N

N

Importance of the vegetation-groundwater-stream
continuum to understand transformation of biogenic
carbon in aquatic systems — A case study based on a
pine-maize comparison in a lowland sandy watershed

(Landes de Gascogne, SW France)
Loris Deirmendjian, Pierre Anschutz, Christian Morel, Alain Mollier, Laurent
Augusto, Denis Loustau, Luiz Carlos Cotovicz, Damien Buquet, Katixa

Lajaunie, Gwénaélle Chaillou, et al.

» To cite this version:

Loris Deirmendjian, Pierre Anschutz, Christian Morel, Alain Mollier, Laurent Augusto, et al.. Im-
portance of the vegetation-groundwater-stream continuum to understand transformation of biogenic
carbon in aquatic systems — A case study based on a pine-maize comparison in a lowland sandy wa-
tershed (Landes de Gascogne, SW France). Science of the Total Environment, 2019, 661, pp.613-629.
10.1016/j.scitotenv.2019.01.152 . hal-02104943

HAL Id: hal-02104943
https://hal.science/hal-02104943

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License


https://hal.science/hal-02104943
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S004896971930169X
Manuscript_06efc035afb6c064f6d4cfa86c933b37

Importance of the vegetation-groundwater-stream continuum to understand transformation of
biogenic carbon in aquatic systems — a case study based on a pine-maize comparison in a lowland

sandy watershed (Landes de Gascogne, SW France)

Loris Deirmendjiaft *, Pierre Anschutz Christian Morel, Alain Mollier?, Laurent Augusty Denis
Loustad, Luiz Carlos Cotovicz Jr® Damien Buquét Katixa Lajaunié , Gwenaélle Chailloy Baptiste

Voltz" °, Céline CharbonniérDominique Poiriet, and Gwenaél Abrit® ’

O 00 N o U A W N B

Y aboratoire Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), CNRS,

[N
o

Université de Bordeaux, Allée Geoffroy Saint-Hilaire, 33615 Pessac Cedex France.

11  2UMR 1391 ISPA, INRA, Bordeaux Sciences Agro, Villenave d’Ornon, 33883 France.

12 °Programma de pos-graduacdo em Geoquimica, Universidade Federal Fluminense, Outeiro S&o Jodo
13 Batista s/n, 24020015, Niterdi, RJ, Brazil.

14 “Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of
15  Oceanography (MIO) UM 110.

16 °Département Biologie, Chimie, Géographie, Université du Québec & Rimouski, Québec, Canada

17 ®Univ. Lille, CNRS, Univ. Littoral Cote d’'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de
18 Géosciences, F 62 930, Wimereux, France.

19 'Biologie des Organismes et Ecosystémes Aquatiques (BOREA), Muséum National d'Histoire Naturelle,
20 CNRS, IRD, UPMC, UCBN, UAG. 61 rue Buffon, 75231, Paris cedex 05, France.

21 * Now at Chemical Oceanography Unit, University of Liege, Liege, Belgium.

22 Correspondence to Loris Deirmendjian (Loris.deirmendjian@uliege.be)
23
24 Abstract

25  During land-aquatic transfer, carbon (C) and inorganic nutrients (IN) are transformed in soils,

26  groundwater, and at the groundwater-surface water interface as well as in stream channels and stream
27  sediments. However, processes and factors controlling these transfers and transformations are not well
28  constrained, particularly with respect to land use effect. We compared C and IN concentrations in shallow
29  groundwater and first-order streams of a sandy lowland catchment dominated by two types of land use:

30 pine forest and maize cropland. Contrary to forest groundwater, crop groundwater exhibited oxic
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conditions all-year round as a result of highempatanspiration and better lateral drainage thetedesed
the water table below the organic-rich soil horizorevented the leaching of soil-generated dissblve
organic carbon (DOC) in groundwater, and thus Bohitonsumption of dissolved oxygerp Qn crop
groundwater, oxic conditions inhibited denitrificat and methanogenesis resulting in high nitrat®;(N
on average 1,140 *+ 485 pmof)Land low methane (G440 + 25 nmol [}) concentrations. Conversely,
anoxic conditions in forest groundwater led to loN&s (25 + 40 umol [1) and higher CE{(1,770 +
1,830 nmol [) concentrations. The partial pressure of carboride (pCQ; 30,650 + 11,590 ppmv) in
crop groundwater was significantly lower than inefst groundwater (50,630 + 26,070 ppmv), and was
apparently caused by the deeper water table dglagwnward diffusion of soil CQo the water table. In
contrast, pC@was not significantly different in crop (4,480 680 ppmv) and forest (4,900 + 4,500
ppmv) streams, suggesting faster degassing intfstremms resulting from greater water turbulence.
Although NG concentrations indicated that denitrification ocedrin riparian-forest groundwater, crop
streams nevertheless exhibited important signgririgg and summer eutrophication such as the
development of macrophytes. Stream eutrophicatwared development of anaerobic conditions in crop
stream sediments, as evidenced by increased amiiiidid) and CH in stream waters and concomitant
decreased in N concentrations as a result of sediment denittifica In crop streams, dredging and
erosion of streambed sediments during winter sustiaiigh concentration of particulate organic C,NH
and CH. In forest streams, dissolved iron fBeNH[ and CH were negatively correlated with,O
reflecting the gradual oxygenation of stream watet associated oxidations ofeéNH," and CH. The
results overall showed that forest groundwater bethas source of G@nd CHto streams, the intensity
depending on the hydrological connectivity amoniggssgroundwater, and streams. gbtoduction was
prevented in cropland in soils and groundwater,dw@w crop groundwater acted as a source gft6O
streams (but less so than forest groundwater). €saely, in streams, pG@vas not significantly affected
by land use while CiHproduction was enhanced by cropland. At the cagcettrscale, this study found
substantial biogeochemical heterogeneity in C &hddncentrations between forest and crop waters,

demonstrating the importance of including the f@lgetation-groundwater-stream continuum when
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estimating land-water fluxes of C (and nitrogen) attempting to understand their spatial and tealpor

dynamics.

Keywords: carbon dioxide, methane, groundwateeastr, land use, pine, maize

1. Introduction

Despite their small surface area worldwide (Dowrengl., 2012), inland waters have been recograzed
key component of the global carbon (C) cycle, dtutiitg a preferential pathway of dissolved and
particulate C transport from terrestrial ecosystémthe coastal ocean (Cole et al., 2007; Meyb&g882;
Ludwig et al., 1996b, 1996a; Meybeck, 1987). Inlaraders act as significant sources of carbon dxid
(CO,) and methane (ChHito the atmosphere because inland waters areanaupersaturated by GO
and CH compared to the overlying atmosphere (Abril et2014; Bastviken et al., 2011; Borges et al.,

2015; Lauerwald et al., 2015; Raymond et al., 2&tanley et al., 2016).

Inland waters and specifically small streams aylathy connected to their catchment characteristich

as hydrology and land use, as they receive lam&srof C from land (mainly from soils and
groundwater), which in turn control the stream leiechemical processes and the water composition
(Aitkenhead et al., 1999; Deirmendjian and Abrd),18; Hotchkiss et al., 2015; Johnson et al., 2006es
and Mulholland, 1998; McClain et al., 2003; Polsmeaand Abril, 2012; Bodmer et al., 2016; Findlay e
al., 2001; Lehrter, 2006). Groundwater dischargelieen recognized as an important source ofiCO
riverine systems, especially in small streams agatltvaters (Deirmendjian and Abril, 2018; Hotchldass
al., 2015; Johnson et al., 2008; Kokic et al., 20Marx et al., 2017; Raymond et al., 2013; Wallirak,
2013). On the contrary to riverine gQ@iverine CH is likely to originate from wetlands that geneyall
combine a strong hydrological connectivity withaiine waters and a high productivity (Abril et al.,
2014; Abril and Borges, 2018). Although some staid@aind low CH concentrations in the groundwater

of Belgium (up to 1.1 pmol E; Borges et al., 2018; Jurado et al., 2017), ashedies found high CH
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concentrations in the groundwater of Great Britaimto 295 umol L'; Bell et al., 2017) and in the
Appalachian basin of the USA (up to 2,8000 umdal Molofsky et al., 2016). Actually, soil moisture,
which controls oxic/anoxic conditions in soil, letmain determinant of terrestrial €& CH, production
in soil. As a consequence,¢kBimissions from soils are high under strictly anbgr conditions in
waterlogged soils whereas g@missions from soils are high under aerobic caattin drier soils
(Christensen et al., 2003; Moore and Knowles, 1988)plands affect water mass balance at the plot
scale, especially through irrigation and extractbgroundwater, which results in declining watsslée in
many regions worldwide (Foley et al., 2005; Glei203; Jackson et al., 2001; Postel, 1999; Rosegtan
al., 2002). Investigating spatial dynamics of &@d CH in groundwater in relation with land use is

critical better understanding processes goverring terrestrial production and leaching to grouatiw.

