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Abstract. We report a data set of biogeochemical variables
related to carbon cycling obtained in the three branches (M�y
Tho, Hàm Luông, C ´̂o Chiên) of the Mekong delta (B ´̂en Tre
province, Vietnam) in December 2003, April 2004, and Oc-
tober 2004. Both the inner estuary (upstream of the mouth)
and the outer estuary (river plume) were sampled, as well
as side channels. The values of the partial pressure of CO2
(pCO2) ranged between 232 and 4085 ppm, O2 saturation
level (%O2) between 63 and 114 %, and CH4 between 2
and 2217 nmol L−1, within the ranges of values previously
reported in temperate and tropical meso- and macro-tidal es-
tuaries. Strong seasonal variations were observed. In the up-
per oligohaline estuary, low pCO2 (479–753 ppm) and high
%O2 (98–106 %) values were observed in April 2004 most
probably related to freshwater phytoplankton growth owing
to low freshwater discharge (1400 m3 s−1) and increase in
water residence time; during the two other sampling periods
with a higher freshwater discharge (9300–17 900 m3 s−1),
higher pCO2 (1895–2664 ppm) and lower %O2 (69–84 %)
values were observed in the oligohaline part of the estuary.
In October 2004, important phytoplankton growth occurred
in the offshore part of the river plume as attested by changes
in the contribution of particulate organic carbon (POC) to
total suspended matter (TSM) (%POC) and the stable iso-
tope composition of POC (δ13C-POC), possibly related to
low TSM values (improvement of light conditions for phy-
toplankton development), leading to low pCO2 (232 ppm)
and high %O2 (114 %) values. Water in the side channels
in the Mekong delta was strongly impacted by inputs from
the extensive shrimp farming ponds. The values of pCO2,
CH4, %O2, and the stable isotope composition of dissolved

inorganic carbon (δ13C-DIC) indicated intense organic mat-
ter degradation that was partly mediated by sulfate reduc-
tion in sediments, as revealed by the slope of total alkalinity
(TA) and DIC covariations. The δ13C-POC variations also
indicated intense phytoplankton growth in the side channels,
presumably due to nutrient enrichment related to the shrimp
farming ponds. A data set in the mangrove creeks of the
Ca Mau province (part of the Mekong delta) was also ac-
quired in April and October 2004. These data extended the
range of variability in pCO2 and %O2 with more extreme
values than in the Mekong delta (B ´̂en Tre), with maxima and
minima of 6912 ppm and 37 %, respectively. Similarly, the
maximum CH4 concentration (686 nmol L−1) was higher in
the Ca Mau province mangrove creeks than in the Mekong
delta (B ´̂en Tre, maximum 222 nmol L−1) during the Octo-
ber 2004 cruise (rainy season and high freshwater discharge
period). In April 2004 (dry season and low freshwater dis-
charge period), the CH4 values were much lower than in
October 2004 (average 19 ± 13 and 210 ± 158 nmol L−1, re-
spectively) in the Ca Mau province mangrove creeks, owing
to the higher salinity (average 33.2 ± 0.6 and 14.1 ± 1.2, re-
spectively) that probably led to higher sediment sulfate re-
duction, leading to inhibition of sediment methanogenesis
and higher anaerobic CH4 oxidation. In the inner estuarine
region (three branches of the Mekong delta), CO2 emissions
to the atmosphere averaged 121 mmol m−2 d−1, and the CH4
emissions averaged 118 µmol m−2 d−1. The CO2 emission to
the atmosphere from the Mekong inner estuary was higher
than reported in the Yangtze and Pearl river inner estuaries.
This was probably due to the lower salinity in the Mekong
delta branches, possibly due to different morphology: rel-
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atively linear channels in the Mekong delta versus funnel-
shaped estuaries for the Yangtze and Pearl river inner estuar-
ies.

