%
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increase in the number of fledglings in a given year but,
due to logistics, there is only capture effort capacity for a
5% increase in the number of fledglings ringed, the
recruitment process to the adult stage after a lag of three
years would be underestimated. In our case, we adjusted
the number of individuals marked to the observed total
number of fledglings each season.

Saether and Bakke (2000) highlighted that the estima-
tion of temporal variance of demographic traits is cru-
cial when predicting population trends in prospective
analysis. An increase of temporal variance in demo-
graphic rates with high sensitivity, produced by environ-
mental changes, will reduce mean population growth
rates and threaten population viability. The density-
dependent Pradel model can be used to test density
dependence not only on population growth but also, and
simultaneously, on the associated vital rates, while quan-
tifying the temporal variance unexplained by population
size and identified extrinsic factors. We note that model-
ing density dependence on population growth rate can
also be possible by expressing the Schofield et al. (2009)
approach in terms of population growth rate and sur-
vival probability. However, beyond the model used to fit
the CMR data, we believe our results support the value
of including density dependence when modeling CMR
data, with no need for auxiliary information.

The simulation study showed that the risk of esti-
mating spurious density dependence can be high
under specific conditions (2 out of 36 scenarios;
Appendix S1: Table S3). In this case model perfor-
mance may be affected by prior specification. Further-
more, the present simulation study does not explore
model performance in testing density dependence
simultaneously on both structural parameters, i.e.,
population growth rate and survival/seniority proba-
bility. However, in our application we tested for
intraspecific density dependence on both population
growth rate and survival. Possible interspecific den-
sity-dependent effects could also be tested on both
structural parameters, where a proxy of interspecific
density dependence can be the size of the population
of the sympatric and competing Yellow-legged Gull
(Larus michaellis) (Tavecchia et al. 2007). The possibil-
ity to test hypotheses on the hyperparameter (c) regu-
lating the temporal variation in population growth
rate (and associated vital rates) unexplained by den-
sity dependence, is also at hand. In addition, treating
positive density dependence (Allee effect) is possible,
and potential extensions of the linear predictor for
the structural parameters to a change point model
formulation (Lunn et al. 2012) may account for both
positive and negative density dependence.

Population growth rate estimate obtained from the
temporal symmetry model may be biased in the presence
of non-random temporary emigration. Although, tem-
porary emigration can be handled by embedding the
time-symmetric approach in a robust design sampling
protocol, we acknowledge the need for further
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investigation on the potential effect of the relationship
between population density and temporary emigration
to estimation. In addition, we highlight that the realized
population growth rate used in the temporal symmetry
approach is a measure of the rate of change of the age
class (presumably adults) to which the encounter histo-
ries belong, which is not necessarily equivalent to the
growth rate of the whole population.

Finally, we note that density dependence may also be
tested on recruitment and population growth rate using
the model parameterization that includes seniority prob-
ability and population growth rate as structural parame-
ters. More investigation is however needed to explore
potential biases in the estimation of model parameters
and related effects.
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