Croplands cover about 40% of the terrestrial ieeBurface and are often associated with degradaitio
both ground and surface water quality (Asner e28I04; Clague et al., 2015; Foley et al., 2005chick
et al., 1991; Ramankutty and Foley, 1999). Intemsigriculture led to an increase of nitrate ¢NO
entering ground and surface water environmentshiafueled aquatic primary production in surface
waters and led to low G&nd high CH concentrations, the latter being related to enb@dwocganic
matter delivery in sediments (Borges et al., 2@a&penter et al., 1998; Clague et al., 2015; Credvéd
al., 2016; Jordan and Weller, 1996; Smith, 2003uzét al., 2017). Additionally, aquatic primary
production in crop streams is enhanced as a resldtv light limitation (clearing of riparian vegaion),
and the excessive transport of sediment-bound @rgaaitter and nutrients to surface waters (Bertiot e
al., 2010; Lamba et al., 2015; Ramos et al., 20tbing and Huryn, 1999). Soil erosion rates in
agricultural landscapes are one to two times lattgan those in areas with native vegetation
(Montgomery, 2007; Quinton et al., 2010). Indeguanian forest is usually considered stream buffer
zones that attenuate stream bank erosion andiiéts from croplands (Balestrini et al., 2016y@¢e
al., 1999; Christensen et al., 2013; Stott, 200gnkVand Mostaghimi, 2006). Denitrification repretsea

permanent removal pathway that limits the extedtienpact of NQ contamination by transforming NO
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to inert dinitrogen (). However, incomplete denitrification can producgtdous oxide (NO), a major
anthropogenic ozone-depleting substance (Ravishamdaal., 2009). On the contrary to croplands gty
are known to export fewer nutrients by limiting afinrand leakage of nutrients (Canton et al., 2012;

Onderka et al., 2010).

Land use effects on both water composition anddmoljemical processes have been studied in streams
and groundwater (Barnes and Raymond, 2010, 2009oBet al., 2010; Bodmer et al., 2016; Jeong,
2001; Lehrter, 2006; Masese et al., 2017; RaymaiadGole, 2003; Rodrigues et al., 2018; Salvia-
Castellvi et al., 2005; Vidon et al., 2008; Wilsaomd Xenopoulos, 2009; Young and Huryn, 1999; Zhang
et al., 2018), but land use studies with simultasegroundwater and stream sampling are more scarce
(Bass et al., 2014; Borges et al., 2018; Hu eRallg). The objective of this study was to understaow
two contrasting types of land use (pine forestmuadze cropland) affected C and inorganic nutriéj (
concentrations in shallow groundwater and in fingter streams of a sandy lowland catchmé&nie
hypothesized that the biogeochemical variabilitineen crop groundwater and forest groundwater was
due to agricultural practices that affect N inp@fiestilizer) and water mass balance (irrigation and
drainage). We hypothesized that the biogeochemarébility between crop and forest streams origina
from differential lateral export of C and IN fromvad distinct sources (i.e., crop groundwater anddgor
groundwater) because of a strong hydrological coinme between groundwater and streams in the

studied catchment.

2. Materials and Methods

2.1. Study site

The Leyre catchment (2,100 km?) is located in thétswvestern part of France. This is a flat cogstah
with a mean slope lower than 0.125% and a meanddtiower than 50 m (Jolivet et al., 2007). The

lithology is relatively homogeneous and composesiamidy permeable surface layers dating from the
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Plio-Quaternary period (Legigan, 1979; Bertranlet2®09, 2011). The soils are podzols charactdrize
a low pH €&4), low nutrient availability, low cationic exchamgapacity, and high organic C content that
can reach 50 g per kg of soil (Augusto et al., 2QLMdstrom et al., 2000). In Leyre sandy podzibis,

low clay and silt content causes a low soil wag¢emtion (Augusto et al., 2010).

The study area was a vast wetland until tH& chtury, when a wide forest of maritime pine wasrs
following a landscape drainage campaign resultiomhfan imperial decree of Napoleon IIl in 1857
(Jolivet et al., 2007). Currently, the catchmenh&nly occupied by £pine forest (approximately 85%),
with a modest proportion of @naize cropland (approximately 15%) (Fig. 1; Jdlieeal., 2007).
Following catastrophic forest wildfires, the ma@eplands were installed during the second hathef
20" century. Consequently, their spatial distributizas not based on soil properties, as confirmedhey t
similar mean values of soil texture in local croyla and forests (Augusto et al., 2010; Jolivet.et a
2003). During the maize cropping season (usually MaNovember), farmers irrigate the plots by
pumping shallow groundwatef{-5 m deep) almost daily to maintain adequatersoikture status,
whereas maritime pine stands are never irrigatewi(@ et al., 2012). As N is not limiting for trgeowth
in our study region (Trichet et al., 2009), foremts never fertilized with N. Conversely, croplands
generally receive two N fertilizer applications aafly, a first at the beginning of May (30-50 kghal"),
and second at the beginning of June with 200-258 kg' (Canton et al., 2012; Jambert et al., 1997;
Ulrich et al., 2002). Additionally, in order to nmé&in soil pH in the 5.5-6.0 range, local maizeptands
are limed with crushed limestone (Cag@ontaining a small portion of dolomite (CaMg(§£ (10 t ha'

right after forest conversion and then 0.5 ha®; Jolivet et al., 2003).

The climate is oceanic with a mean annual air teatpee of 13°C and a mean annual precipitation36f 9
mm (Moreaux et al., 2011). Owing to the low slofhe, low soil water retention and the high permetgbil
of the soil (i.e., hydraulic conductivity is appimately 40 cm H, Corbier et al., 2010), the percolation of
rain water is fast (55 cmi'ton average, Vernier and Castro, 2010). Conseqyeutiface runoff does not

occur as the excess of rainfall percolates intesthleand recharges the shallow groundwater, cgubia



155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

water table to rise. The sandy permeable surfaegdaontain a free and continuous water tableishat
strongly interconnected with the superficial rivetwork. This is facilitated by a dense network of
drainage ditches, initiated in the™&entury and currently maintained by forest marageorder to
enhance tree regeneration and growth (Thivolle-Cazd Najar, 2001). During the sampling period,
channels of some crop streams were dredged béfeyebegan to flow again. This was done to optimize
local cropland drainage and to feed croplands iMthnd organic residuals found in the stream
sediments. To increase soil permeability and tomope lateral drainage in local maize croplandents

practice subsoiling and agricultural ditches aneegally deeper (2.0-2.5m) than forest ditches (L.0m

2.2. Sampling strategy

We defined order 0 as groundwater and order lreams and ditches either having no tributarieseard
seasonally dry (from June to December during oonpdiag period). We selected 17 sampling stations (5
shallow groundwater and 12 first-order streamshiwithe Leyre catchment (Tab. 1; Fig. 1). The
groundwater sampling stations were located in maiapland (n=2), pine forest (n=2; one is the Bilos
station (FR-BiIl) of the ICOS Research infrastruejuand in a riparian forest adjacent to a maizelaral
(n=1; Tab. 1; Fig. 1). The stream sampling statwage chosen based on the different proportions of

croplands in their respective catchments (Tabid.; F.

Groundwater was sampled for temperature, electemadluctivity (EC), pH, dissolved oxygenAQ
methane (Ch), partial pressure of GpCQ), total alkalinity (TA), dissolved inorganic can¢DIC),
stable isotope composition of the dissolved inoigaarbon §**C-DIC), dissolved organic carbon
(DOC), ammonia (Ng), nitrate (NQ) and dissolved iron (8. For groundwater, we took the
precaution to renew the water in the piezometengumping with a submersible pump before sampling.
Groundwater was then sampled once the stabilizéipproximately 10 min) of groundwater

temperature, pH, EC and @onitored with portable probes was observed. Btsesere sampled for the
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same parameters, plus total suspended matter (T&ivticulate organic carbon (POC) and the POC

content of the TSM (POC%).

2.3. Field measurements and laboratory analyses

Groundwater and streams were sampled at approxinmatathly time intervals between Jan. 2014 and
Jul. 2015 (Tab. S1). In total, throughout the samgpperiod, we sampled 55 groundwaters and 13@rstre

waters.

The pCQ in groundwater and streams was measured diresithgan equilibrator (Frankignoulle and

Borges, 2001; Polsenaere et al., 2013) followirggpiocedure of Deirmendjian and Abril (2018).

We stored the total alkalinity (TA) samples in gmigpylene bottles after filtration using a syringe
equipped with glass fiber filters (GF/F; 0.7 umAj Was then analyzed on filtered samples by autodnate
electro-titration on 50 mL samples with 0.1N HCltls titrant. The equivalence point was determined
from pH between 4 and 3 with the Gran method (Gtabp2). Precision based on replicate analyses was
better than +5 pmol L For samples with a very low pH (<4.5), we bubhtteel water with atmospheric

air in order to degas the GGConsequently, the initial pH increased abovend,tae TA titration was

then performed (Abril et al., 2015).

We calculated DIC from pCQOTA, and temperature measurements using the carboiul dissociation
constants of Millero (1979) and the ¢&blubility from Weiss (1974), using the g&Y'S software (Lewis
et al., 1998). Thé"*C-DIC samples were collected using 120 mL glassmsdiottles sealed with a rubber
stopper and treated with 0.3 mL of Hg@t 20 g * to avoid any microbial respiration during storage.
Vials were carefully sealed such that no air remdim contact with samples and were stored in &k d
to prevent photo-oxidation. TH&’C-DIC measurements were performed with the heagésgatinique
using an isotope ratio mass spectrometer couplad #emental analyser (EA-IRMS, Micromass

IsoPrime) equipped with a manual gas injection pertiescribed in Gillikin and Bouillon (2007).
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CH, was also measured using a headspace technigOenih §lass serum bottles. The headspace was
created with 10 mL of Ngas. We then injected 0.5 mL of the headspacegasahromatograph equipped

with a flame ionization detector (GC-FID).