1 Introduction

Estuaries are the main pathways for the transfer of particulate
and dissolved matter from land to the ocean (through rivers).
Particulate and dissolved matter undergo strong transforma-
tions, as estuaries are sites of intense biogeochemical pro-
cessing (for example Bianchi, 2006) that in most cases leads
to substantial emissions of greenhouse gases such as car-
bon dioxide (CO2) and methane (CH4) (for example Borges
and Abril, 2011). Most estuarine environments are net het-
erotrophic ecosystems (Gattuso et al., 1998; Testa et al.,
2012), leading to the production and emission to the atmo-
sphere of CO2 and CH4. The production of CO2 and CH4 is
modulated by various physical features resulting from estu-
arine geomorphology such as water residence time (Borges
et al., 2006; Joesoef et al., 2017), tidal amplitude and verti-
cal stratification (Borges, 2005; Koné et al., 2009; Crosswell
et al., 2012; Joesoef et al., 2015), and connectivity with tidal
flats and salt marshes (Middelburg et al., 2002; Cai, 2011).
Highly eutrophic (Cotovicz Jr. et al., 2015) or strongly strat-
ified estuarine systems (Koné et al., 2009) can exceptionally
act as sinks of CO2 due to high carbon sequestration, al-
though high organic matter sedimentation can concomitantly
lead to high CH4 production and emission to the atmosphere
(Koné et al., 2010; Borges and Abril, 2011).

The global CO2 emissions from estuaries have been esti-
mated by several studies (Abril and Borges, 2004; Borges,
2005; Borges et al., 2005; Chen and Borges, 2009; Laru-
elle et al., 2010, 2013; Cai, 2011; Chen et al., 2012, 2013)
and range from 0.1 to 0.6 PgC yr−1, equivalent in magni-
tude to 5–30 % of the oceanic CO2 sink of ∼ 2 PgC yr−1

(Le Quéré et al., 2016). These values were derived from the
scaling of air–water CO2 flux intensities (per surface area)
compiled from published data that were extrapolated to es-
timates of the global surface of estuaries. The most recent
estimates are lower than the older ones, reflecting the in-
crease by an order of magnitude in the availability of data
on air–water CO2 fluxes and more precise estimates of sur-
face areas of estuaries structured by types (for example Dürr
et al., 2011). The global estimates of CH4 emissions from
estuaries are also relatively variable, ranging between 1 and
7 TgCH4 yr−1 (Bange et al., 1994; Upstill-Goddard et al.,
2000; Middelburg et al., 2002; Borges and Abril, 2011) and
are modest compared to other natural (220–350 TgCH4 yr−1)
and anthropogenic (330–335 TgCH4 yr−1) CH4 emissions
(Kirschke et al., 2013). Unlike CO2, the most recent global
estimate of estuarine CH4 emissions is the highest because
it accounts for the direct emissions of CH4 from sediment
to atmosphere (when intertidal areas are exposed) (Borges

and Abril, 2011). However, published estuarine CH4 emis-
sions are most probably underestimated because they do not
account for CH4 ebullition and gas flaring, although emis-
sions to the atmosphere of CH4 originating from gassy sedi-
ments in coastal environments have been shown to be intense
(Borges et al., 2016, 2017). Reported CO2 and CH4 emis-
sions from rivers are also highly uncertain and the proposed
values also span a considerable range. Global riverine CO2
emission estimates range between 0.1 PgC yr−1 (Liu et al.,
2010) and 1.8 PgC yr−1 (Raymond et al., 2013), while river-
ine CH4 emission estimates range between 2 TgCH4 yr−1

(Bastviken et al., 2011) and 27 TgCH4 yr−1 (Stanley et al.,
2016). Both CO2 and CH4 riverine emissions mainly occur
in tropical areas (Borges et al., 2015a, b).

The first studies of CO2 and CH4 dynamics and emis-
sions from estuaries were carried out during the late 1990s
in Europe (Frankignoulle et al., 1996, 1998; Middelburg et
al., 2002) and the US (Cai and Wang, 1998). Since then,
CO2 data coverage has tremendously increased with addi-
tional studies at subtropical and tropical latitudes (for exam-
ple Sarma et al., 2012; Chen et al., 2012; Rao and Sarma,
2016) and in the large river–estuarine systems such as the
Amazon (Lefèvre et al., 2017), the Mississippi (Huang et al.,
2015), the Yangtze (Changjiang) (Zhai et al., 2007; Zhang
et al., 2008), and the Pearl (Guo et al., 2009; Zhou et al.,
2009). The number of studies on CH4 in estuarine and coastal
environments has not increased in recent years as spectacu-
larly as those concerning CO2, attracting less research ef-
forts because the marine source of CH4 to the atmosphere
(0.4–1.8 TgCH4 yr−1; Bates et al., 1996; Rhee et al., 2009)
is very modest compared to other natural and anthropogenic
CH4 emissions (Kirschke et al., 2013); however, continen-
tal shelves and estuaries are more intense sources of CH4
to the atmosphere than the open ocean, in particular shal-
low and permanently well-mixed coastal zones (Borges et
al., 2016, 2017). However, numerous large river–estuarine
systems, such as the Mekong although it is the world’s
10th largest river in water discharge (470 km3 yr−1), 12th
largest in length (4800 km), and 21st largest in drainage area
(795 000 km2) (Li and Bush, 2015), remain totally uncharted
with respect to CO2 and CH4 data.