DOC samples were obtained after filtration in tieddfthrough pre-combusted GF/F (0.7 um). DOC
filtrates were stored in pre-combusted Pyrex i2mL), acidified with 50 uL of 37% HCI to reachip

2, and kept at 4 °C in the laboratory before anslyihe DOC concentrations were measured with a
SHIMADZU TOC 500 analyzer (in TOC-IC mode), usinteahnique based on thermal oxidation after a

DIC removal step (Sharp, 1993). The repeatabiliag Wetter than 0.1 mg'L

The water for TSM and POC measurements was filtdmedigh pre-weighed and pre-combusted GF/F
glass fiber filters (0.7 pm). The filters were drig 60 °C and stored in the dark, and subsequértiy

was determined by gravimetry. POC was measured) tisshsame filter. The filters were acidified in
crucibles with 2N HCI to remove carbonates and wieea dried at 60 °C to remove inorganic carbon and
most of the remaining acid and water (Etchebel.e2@07). POC content was measured by combustion
(1500 °C) using a LECO CS 200 analyzer and the fGfined was determined quantitatively by infrared

absorption. POC in umol'Land POC% were then calculated. The uncertainty#x@a¥% of TSM.

For IN determination, water was filtered through.20um cellulose acetate syringe membrane.
Subsamples for Féwere acidified with 37% HCI to prevent precipitatiof iron oxide, whereas
subsamples for NFland NQ" were not acidified but kept frozen until later lsas. Then, Nk, NOs,

and Fé" were analyzed by colorimetry according to standectiniques. NI was analyzed following the
procedure of Harwood and Kihn (1970). N@Was analyzed by flow injection analysis followithge
procedure of Anderson (1979).Fevas analyzed using the ferrozine method (Stoak@y0). Precision

was +10% for N§" and NQ, and was +5%or F&*.

EC, temperature, Oand pH were measured using portable probes (WT\B@&fpre each field trip, the

pH probe was calibrated using two NBS buffer sohai(4 and 7), the oxygen polarographic probe was
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calibrated to 100% in a humid atmosphere and theuwctivity probe was calibrated using a salinity

standard.

2.4. Statistical analyses

K-means clustering analysis (MacQueen, 1967) wed tsclassify waters either as forest-dominated or
as cropland-affected (Tab. 1). Indeed, K-meangelingy analysis allows partitioning a dataset kito
groups (i.e., clusters) pre-specified by the anngiMacQueen, 1967). Contrary to forest waters at ou
study site, crop waters exhibit disproportionatélyher NQ™ concentration as a result of N fertilizer use
on maize cropland (Canton et al., 2012; De Wit .e2805; Jambert et al., 1997, 1994). Consequgintly
the K-means clustering analysis we used:Oncentration data as a proxy to establish astitai
distinction between forest and crop waters (TabKineans clustering analysis was performed one tim
with the groundwater dataset (but excluding tharigm groundwater) and a second time with the-first
order streams dataset. We excluded data from aiparioundwater because we have considered riparian

groundwater as a cluster itself (Tab. 1).

Principal component analysis (PCA) was used to ensd multivariate information on correlated
biogeochemical parameters to a set of uncorrelagdbles called principal components (further mefe

to as dimensions). PCA was performed one time aviflataset consisting of each measured parameter in
groundwater (but excluding the riparian groundweded a second time with the corresponding first-
order streams dataset. PCA was performed sepafatajyoundwater and streams because particulate
parameters were not present in groundwater. If R€re not performed separately for groundwater and
streams, all data from groundwater would have lberroved from the analysis (indeed, if one parameter
is missing for a given sampling station, the sangpfitation is entirely deleted from the PCA). Imli&idn,
performing the PCA separately for groundwater d@rehss led to information that was more robust with

respect to the biogeochemical variability inducgddmd use, in either groundwater or streams. Hewev

10
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to observe whether the two groundwater (crop anesfpand two streams (crop and forest) sourcelsl cou
be distinguished mathematically in one PCA, weqrenkd an additional PCA with data from both
groundwater and streams that excluded particukatenpeters from the analysis. All concentrationa dat
were log-transformed prior to PCA. The PCAs shottedbiogeochemical variability across forest,

cropland, and hydrological seasons in either grauatelr or first-order streams.

Later, non-parametric bivariate analyses (Mann-Wéjyitstatistical tests) were used to estimate if
hydrological seasons or increasing stream ordeifgigntly influenced the concentration of a
biogeochemical parameter. Linear regressions warenmed to model the relationships between two

variables by fitting a linear equation to obserdeth.

K-means clustering analysis (package Stats) and &@dysis (package FactoMineR for analysis and
package factoextra for visualization; KassambraMuoddt, 2017; Lé et al., 2008) were performed viRth
software version 3.1.4 (R Core Team, 2018). Manntiély tests and linear regressions were performed

with Graph Pad Prism version 7 software.

3. Results
3.1. Hydrology

In previous work based on the same dataset, bluidirg cropland sampling stations, we identifieatw
major hydrological seasons (Deirmendjian and AB6IL8). One defined a high flow period as two
relatively short flood events that occurred in Z214—Mar. 2014 and in Feb. 2015—Mar. 2015, whereas
we defined the base flow period as two longer pisriaf low flow occurring in Apr. 2014-Jan. 2015 and
Apr. 2015-Jul. 2015. During high flow, the average the maximum river flows were 56 g1 and 119

m® s, respectively. During base flow, the average &edminimum river flow were 10 fis* and 5 m's

! respectively. The water tables in the foresgnign forest, and cropland exhibited similar terapor

fluctuations but with a different intensity, anetforest had an overall higher water table depdh the

11
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cropland (Fig. 2). The water table in the ripa@ea exhibited intermediate depth between the tfara$
cropland sites (Fig. 2). As surface runoff was iggiglle in the studied sandy and flat catchment, trods

the stream water likely originated from groundwatischarge.

To investigate the temporal variability of the sagdbiogeochemical parameters, we chose to rely on
hydrological regimes (high flow and base flow pddprather than on temperature periods (seasohs). A
our study site climate was oceanic (by definiti@mpmtemperate) and the amplitude of the water
temperature was not as high as the amplitude afibeflow. As an example, Leyre River (main stem)
flow could be up to 119 frs* and could be down to 5%s*, whereas the highest water temperature
amplitude occurred in forest streams and was 6.8-Z5(Tab. 2). Additionally, most of the laterapert
occurred during the short periods of high flow {a®0% for DOC, Deirmendjian et al., 2018). Thus,
characterizing biogeochemical variability and biogfgeemical processes in relation with land use durin
this hydrological period was important. Furthermahe seasonality induced by water temperaturetwas
a certain extent included in the defined hydrolabregimes since the high flow period was assodiate
with lower water temperatures while the base fl@sigal was associated with higher water temperatures

(Tabs. 2-4).

3.2. K-means clustering analysis

For both hydrological seasons (i.e., high and fiasg, we partitioned each sampling stations (exicep
riparian groundwater), into either cropland-affelcte forest-dominated waters (Tab. 1). K-means
clustering analysis produced satisfactory resuttgically, groundwater located in cropland was sifesd
as crop water whereas groundwater located in fevastclassified as forest water (Tab. 1). Stream
sampling stations having more than 30% of croplamdiseir respective catchment were always clasifi
as crop waters (Tab. 1). Stream sampling statiausp less than 8% of croplands in their respective

catchment were always classified as forest watarsging two times (Tab. 1). These two stream
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sampling stations were located a few kilometersrasteam from important maize croplands.
Specifically, one station was a ditch strongly waged during the base flow period that showed sujrié
fertilizer uptake from upstream cropland and, tfares this ditch was logically classified as a cetgtion
during base flow (Tab. 1). One station was a strisnexhibited a high water flow during the hidgw
period, which probably increased the upstream araplnfluences during this hydrological period and,

therefore, this stream was logically classifie@asop station during high flow (Tab. 1).

Excepting one strictly forested headwater, therathenpled streams were not strictly forested opmed
(Tab. 1). Consequently, as explained further, sbimgeochemical variability between forest and crop
streams was introduced by simple water mixing fteim distinct sources: forest groundwater and crop
groundwater. We used the term crop stream to iteli@atream classified as a crop-affected oneguittn

such stream was a forest stream affected by crdpkther that a strictly crop stream.

3.3. Land use influence on water composition of shaw groundwater

PCA on the groundwater dataset revealed that greatet biogeochemical variability was strongly
dependent on land use (maize cropland vs. pinstjcaad hydrological seasons (base flow vs. higi)l
(Figs. 3a, b). The first three PCA dimensions cedet4%, 17.5% and 10.5% of the total variance withi

the dataset, respectively (Figs. 3a, b).

PCA dimension 1 clearly separated forest groundweden crop groundwater based on two groups of
variables negatively correlated with one anothéy.(8a). One group of variables was characterized ¢
groundwater and was composed of ECN&°C-DIC, and Q, whereas the second group of variables
was characterized forest groundwater and was ccedpaisDIC, pCQ, CH,, F€*, and NH' (Fig. 3a).
Indeed, we observed that the yearly average of+22Q uS cm), NOy (+1,115 umol ), §°C-DIC
(+6.9%0), and @(+200 pmol L*) were higher in crop groundwater than in foresugdwater and were

significantly and positively affected by croplanover (Tab. 2; Figs. 4b, c, f, j). Conversely, waseatved
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higher DIC (+1,010 umol ), pCQ (+19,985 ppmv), Cki(+1,730 pmol [}), F&* (+14.1 umol [*), and
NH," (+4.1 umol [Y) in forest groundwater than in crop groundwateese were significantly and
positively affected by forest cover (Tab. 2; Figd, e, g, h, k). In riparian groundwater, EC, N&C-
DIC, O,, DIC, pCQ, and CH exhibited intermediate values between the groutelvwd forest and crop
sites, whereas Eeand NH" were low and close to those found in crop grouridn@ab. 2; Figs. 4b, c,

d, e f, g h,jK).

In crop groundwater, EC, NQ&**C-DIC, and Q@ were not significantly affected by hydrologicahsens
(Figs. 3a, S2c¢, h, j, k, I). However’C-DIC (+1.1%0), NQ (+120 pmol ), and DOC (+130 pmol 1)
were slightly higher (but not significantly) durihgse flow compared to high flow (Tab. 3; Figs. S2q,
k, ). In forest groundwater, pGODIC, CH,, and DOC were significantly affected by hydrological
seasons (Tab. 3; Figs. S2g, h, k, I). DOC (+1,490IL™) was significantly higher during high flow,
whereas pC@®(+30,980 ppmv), DIC (+1,330 umol*).and CH (+1,780 nmol [') were significantly
higher during base flow (Tab. 3; Figs. S2 and $44, I). In crop and riparian groundwater, we also
observed higher pCand DIC values during base flow, but with loweeimsities than in forest

groundwater (Tab. 3; Figs. S2h, k).

3.4. Land use influence on water composition of fat-order streams

Figures 3c-d present PCA based on first-order stsedata set. The first three PCA dimensions covered

28.6%, 18.5% and 13.8% of the total variance withéndataset, respectively (Figs. 3c, d).

Interestingly, the PCA based on the first-ordegatns dataset did not clearly separate crop streams
forest streams as it did for groundwater datasgs(RBa-d). This implied lower spatial variability
streams in relation to land use in than in grourtdn@ abs. 2-4; Fig. 4). Nevertheless, a land wadignt
was observed on PCA dimension 2 (Figs. 3c, d). Bid#ension 2 was best defined by a group of

variables composed of EC, GHNO;, NH,", DOC, TSM, and POC, which collectively charactedizrop
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streams (Figs. 3c, d). On a yearly average bagisifisantly higher EC (+105 puS ¢fy CH, (+220 pmol
L"), NOs (+265 pmol [Y), NH," (+4.3 pmol ), DOC (+135 pmol L), TSM (+3.3 mg '), and POC
(+70 pmol L) were observed in crop streams compared to fete=ams (Tab. 2; Figs. 4b, c, d, g, |, m,
0). High CH,, NH,", and DOC concentrations were characteristics restogroundwater, but in streams,
these parameters were characteristic of crop sgé€gigs. 3a-d). In addition, pGCDIC, §**C-DIC and

O, were not able to separate crop streams from fetesams as they did for groundwaters (Figs. 3a-d).
On a yearly average basis, no significant diffeesneere observed between crop and forest streams fo

these four parameters (Figs. 3f, h, j, k).

The relatively low temporal variability between hignd base flow periods observed in both crop and
forest streams for the studied parameters didllow ghe PCA based on stream data set to clearly
separate base flow samples from high flow samfleb.(4; Figs. 3c-d, S3, S4). Nevertheless, in crop
streams, pH (+0.2) arid*C-DIC (+3.8%0) were significantly higher during ba&swv while pCGQ (-1,160
ppmv), NQ (-130 umol [') and DOC (-230 umolt) were significantly lower during the same period
(Tab. 4; Figs. S3a, j, ¢, h, I, m, 0). In strea8M and POC were significantly higher during higwf
but with a higher intensity in crop streams thaforest streams (Tab. 4; Fig. S3m, 0). Interesyingl
both forest and crop streams, POC% was not signifig affected by hydrological regime (Tab. 4; Fig.

S3n).

3.5. Upstream-downstream distribution of biogeocheioal parameters

To explore the influence of land use on water casiifmm at the groundwater-stream continuum, we
observed the upstream-downstream (groundwatems}raiatribution of biogeochemical parameters
along forest and crop continuums (Tab. 2; FigAdng both types of continuum, some parameters (i.e

pCGO,, TA, DIC, st*c-DIC, pH, Q) exhibited the same upstream-downstream distohutvhereas other
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parameters (i.e., EC, NONH,", F&*, CH,, DOC) exhibited a different upstream-downstreastrittiution

(Tab. 2; Fig. 4).

In crop and forest continuumse observed strong spatial patterns for pCi@, DIC, 3**C-DIC, and pH:
pCQ; and DIC decreased while TA remained more or lesstant, an@'*C-DIC and pH increased (Tab.
2; Figs. 4a, h, i, j, k). However, a larger dececimspCQ levels in the forest continuum suggested a more
intense degassing in forest streams (Tab. 2; lhg.We also observed an increase pirCboth types of
continuum, which could result from stream ventiatialthough with a higher intensity in forest

continuum (Tab. 2; Figs. 4f, h).

EC decreased downstream in the crop continuungildutot in the forest continuum where EC remained
very stable and much lower than in the crop continTab. 2; Fig. 4b). NOdecreased downstream
between groundwater and streams in croplands,racohitrast, in forests NQincreased downstream
between groundwaters and streams (Tab. 2; FigN4ty', F€*, and CHdecreased in the forest
continuum but they increased in the crop continliab. 2; Figs. 4d, e, g). DOC significantly decezhs

in the forest continuum but remained stable inctteg continuum (Tab. 2; Fig. 41). TSM and POC were
significantly higher in crop relative to forestesims; however, similarly high POC% (28%) was olbesrv

in both types of streams (Tab. 2; Fig. 4m, n, 0).

3.6. Biogeochemistry dynamics in the groundwater-gdam continuum

PCA with groundwater and streams datasets indicatgiematically that streams were fed with two
distinct sources: forest groundwater mostly charazgd by high pC& DIC, and CH concentrations and
crop groundwater mostly characterized by highsN©Oncentrations (Figs. 5). Forest and crop streams
were characterized by higheg,®"*C-DIC and pH values than in groundwater (FigsIfbjhis PCA, the
distinction between forest and crop streams wamanily a function of N@, crop streams points were

moved upward along dimension 2 (Figs. 5). Througlio® sampling period, we observed a negative
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linear relationship (R2=0.4<0.001, n=192) between G@nd Q for all sampled groundwater and
streams (Fig. 6a). On the one side, stream sam@esmostly characterized by high @nean was 290
pumol L) and low CQ (mean was 4,480 ppmv), excepting some forestrageuring summer that were
characterized by low Qdown to 110 umol ) and high CQ (up to 27,200 ppmv) (Tab. 2; Figs. 6a, S4f,
h). On the other side, anoxic conditions associaféthigh CQ (mean was 50,630 ppmv) were
characteristic of forest groundwater, whereas gropindwater exhibited gmean was 220 pmol™) and
CO, (mean was 30,650 ppmv) intermediate between str@aoh forest groundwater (Tab. 2; Fig. 6a). In
forest groundwater, DOC was negatively and lineaoliyrelated with C@(R2=0.4,p <0.001, n=22)
suggesting that part of groundwater @me from degradation of groundwater DOC (Fig. 8b)
comparison of C®and CH for all sampled groundwaters and streams showaddatlarge portion of the
CGO, and CH in forest streams could come from forest groundwdischarge (Tab. 2; Fig. 6e). In crop
streams, Cl NH,", and Fé& could not originate from crop groundwater dischasigee they had much
lower CH,, NH,", and F&" concentrations than crop streams (Tab. 2; Fig7€g7f). We observed a
positive linear relationship between C&hd NH' (R2=0.4,p<0.001, n=53) in crop streams,
demonstrating that these two compounds may come tine same source (Fig. 7d). Conversely, a
comparison of @and NH* or F€" in forest streams indicated that Nind F&" were mostly discharged
through forest groundwater (Fig. 7e, f). In foretseams, the negative linear relationship betweean@
NH," (R?=0.1, p-value<0.05, n=70), #¢R2=0.5, p-value<0.001, n=77), or GHR?=0.1, p-value<0.001,
n=77) suggested oxidation of these reduced compoumithe stream water column (Fig. 7e, f). We
observed a gradient of N@oncentration, from high values to low valueswssn crop groundwater
(mean was 1,140 pmol™), to riparian groundwater and crop streams (31D3#0 pmol L[,
respectively), to forest streams (75 pmd) lnd to forest groundwater (25 pmal)l(Tab. 2; Fig. 7a, b,
c). In crop streams, a large share of riveringgNOGuld be discharged through crop groundwater.
Conversely, N@ concentration in forest streams could not be expthby NQ' concentration in forest

groundwater (Tab. 2; Fig. 7a, b, c, d). In cropugidwvater, high N@ concentrations were associated with
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low CH,concentrations. In crop streams, highfNé»ncentrations could be related to high,CH

concentrations (Fig. 7c).