As a contribution to the special issue in Biogeosciences
on “Human impacts on carbon fluxes in Asian river sys-
tems”, we report a data set obtained in the three branches
(M�y Tho, Hàm Luông, C ´̂o Chiên) of the Mekong delta
(Fig. 1) in December 2003, April 2004, and October 2004
of biogeochemical variables related to carbon cycling: pH,
total alkalinity (TA), O2, calculated partial pressure of CO2
(pCO2), dissolved CH4 concentration, particulate (POC) and
dissolved (DOC) organic carbon concentration and stable
isotopic composition, particulate nitrogen (PN), dissolved in-
organic carbon (DIC) stable isotopic composition, and total
suspended matter (TSM). The aim of the paper is to give a
general description of carbon cycling with an emphasis on
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Figure 1. Map of sampling stations in December 2003, April 2004,
and October 2004 in the three inner estuarine branches of the
Mekong delta (circles) (M�y Tho, Hàm Luông, and C ´̂o Chiên) and
side channels (triangles). The small grey dot indicates the location
of the bridge across the river at the city of Vı̃nh Long from which
the distance downstream is calculated in Fig. 3.

CO2 and CH4 dynamics in the Mekong delta estuarine sys-
tem that can be used as a reference state to evaluate future
changes in response to modifications in hydrology related
the construction of planned large dams (leading to water ab-
straction and sediment retention), eutrophication, shoreline
erosion, and sea level rise.

2 Material and methods

2.1 Description of the Mekong River and delta

Himalayan rivers (Yangtze, Mekong, Salween, Ayeyarwady,
Ganges, Brahmaputra, Indus) are among the world’s largest.
The Mekong River is one of the longest rivers among the
Himalayan watersheds, ranking it as the 12th longest river
in the world. It flows 4800 km from the eastern part of
the Tibetan Plateau through six different countries (China,
Myanmar, Lao People’s Democratic Republic (PDR), Thai-
land, Cambodia, Vietnam), into the South China Sea, drain-
ing an area of 795 000 km2. The basin is divided into the
Upper Mekong (parts of China and Myanmar, surface of
195 000 km2, first 2000 km in length) and the Lower Mekong
(parts of Lao PDR, Thailand, Cambodia, and Vietnam; sur-
face of 600 000 km2). The Upper Mekong is mountain-
ous (altitude 400–5000 m) with no significant large tribu-
taries and a low population density (< 10 inhabitants km−2).
The Lower Mekong is lowland, drains very large tributary
river systems, and is densely populated (80–460 inhabi-
tants km−2). Climate ranges from cold temperate in the Up-
per Mekong to tropical monsoonal in the Lower Mekong.
The annual flow of the Mekong River is ∼ 470 km3, rank-
ing 10th among the world’s largest rivers (Dai and Trenberth,
2002). Water sources are snowmelt in the Upper Mekong and
surface run-off in the Lower Mekong. Seasonal variations in
freshwater flow are controlled by the East Asian monsoons,
resulting in an annual unimodal flood pulse. About 75 %
of the annual flow occurs in 4 months (July–October). The
delta is divided into two main rivers, the Hâu and the Ti `̂en,
which equally share the total freshwater discharge. The Ti `̂en
River further divides into the M�y Tho, Hàm Luông, and C ´̂o
Chiên river branches (Fig. 1), which deliver 8, 14, and 23 %,
respectively, of total freshwater from the Mekong network
(based on the average of five different estimates reported by
Nguyen et al., 2008). The annual sediment load was ∼ 130–
160 million tons in the 1960s and 110 million tons in the
1990s according to Milliman and Farnsworth (2011). Li and
Bush (2015) report a less dramatic decrease in annual sed-
iment load from 171 million tons for the pre-regulated pe-
riod (1923–1991) to 168 million tons for the regulated period
(1992–2007). Estimates of the annual solute transport range
between 40 and 123 million tons (Meybeck and Carbonnel,
1975; Gaillardet et al., 1999; Li and Bush, 2015). Exposed
lithological strata are dominated by shales (43.2 %), followed
by carbonates (21.4 %), shield rocks (18.2 %), sands and
sandstone (8.4 %), basalts (5.8 %), and acid volcanic rocks
(2.9%) (Amiotte Suchet et al., 2003). The Mekong River
basin is populated by 70 million people and this popula-
tion is expected to increase to 100 million by 2050 (Varis
et al., 2012). Recent and fast economic development has
substantially increased the use of water resources (Piman et
al., 2013), in particular for agriculture, energy (hydropower),
and fishery (Västilä et al., 2010). Until recently, the Mekong
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River was considered one of the last unregulated great rivers
with a flow regime close to its natural state (Adamson et al.,
2009). Economic development in the region has led to the
construction of several dams mainly for the production of
hydropower, potentially affecting water and sediment flows
(Fu et al., 2008; Wang et al., 2011; Lu et al., 2014; Piman
et al., 2013, 2016). The construction of major infrastruc-
tures is planned on the transboundary Srepok, Tônle San, and
Srekong rivers, which contribute up to 20 % of the total an-
nual water flow of the Mekong (Piman et al., 2016).