4., Discussion

4.1. Water table depth in relation to land use

At the studied catchment scale, lithology, topobsgzsoils, and precipitation are more or less unifo
(Augusto et al., 2010; Jolivet et al., 2003). Ad thlot scale, spatial variability of water tablettein
relation to land use was thus necessarily deperaehbw water outputs (drainage, evapotranspirairon
groundwater storage) of the water mass balance lweman-affected (Govind et al., 2012; Stella et al.
2009). Local forests are never irrigated, convgrsgigation with extraction of groundwater (that
decreases groundwater storage) in local croplamdsl strongly bias the water mass balance at tbie pl
scale since about half of the water diverted fagation is rapidly consumed through evapotransipina
(e.g., Jackson et al; 2001). Additionally, evapaggaration in maize croplands is typically highean in
forests owing to the larger stomatal conductanaerttakes the exchange of C and water between the
biosphere and the atmosphere much easier (Govid €012; Stella et al., 2009). Other studiesshav
shown that the combination of subsoiling practi@gesreasing soil permeability) with deep agricudtiur
ditches in croplands also affected water mass balanhthe plot scale by enhancing lateral drairdige
groundwater (Evans et al., 1996; Robinson et 8B5). From an 8 year survey of local cropland,elest
al (1982) showed that lateral drainage stronglgaéd the water mass balance at the plot scale as i
represented an annual mean of 637 mm (70% of tleeiainof precipitation), whereas precipitation was
estimated at 922 mm. At the forest plot scaler#h@rainage represented an annual mean of 182 mm
(20% of the amount of precipitation), whereas mitaiion was estimated at 895mm (Deirmendjian et al
2018). At the study site, deeper water table iplereds was thus a consequence of a higher

evapotranspiration and more lateral drainage thdorest. As explained further, water table depthn
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443  important determinant for understanding the biogeatcal variability in groundwater in relation &nid

444 use.
445

446  4.2. Dynamic of Q, DOC, DIC and 6*3C-DIC in groundwater: a combination of hydrological,

447  physical and metabolic processes

448  In other aquifer systems worldwide, several stulleage observed a significant positive correlation

449  between groundwater,@oncentration and depth to water (Datry et al04&Z2@oulquier et al., 2010;

450  Goldscheider et al., 2006; McMahon and Chapell882@abich et al., 2001). Where the water table is
451  close to the soil surface, groundwaterd®@nsumption is likely rapid because of incomphtiggradation of
452  soil-generated labile DOC in the unsaturated z@methe contrary, where the water table is far ftben
453  soil surface, strong oxygen depletion in the vigif the water table does not occur since thedrigh
454  residence time of infiltrating water results in akhcomplete degradation of soil-generated DO®Geén t
455  unsaturated zone (Malard and Hervant, 1999; StatiGillham, 1993). A regional study in forest saifs
456  Switzerland (Hagerdon et al., 2000) and a studypslomg a global database of soil carbon (Camino-
457  Serrano et al., 2014) both found that soil-gendr&x®C was preferentially mobilized under reducing
458  conditions in soils because of dissolution of Feles. Deeper water tables in croplands do not reach
459  topsoil that exhibits high labile organic C contélttus, reducing conditions in topsoil and the Ihéag of
460  soil-generated DOC are prevented as is the consumpft the groundwater £tock, as occurs in forests
461  during high flow stages (Tab. 3; Fig. S2I; Deirmgaua et al. 2018). Therefore, groundwater p@@s

462  higher in the forest during high flow than it wascropland and riparian sites (Tab.3; Figs. 4h, &gl

463  This also explains the negative correlation betw2e&¢ and CQ@observed only in forest groundwater
464  (Fig. 6b). During base flow, we observed a cleadlase spatial pattern among cropland, ripariagstor
465  and forest sites (Tab. 3; Fig. S2h). We hypothesiaethis difference was a consequence of a ihdsase
466  soil respiration in croplands during summer. Fromutaneous eddy covariance measurements over pine

467  forests and maize croplands of the study aredaSiehl (2009) confirmed that ecosystem respinatias
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lower in croplands than in forests over the whaary However, Stella et al (2009) also showed that
ecosystem respiration was larger during the growe®ggson of the maize, because of increased of soil
respiration in response to the higher soil wateteat caused by irrigation. In forest sites, grovatr
pCQG; increases during the summer because soildiffises downward and then is dissolved into the
water table (Deirmendjian et al., 2018; Tsypin Matpherson, 2012). A deeper water table in cropland
suggests a less efficient g@ansfer from soil air to water table. Higher saiisture in croplands due to

irrigation probably delays soil G@iffusion to groundwater.

Thed"C-DIC signature of forest groundwater was typidaa signature that originated from respiration
of soil organic matter derived fromy@lants (O’Leary, 1988; Vogel et al., 1993). Thedéd forest soils
have no natural carbonate minerals (Augusto e2@10) and DIC originating from silicate weathering
has the same isotopic signature as DIC origindtmmg soil respiration (Das et al., 2005; Polsenaer
Abril, 2012; Wachniew, 2006). Crop groundwater baueavied'*C-DIC signature than forest
groundwater and this discrepancy resulted frommdisprocesses. Liming in cropland brings artificia
carbonates into crop soil and DIC originating froambonate weathering produced DIC wits*3C value
of approximately half of that of soil G@s carbonate rocks havé'aC of approximately 0 %o, making
8"C-DIC less negative (Clark and Fritz, 1997; Salosand Mook, 1986)rrigation with extraction of
groundwater could also increase 8%C-DIC signature by enhancing the degassing ratée, relative
to *CO, (Deirmendjian and Abril, 2018; Polsenaere and IAB12). Changes in ti°C-DIC signature
could also originate from respiration of soil orgamatter derived from maize, a @lant with a heavier
8"°C signature than Zorest plants (O’Leary, 1988; Vogel et al., 1998 observed in the study region
(Quénéa et al., 2006). Indeed, after three deaafdadtivation, the remaining carbon from the fdangsol

was mostly recalcitrant and its degradation propéhil not affect thé"°*C-DIC pool (Jolivet et al., 1997).

4.3. Dynamics of IN and CH in groundwater: the influence of groundwater Q
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Subsurface and groundwater redox zonation is diyethe spatial and temporal distribution of tBat
serves as the primary terminal electron acceptongihe degradation of organic C. In crop grounigna
high O, concentrations inhibited methanogenesis, as thisegs is strictly anaerobic and thus resulted in
very low CH, concentrations (Tab. 2; Figs. 41, g; Borges et2418; Ciais et al., 2010; Jurado et al.,
2017; Kluber and Conrad, 1998). Conversely, fonest riparian groundwater exhibited anoxic condgion
that allowed methanogenesis to occur and creaggehiCH concentration in forest sites compared to
cropland sites (Tab. 2; Figs. 4f, g). High watdl¢sstages in forested areas cause anoxia in Boitég
plants and microorganisms to switch to anaerobi@bmtism (Naumburg et al., 2005; Bakker et al.,&00
2009). Thus, in riparian and forest areas, we expeg positive relationship between water table and
groundwater Clbut, to the contrary, we observed a negativeiogighip between these two parameters
(R? = 0.25,p<0.05; data not shown). This implies that methaneges primarily occurs in deeper layers of
forest soils, especially in summer.2Fand NH* accumulates in forest groundwater because anoxic
conditions inhibit nitrification and iron oxidatigifab. 2; Figs. 4d, e; Jambert et al., 1994; Widdell.,

1993).

In groundwater, anoxic conditions enable heterdtimpenitrification, whereas an,@reshold of 30—60
umol L! completely inhibits heterotrophic denitrificati¢Balestrini et al., 2016; Cey et al., 1999;
Christensen et al., 2013; Jambert et al., 1994bjgah Jensen et al., 2017; Korom, 1992). In strifrifest
sites, denitrification in groundwater is usualipiied by the scarcity of NQ whereas in strictly crop sites
denitrification is often limited by organic C awaiiility (Tab. 2; Jambert et al., 1994; Starr antth@m,
1993). Thus, N fertilizer application associatethvdifferent groundwater denitrification rates et
different plots creates the observed spatial pattégroundwater N@ concentration in crop, riparian and
forest sites (Tab. 2; Fig. 4c). In local maize taops, Jambert et al (1997) found that 13% of the N
fertilizers inputs were converted t@ Nas, demonstrating that denitrification could @dawthese oxic

crop soils and groundwater. Although oxic conditi@ne not favorable for groundwater denitrification

some studies in agricultural catchments do desthiseprocess at relatively high, @50 umol L%
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levels (McAleer et al., 2017; Otero et al., 2008)crop soils, Rubol et al. (201Bjvestigated the spatio-
temporal dynamics in oxidative microbial activitydathe development of anoxic micro zones (i.e.xano
hot-spots) at the microscopic levgh{ to cm). They found that labile C addition resdilte maximum
rates of local metabolic activity within a few mtea and led to the subsequent formation of anoxic
hotspots and thus, both oxic and anoxic conditamexisted closely within a small volume of croplsoi
Consequently, denitrification probably occurs imx@o microsites in waterlogged soil during irrigatias
higher soil moisture results in lower soil oxygemcentration, lower redox potential and higher heag

of soil DOC (Hagedorn et al., 2000; Jambert etl®97; Rubol et al., 2012; Silver et al., 1999).

N fertilizer load in local croplands is 25 g N2gr* (Jambert et al., 1997), whereas export (usingielgs
of 637 mm yt* and the average NQroncentration in crop groundwater) of N@rough crop
groundwater was estimated at 10 g R yni* (40% of the annual N fertilizer load), and exporting same
drainage and the average N@oncentration in riparian groundwater) of N@rough riparian
groundwater was estimated at 2.8 g Riyri* (8% of the annual N fertilizer load). This shows t
importance of riparian groundwater to attenuateplis from adjacent croplands to streams, otheravise
large portion of the annual N fertilizer load wotlldve been leached into adjacent streams rather tha
being denitrified or used by plants. In ripariangndwater adjacent to a farm in the New York state
(USA), Anderson et al. (2014) found that total grdwater denitrification was equivalent to 32% of
manure N spread on the adjacent upland field. (Medial., 2017) simulated the transport and dynami
of N in an agricultural soil under flooded conditgoand concluded that relatively shallow aquifeith w
sandy soil are vulnerable to N@ontamination at around 10 days if continuougation is practiced.
They also stated that NGhad higher leaching potential than Nidr DOC. At our study site, irrigation
and associated desorption of DOC and;NOuld explain their slight increase in crop growater during
base flow (Tab. 3, Figs. 1, S2c). In a storm irdtion basin in Florida (USA), O'Reilly et al. (221

found that concomitant peaks in groundwatea@d NQ concentrations after storm rainfall were a

consequence of organic N leaching, indicating tiate were short periods of ammonification and
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nitrification. In crop groundwater of Wallonia (Bglim), when groundwater Qevels are higher than 125
umol L (as at the study site), nitrification rather thwmitrification promotes the accumulation ofNin

groundwater (Jurado et al., 2017).

4.4. Stream biogeochemical functioning: mostly a fiction of groundwater composition

NOjs inputs to streams cause stream eutrophicatiorpéDger et al., 1998; Jordan and Weller, 1996;
Smith, 2003; Zhou et al., 2017). This is consisteitlh our field observations where we observed thap
streams were highly vegetated with macrophytesdurase flow stages. Compared to high flow
conditions, crop stream eutrophication was accoiegany higher pH and**C-DIC, and lower
pCOsxcaused by preferentifiCO, uptake during the macrophyte plant photosynth@sib. 4; Figs. S3a,

h, j; De Carvalho et al., 2009; Raven et al., 20082g development of macrophytes in crop streams
modifies flow and can cause a significant drop atew velocity, which in turn, gives rise to extessi
deposition and retention of sediment beneath treropaytes (Cotton et al., 2006; Sand-Jensen and
Pedersen, 1999). This leads to seasonal accumutstmrganic matter, a predominance of anoxic
conditions in stream sediments, and thus the oeoaerof methanogenesis as evidenced by peaks in
dissolved CHduring base flow (Tab. 4; Figs. S3g; Borges et24118; Crawford et al., 2016; Sanders et
al., 2007). Crop stream Gldoncentration was 390 nmol'lduring base flow (Tab. 2), a concentration
significantly lower (1,430 nmol t) than chalk streams impacted by macrophyte vegatat England
(Sanders et al., 2007). This discrepancy probaddylted from the increased in silt and clay fractio
during summer of the underlying sediment in chal&ams (Sanders et al., 2007). This would sugbest t
the permeability of chalk stream sediment becameidhan that of sandy stream sediment and created
stronger reducing conditions in chalk stream sedimeavhich likely increased the potential for
methanogenesis (Baker et al., 1999; Findlay, 1B@Bkaala et al., 2005; Morrice et al., 1997). Sase¢
al. (2007) also showed that the chalk streams’ @oms of CH to the atmosphere were approximately 50

times lower than the CHproduction in stream sediments, illustrating tightpotential for CH oxidation
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in the water column of crop stream. During basw/ fla second explanation for higher Qldnd NH")
concentrations in crop streams relative to forestasns could be differential hydrology. Drainagetpd a
function of the water table height (hydraulic geatti Darcy’s law). During base flow, the water &aini
cropland was deeper than in forest (e.g., 4 m derpgep. 2014; Fig. 2), and so during this period,
potentially more forest groundwater was drained arbp streams. However, in forest streams we lysual
did not observe CHor NH,") concentrations as high as in crop streams (T.aBig2 7d) indicating that
CH, (or NH,") in crop streams primarily originated from cropesim sediments rather than from higher
discharge of forest groundwater. In crop streankt, \as correlated with NA but not correlated with
NO; or DOC (Figs. 6d, 7c, d). Such relationships vadse observed in the Meuse river basin (Belgium)
(Borges et al., 2018) and in a global meta-analyiig/erine CH (Stanley et al., 2016). In contrast, this
does not fit the conceptual model of Schade 2@ §) developed from data in New Hampshire streams,

whereby the Clwas positively correlated with DOC, while negativetlated to N@.

Sandy sediments of low order stream beds impagteditrophication are significant areas of NO
reduction over the spring and summer, lowering DXD@ NQ' concentrations in stream water (Tab. 4;
Figs. S3c, |; Bohlke et al., 2009; Mulholland et 2D08; Sanders et al., 2007). Additionally, teer¢ased
of stream velocity during base flow increased resoe times of N@in the hyporheic zone and the time
for denitrification (Bardini et al., 2012). In a athstream dominated by maize cropland in the USA,
Bohlke et al. (2009) demonstrated that denitrif@amainly occurred in sediments and not in theawat
column since integrated rates of pore-water déicition derived fromt®N tracer profiles within the
hyporheic zone were similar to the reach-scalesrdégived from measurements in the stream. In crop
streams, a portion of the NQvariability between the two hydrological perioasitd also result from
higher drainage of forest groundwater during b&se, fwhich would dilute the N©signal from crop

groundwater.

Considering the flat catchment topography, a mpwtion of TSM and POC in streams originates from

soil erosion and surface runoff. The most freqedigicts of dredging on aquatic ecosystems are @sang
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in the concentration of suspended solids, turbiditg light penetration (Lewis et al., 2001; Nevelal.,
1998). Higher concentrations of POC (and TSM) olesein crop streams were also caused by
macrophyte biomass developed in summer becameraesgdrap. When stream discharge was
sufficiently energetic, it re-suspended all theumsalated sediment and removed this litter. Moreower
observed peaks of Gknd NH" in crop streams during high flow (Tab. 4; FigsdS§), suggesting that

dredging or streambed erosion of crop streamsralsase Chiand NH," from the sediment.

In forest streams, we observed significantly loa@mncentrations of E& NH,", and CH than in forest
groundwater and significant negative linear refmhips between £bn the one side and ¥eNH,", or
CH,(Tab. 2; Figs. 4d, e, g, 7e, f). This suggestsatinare low @concentration groundwater inputs with
high concentrations of reduced compounds and lieagtream water was gradually oxygenated, which
induced F& and CH oxidations and nitrification. Mulholland et al.q@0) studied N cycling by adding
*N-labeled NH" into a forest stream in eastern Tennessee (US#y Toncluded that the residence time
of NH," in the water column was low (5 min) and that figtation was an important sink for NH
accounting for 19% of total ammonium uptake. Ireftrstreams, the NHconcentration was
approximately 3 umol Llower than in forest groundwater and thus did xplaned the N@ increase of
50 pmol L* (Tab. 2; Figs. 3c, d). Up to 76% of N exports frimwal forest are in organic forms but these
N exports are very low (< 0.2 g NTyr; De Wit et al., 2005; Rimmelin, 1998; Vernier &t 2003), so
in-stream mineralization of organic N coupled twification could not explain N©concentrations in
forest streams. Since the sampled forest streaensoaustrictly forested, N{Oconcentration are explained

by simple hydrological mixing between crop and &mgroundwater (Tab. 2).

In streams, pCowas lower and ©was higher than in groundwater (Tab. 2; Figsh3Ba). This shows
that gas exchange between stream water and theger@ occurs quickly, favored by low stream depth
and strong concentration gradients between thecborgpartments. Some authors (e.g., Bodmer et al.
2016; Borges et al., 2018) found elevated p@&rop streams rather than in forest streamsiabéher

levels of dissolved and particulate organic mattarop dominated systems compared to the forested
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ones that facilitated the in-stream degradatioorghnic matter. Moreover, land uses are expected to
change the composition of terrestrial soil organatter leached to streams, shifting from vegetation
microbe-derived organic matter with greater agtigall land use and potentially higher emissionsrap
streams (Fuss et al., 2017; Graeber et al., 201SpWand Xenopoulos, 2009). Those results comtdast
with ours because we found no difference in p@&ween crop and forest streams. Forest groundwate
did have higher pC&than crop groundwater, indicating a more interesgadsing in forest streams. The
similar 3"*C-DIC signatures in forest and crop streams de#ipétestrong difference between crop and
forest groundwater suggests faster isotopic eqatiitn of DIC resulting from degassing. The gregs
transfer velocity in forest streams is a consege@ithe abundance of coarse woody debris which
generates higher levels of water turbulence (Badmer et al. 2016), and is consistent with oudfie
observations. A lower gas transfer velocity lowectiop streams results from stream calibrationcidu

turbulent flow, and macrophyte vegetation that getst the water surface from wind shear.