The Mekong River delta covers an area of 50 000 km2 and
is the third-largest tide-dominated delta in the world after the
Amazon and Ganges–Brahmaputra deltas. The upper limit
of the delta (limit of the tidal influence) is the city of Phnom
Penh in Cambodia, and at the coast it extends in the north
from the mouth of the Saigon River to Cape Ca Mau in the
south. The delta is meso-tidal with an average tidal amplitude
of 2.5 m at the estuarine mouths and a maximum tidal ampli-
tude of 3.8 m, and tides have mixed diurnal and semi-diurnal
components, with a dominance of the semi-diurnal (period
∼ 12 h) component (Takagi et al., 2016). It is tremendously
important in the food supply and economic activity of Viet-
nam, as it sustains 90 % of rice (> 20 million tons annually)
and 60 % of national seafood production. The development
of shrimp farming in the delta has led to the reduction of
mangrove forests (de Graaf and Xuan, 1998; Nguyen et al.,
2011), which today only remain significantly in the Ca Mau
province. Shrimp farming started in the late 1970s and has
accelerated during the mid-1980s until present (de Graaf and
Xuan, 1998; Tong et al., 2010). The delta is populated by
more than 17 million people (> 80 % in rural areas), repre-
senting nearly a quarter of Vietnam’s total population, with
an annual population growth of more than 2 %. The delta is a
low-lying area with an average elevation of < 2 m a.s.l., mak-
ing it one of the most vulnerable deltas in the world to sea
level rise (IPCC, 2014). The decrease in freshwater and sed-
iment delivery combined with the rising sea level and sub-
sidence, as well as coastal (shoreline) erosion, are potential
threats for economic activities in the Mekong delta, for in-
stance due to the impact of salinity intrusion on agriculture,
compromising the economy and livelihood of local popula-
tions (Smajgl et al., 2015). Several studies predict that a large
fraction (70–95 %) of the sediment load could be trapped by
hydropower reservoirs if all of the planned infrastructures are
effectively built (Kummu et al., 2010; Kondolf et al., 2014).
In addition, sediment river delivery could also vary in re-
sponse to changes in climate (Västilä et al., 2010; Lauri et
al., 2012; Darby et al., 2016). This would have important
consequences on the sediment deposition in the delta that
seems to have already shifted from a net depositional (accre-
tion) regime into a net erosion regime (Anthony et al., 2015;
Liu et al., 2017). The nutrient inputs to the continental shelf
from the Mekong delta sustain high phytoplankton growth in
the Mekong River plume (Grosse et al., 2010), which is one

the most productive areas of the South China Sea (Liu et al.,
2002; Qiu et al., 2011; Gao et al., 2013; Loisel et al., 2017).