5. Conclusion

The present study demonstrates that C and IN ctratiems in shallow groundwater and in first-order
streams are strongly sensitive to land use. Inyslovdand catchments, simultaneous measurements of
biogeochemical parameters in groundwater and str@aencrucial for identifying and quantifying
biogeochemical processes involved at the groundveaiteam interface. We also show that a statistical
clustering analysis based on N@ataset enables partitioning of groundwater arghsts into crop-
affected or forest-dominated waters. Such a ciaasién could be useful to river managers and golic
makers. The water table had greater depth in andpland was a crucial parameter necessary for
understanding groundwater biogeochemical varighilitrelation to land use. Higher water table stige
forests created anoxic conditions and increasédesmhing. Conversely, in croplands, the deepdexva
table prevented anoxic conditions, creating difiegroundwater compositions from forest groundwater

and inhibiting the denitrification of the N fertikrs, which led to groundwater N@ccumulation. Despite
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the occurrence of groundwater denitrification jparian and forest sites, N fertilizers inputs iagr
streams were still high enough to generate eutcogdmditions in these streams. Eutrophication tedul
in a biogeochemical cascading effect, which susthligh CH concentration and lowered NOHigh
CGO, and CH production occurs in forest soils and groundwdiat these two gases exhibit lower

concentrations in forest streams, indicating ingetsgassing or oxidation.

The groundwater-stream interface is a biogeochdratapot and hot moment for C emissions and N
removal processes (McClain et al., 2003). Futurdies focusing on the groundwater-stream interiiace
relation to land use are needed to better under€fsand N dynamics in aquatic systems in order to

correctly close C and N budgets at regional antiajlscales.
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Stream Order Description Catchment area (kn¥) Crop (% Forest (%) Urban (%) During High Flo  During Base FloW

1 Ditch 1.0 86.5 135 0.0 C C
1 Ditch 1.3 53.8 46.2 0.0 C C
1 Ditch 11.3 44.2 55.8 0.0 C C
1 Ditch 13.4 42.5 57.5 0.0 C C
1 Stream 57.0 30.7 69.3 0.0 C C
1 Stream 16.8 7.8 92.2 0.0 F F
1 Ditch 7.9 5.8 94.2 0.0 F F
1 Ditch 2.3 5.2 94.8 0.0 F C
1 Stream 16.0 4.6 93.8 1.6 C F
1 Stream 34.0 3.8 96.2 0.0 F F
1 Stream 31.0 2.3 97.7 0.0 F F
1 Headwater 0.3 0.0 100.0 0.0 F F
Groundwater in a riparian forest but very near (am)
0 maize cropland (P1) R R
0 Groundwater in maize cropland (P2) C C
0 Groundwater in maize cropland (P3) C C
0 Groundwater in pine forest (P4) F F
0 Groundwater in pine forest (P5) F F

1086  Table 1. Characteristics of groundwater and streammpling stations, ranked in decreasing orderayland percentage in their respective sub-
1087  catchments’delimited with a geographic information systemwafte (ArcGIS 10.5®) using an hydrological databiasg polyline form (BD

1088 CARTHAGE®) and a digital elevation model (BD ALTI®gsolution of 25m), which both have been madelabi by the national geographic
1089 institute of France (http://www.ign.fr/jretrieved with the CORINE land cover 2006 datal{&$#A, 2014) using a geographic information system
1090  software (ArcGIS 10.5®Y.C, F, R corresponding to crop, forest and ripawaters, respectively, either during high or bdse fPiezometer 1

1091 (P1)is located in a riparian mixed pine and oakgonear a first-order stream and near a maiz#ad, which where P2 is located. P2 and P3
1092  are located in the middle of two different maizeptands of 0.6 km2 and 6 kmz2, respectively. PBésiled in an 11-years old pine plot of 0.6 km2
1093 andis part of the ICOS (nhame is FR-BIl) reseanftastructure (http://icos-ri.eu), whereas P4 tated in another pine forest (approximately
1094 same age as P5 pine forest). The depth of piezosn@tem the soil surface to the bottom of the praeter) is 5.3m for P1, 4.9m for P2, 9.1m for
1095 P33, 5m for P4 and P5.

1096
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1098
1099
1100

Crop continuum

Forest continuum

Riparian grounéwat

Groundwaters (22)

Streams (59)

Groundwaters (22)

treaBis (78)

Groundwaters (11)

pH
Temperature (°C)
EC (uS crif)
NO; (nmol L)
NH," (umol LY
Fe* (umol LY
O, (umol LY
CH, (nmol L%
pCQ; (ppmv)
TA (umol L)
3"C-DIC (%)
DIC (umol LY
DOC (pumol %)
TSM (mg LY
POC (%)

POC (umol )

4.5+0.2
4.3-5.0
14.5+1.8
10.7-17.5
36070
220-465
1,140+485
260-1,785
0.4+0.8
0-3.5
0.9+0.4
0.1-1.9
220465
100-315
40+25
15-130
30,650£11,590
19,000-60,550
90+25
35-130
-19.8+1.3
-22t0 -17.6
1,450+480
820-2,590
510+150
275-880

6.0+0.3
5.4-7.0
13.6+4.2
6.4-25.8
220+55
75-370
340+200
10-950
6.1+7.0
0-40
5.9+4.4
0.1-22
290+45
160-400
460+950
20-4,900
4,480+2,680
1,040-14,080
100+50
30-300
-18.2+3.5

-27.6t0-11.3

315£135
90-650
605+320
220-2,290
5.6+8.6
0.1-50.5
28+10
0-50
120+180
0-1,100

4.5+0.3
3.7-4.8
12.8+1.8
8.5-15.1
90+10
65-115
25+40
0-120
4.5+7.0
0.3-30
15+15
0.9+56
20+30
0-110
1,770+1,830
50-6,700
50,630+26,070
7,680-116,380
70£30
30-135
-26.7+1.0
-28.8 to -24
2,460+1,130
570-5,370
9304930
310-3,670

5.8+0.5
4.2-6.9
12.9+3.
48-22.1
115+30
70-200
7570
0-275
1.8+1.7
0-7.8
7.9%£12.0
0.6+58
280+50
110-370
240300
20-2,370
0@g,500
1,000a0y7,
90+50
30-280
-19.8+2.8
-27.61é
320£210
120-1,280
470+250
190-1,725
2.3+1.7
0.4-8.2
28+10
10-80
50£35
0-170

4.7+0.1
4.4-4.8
14.9+2.4
11.8-17.9
160+50
95-270
310+260
40-860
0.4+0.4
0-1.5
0.6+0.5
0.2-1.5
100+70
0-170
1,470+1,490
30-4,150
42,950+28,560
17,300-103,300
70£15
45-85
25:2+1.1
-27.9t0 -23.4
1,960+1,150
940-4,480
400+100
280-620

Tab. 2. Values of carbon and ancillary parametemighout sampling period (Jan. 2014-Jul. 2015yap and forest continuums and in riparian
groundwater. Numbers between brackets are corrdsppto the sampling size. For each parametertathiie showed averagexstandard
deviations and the range.

38



Groundwater

Cropland_HF (4) Cropland_BF (18) Forest_HF (6) eSorBF (16) Riparian_HF (2) Riparian_BF (9)
pH 4.6+0.3 4.5+0.2 4.4+0.3 4.5+0.3 4.7+0.1 4.6+0.1
4.3-4.9 4.3-5.0 4.0-4.8 3.7-4.8 4.6-4.8 4.4-4.8
Temperature (°C) 12.8+1.7 14.9+1.6 10.8+1.4 13.5+1. 12.2+0.6 15.6+2.2
10.7-14.5 11.6-17.5 8.5-12.2 10.7-15.1 11.8-12.6 2.117.9
EC (uS crit) 370460 360+70 90+15 90+10 200+20 15050
320-460 220-470 70-115 70-115 185-215 95-270
NOs (umol L) 1,040+300 1,160+420 3050 20+40 510+20 260+270
760-1,320 260-1785 0-120 0-120 500-520 40-860
NH," (umol L) 0.5+0.4 0.4+0.9 3.3+2.2 5.048.0 0.340.1 0.440.5
0.1-1 0-3.5 1.1-7 0-3-30 0.2-0.3 0-1.5
Fe?* (umol L) 0.840.2 0.9+0.4 10.0+8.2 15415 0.4+0.2 0.7+0.5
0.7-11 0.1-1.9 2.7-25.5 0.9-56.6 0.2-0.5 0.2-15
0, (umol LY 250+90 220£70 20+20 2030 170+0 10080
180-310 100-320 0-40 0-110 170-170 0-200
CH, (nmol L") 30+3 50+25 480+630 2,260+1,900 1,460+2,010 1,47830
25-30 16-130 50-1,700 50-6,700 40-2,880 30-4,150
pCO; (ppmv) 22,050+2,000 32,560+12,000 28,100+11,580 ,0&®+25,060 21,530+5,950 47,700+29,590
19,800-24,270 19,000-60,550 7,680-39,000 29,6400 17,320-25,740 20,600-103,300
TA (umol LY 85+2 92430 95+40 65+30 83+2 60-10
82-86 35-130 60-135 30-100 82-85 45-75
3"C-DIC (%) -20.7+1.1 -19.6+1.3 -26.6+1.3 -26.8+1.0 26:9+1.4 -24.9+0.7
-22t0-19.7 -21.9t0-17.6 -27.6 t0 -24.0 -28825.3 -27.9t0 -25.9 -25.7t0 -23.4
DIC (umol LY 1,100+180 1,520+490 1,500+550 2,830+1,080 1,166+3 2,140+1,200
930-1,300 820-2,590 570-2,040 1,650-5,370 9401,38 1,020-4,480
DOC (umol LY 420+120 550+140 2,230+1,440 740+380 310450 42010
320-590 340-880 575-3,670 310-1,720 275-350 31D-62

1101
1102
1103
1104

1105

Tab. 3. Values of carbon and ancillary paramete@ighout sampling period (Jan. 2014-Jul. 2015lfierent types of groundwater across
hydrological seasons. Numbers between bracketsoaresponding to the sampling size. For each paeapnibe table showed the
averagesstandard deviations and the rangt. defined six groups that are Cropland_HF/Cropl&f¢g Forest HF/Forest_BF and
Riparian_HF/Riparian_BF corresponding to groundvegatieiring high flow (HF) or base flow (BF); in ethcropland, forest or riparian forest.
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1106
1107
1108
1109

First-order streams

Cropland_HF (22)

Cropland_BF (37)

Forest HF (23)

oreSt_BF (55)

pH
Temperature (°C)
EC (uS crif)
NO; (nmol L)
NH," (umol LY
Fe* (umol LY
O, (umol LY
CH, (nmol LY
pPCQ; (ppmv)
TA (umol L)
3"C-DIC (%)
DIC (umol LY
DOC (pumol %)
TSM (mg LY
POC (%)

POC (umol )

5.9+0.3
5.4-6.6
10.2+1.6
6.4-12.1
23050
145-340
420+220
180-950
7.0£8.4
0.5-38.7
6.7+3.8
1.6-15.7
290+50
190-400
580+1,080
30-4,380
5,200+2,370
1,040-10,740
105+50
40-300
-20.6+3.9
-27.6t0-11.3
380+130
1,000-650
750400
300-2,290
9.3+11.5
0.9-51
2610
15-48
190+250
0-1100

6.1+0.4
5.5-7.0
15.7£3.9
9.1-25.8
22060
75-370
290+170
8.5-705
5.5%6.0
0-25.3
5.4+4.7
0.1-22
29040
160-370
390+880
20-4,900
4,040+2,790
1,220-14,080
100+50
30-255
-16.8+2.4
-22.3t0-12.4
280£120
90-600
520+230
220-1,520
3.1+4.9
0.1-27
30+10
16-48
65+100
0.3-540

5.7+0.6
4.2-6.8
9.0+1.9
4.8-12
110+20
80-150
95+70
0-275
1.7+¥1.7
0.3-7.8
5.7£3.0
2.6-13.6
300+40
210-370
185+190
40-980
4,200+2,430
1,240+11,690
70+40
35-195
-22.1+¥2.5
-27.6t0 -16.8
300£150
150-750
540+305
260-1725
2.8+1.7
0.5-6.6
298
20-50
65+40
0-170

6.1+0.4
5.0-6.9
14.6+£3.3
8.1-22.1
120+30
70-200
6570
0-275
1.7%1.7
0-6.9
8.8+14.0
0.6-57.1
27060
110-360
270340
20-2,370
5,20036
1,010-27,200
95455
30-280
-18.9+2.3
-218.114.0
330+230
120-1,280
450220
190-1540
2.1+1.7
0.4-8.2
29+10
12-80
40+30
0.5-140

Tab. 4. Values of carbon and ancillary parametexsughout sampling period (Jan. 2014-Jul. 201%5l)ifierent types of streams across
hydrological seasons. Numbers between bracketsoaresponding to the sampling size. For each pasantbe table showed the
averagestandard deviations and the rangt defined four groups that are Cropland_HF/Crapl&F, Forest HF/Forest_BF corresponding
to streams during high flow (HF) or base flow (BiR)gither cropland-affected or forest-dominatewlase.
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Figure 1: Land use map of the Leyre catchment shgwver network and the sampling locations of

groundwaters and streams.
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Figure 2: Water table depth during the samplinggokefJan. 2014-Jul. 2015) across land use in tlyeele
catchment. The water table in riparian area isnater table at P1 (Tab. 1). The water table in @iopis
the averagezstandard deviations of water tabl@2 a@nd P3 (Tab. 1). The water table in forestiplthe
averagezstandard deviations of water tables anB4& (Tab. 1).
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Figure 3: Principal component analysis (PCA) ofllskagroundwater dataset (a-b) and first-order
streams dataset (c-d). We represented only thelinese dimensions. Numbers between brackets are
corresponding to the sampling size. The samplingisi the PCAs did not correspond exactly to the
sampling size in Tables 3 and 4 because R softdeletes stations from the analysis with a missaige/

for one parameter. In these PCAs, we used all thatifative variables measured in this study. kthea

PCA, we plotted as well the individuals separatefbur groups. The first group corresponds to @aogt
affected samples during high flow (Crop_HF), theos®l group corresponds to cropland-affected samples
during base flow (Crop_BF), the third group corags to forest-dominated samples during high flow
(Forest_HF) and the fourth group corresponds tesfiedlominated samples during base flow (Forest_BF).
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The mean value of each qualitative group has 958aahto be within the corresponding confidence
ellipse.
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Figure 4: Values of carbon and ancillary parameatesughout the sampling period (Jan. 2014-Jul5201 groundwater and streams across land
use. Histograms represent the mean with standardtibas of a given parameter. We defined four geotihat are GW_Forest/GW_Crop and
|_Forest/l_crop corresponding to groundwaters arehms order 1 either dominated by forests or araps. A fifth group is GW_Riparian and
corresponding to riparian groundwater. Then, baselllann-Whitney statistical analysis, we compar&d Grop VS |_Crop, GW_Forest VS
|_Forest, GW_Crop VS GW_Forest, |_Crop VS |_For€hktee red stars (***) indicate that data were gigantly different withp<0.001. One

blue star (*) indicates that data were significaulifferent withp<0.05. No stars indicate that data were not sigafily different p>0.05).
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Figure 5: Principal component analysis (PCA) of lisma groundwater and stream datasets. We
represented only the first three dimensions. Numbetween brackets are corresponding to the sagnplin
size. The sampling size in the PCA did not correspexactly to the sampling size in Table 2 bec&use
software deletes stations from the analysis withissing value for one parameter. In these multateri
statistical analyses, we used all the quantitatarables measured in this study. We defined faaugs
that are Crop_GW/Forest_ GW and Crop_stream/Fotesars, which are corresponding to groundwater
and streams order 1, either dominated by forestsaplands. The mean value of each qualitative grou
has 95% chance to be within the corresponding dente ellipse
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Figure 6: Scatter plots of (a) G@ppmv) vs. Q(umol LY, (b) CQ (ppmv) vs. DOC (umol B), (c)

CHu(nmol LY vs. @ (umol L), (d) CH, vs. DOQ(umol LY, (e) CH(nmol L) vs. CQ (ppmv), and (f)

O, (umol LY vs. DOC(umol LY, in all sampled groundwater and streams
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Figure 7: Scatter plots of (a,@mol L") vs. NQ (umol L"), (b) O, (umol L) vs. NH,* (umol LY, (c)

CH, (umol LY vs. NQ™ (umol L), (d) CH, (umol L) vs.DOC (umol [¥), (e) DOC (umol ) vs. NQ

(umol LY, and (f) Q (umol L) vs. Fé*(umol LY, in all sampled groundwater and streams.
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Supplementary Material

Seasons Date Groundwaters Streams
P5 P1, P2, P3P4

HF 29/01/2014 X
HF 12/02/2014 X

HF 07/03/2014 X
HF 17/03/2014 X

BF 24/04/2014 X
BF 16/05/2014 X

BF 21/05/2014 X
BF 25/06/2014 X
BF 17/072014 X X
BF 27/08/2014 X X X
BF 24/09/2014 X X X
BF 31/10/2014 X X X
BF 21/11/2014 X X X
BF 16/12/2014 X X X
HF 27/01/2015 X X X X
HF 04/03/2015 X X X X
BF 10/04/2015 X X X X
BF 07/05/2015 X X X X
BF 03/06/2015 X X X X
BF 09/07/2015 X X X X

Table S1: Sampling dates of groundwaters and sgedroorresponds to a sampling. HF and BF are spaoreding to high flow and base flow

periods, respectively.
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Fig. S2. Values of carbon and ancillary parametesughout the sampling period (Jan. 2014-Jul. P@1§roundwaters across hydrological
seasons and land use. Box-plots represent the m@aéck bar) and the extreme (min-max) values.défeed six groups that are
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Forest HF vs. Forest BF and Riparian_HF vs. RipaB&. Three red stars (***) indicate that data wsignificantly different withp<0.001. One
blue star (*) indicates that data were significaxiifferent withp<0.05. No stars indicate that data were not sigaifily different p>0.05)
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with p<0.001. One blue star (*) indicates that data veegrificantly different withp<0.05. No stars indicate that data were not sicguifily
different >0.05)
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Figure S4



groundwater and streams. Top panels representeyre [River flow (main stem).
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