2.2 Sampling

Sampling in three branches of the Mekong delta (M�y Tho,
Hàm Luông, C ´̂o Chiên; Fig. 1) was carried out during
three field campaigns (29 November–5 December 2003; 2–
7 April 2004; 14–19 October 2004) on the inspection boat
of the B ´̂en Tre Fishery Department, in collaboration with
the Research Institute for Aquaculture No. 2 (Ho Chi Minh
City). Sampling in the mangrove creeks of the Ca Mau
province was carried out during two field campaigns (10–
14 April 2004; 23–25 October 2004) with a speed boat. The
map of the sampling stations in the mangrove creeks of the
Ca Mau province is given by Koné and Borges (2008), who
reported pCO2, %O2, and TSM data.

Samples for pH, TA, O2, TSM, POC and δ13C-POC, PN,
δ13C-DIC were collected and analysed at all stations of all
three field campaigns. Samples for dissolved CH4 concentra-
tion were collected during the two last field campaigns, for
DOC during the last field campaign, and for dissolved silica
(DSi) during the second field campaign.

2.3 Sample collection and analysis

Salinity and water temperature were measured in situ using
a portable thermosalinometer (WTW Cond 340) with a pre-
cision of ±0.1 and ±0.1 ◦C, respectively. Subsurface waters
(top 1 m) were sampled with a 1.7 L Niskin bottle (General
Oceanics) for the determination of pH and dissolved gases
sampled with a silicone tube. Water for the determination
of O2 was sampled in a Winkler-type borosilicate bottle and
the oxygen saturation level (%O2) was measured immedi-
ately after collection with a polarographic electrode (WTW
Oxi 340) calibrated on saturated air, with an accuracy of
±0.1 %. The pH was also sampled in a Winkler bottle and
measured immediately after collection with a combination
electrode (Metrohm 6.0232.100) calibrated on the US Na-
tional Bureau of Standards scale as described by Frankig-
noulle and Borges (2001), with a precision and estimated
accuracy of ±0.001 and ±0.005 pH units, respectively. Wa-
ter for the determination of CH4 was sampled in duplicate
with a silicone tube from the 1.7 L Niskin bottle into 50 mL
borosilicate serum bottles, allowing the flushing of 2–3 times
the final volume; then the water was poisoned with 100 µL
of a saturated solution of HgCl2 sealed with a butyl stopper
and crimped with an aluminium cap. The CH4 concentration
was measured using the headspace technique (Weiss, 1981)
using a gas chromatograph with flame ionization detection
(Hewlett Packard 5890A), calibrated with certified CH4 : N2
mixtures of 10 and 200 ppm CH4 (Air Liquide, France), with
a precision of ±5 %. Water for the analysis of δ13C-DIC was
sampled in 12 mL Exetainer vials and poisoned with 20 µL
of a saturated HgCl2 solution. A He headspace was created,

Biogeosciences, 15, 1093–1114, 2018 www.biogeosciences.net/15/1093/2018/



A. V. Borges et al.: Carbon dynamics and CO2 and CH4 outgassing 1097

and ∼ 300 µL of H3PO4 was added to convert all DIC species
to CO2. After overnight equilibration part of the headspace
was injected into the He stream of an elemental analyser iso-
tope ratio mass spectrometer (EA-IRMS; Thermo Finnigan
Flash1112 and Thermo Finnigan Delta+XL) for δ13C mea-
surements, with a precision of better than ±0.2 ‰.

Samples for TSM were filtered on pre-weighed and pre-
combusted (5 h at 450 ◦C) 47 mm Whatman GF/F filters
(0.7 µm porosity), rinsed with bottled drinking water to avoid
salt contributions and subsequently dried. Samples for POC,
PN, and δ13C-POC were filtered on pre-combusted 25 mm
Whatman GF/F filters (0.7 µm porosity) and dried. These fil-
ters were later decarbonated with HCl fumes under partial
vacuum for 4 h, re-dried, and packed in Ag cups. POC and
PN were determined on a Thermo Finnigan Flash EA1112
using acetanilide as a standard, and the resulting CO2 was
measured on a Thermo Finnigan delta + XL interfaced via
a ConFlo III to the EA. Reproducibility of δ13C-POC mea-
surements was better than ±0.2 ‰. Samples for DOC and
δ13C-DOC, TA, DSi, and major cations (Ca2+, Mg2+, Na+,
K+) were obtained by pre-filtering water on cellulose acetate
filters for DSi, and pre-combusted Whatman GF/F filters for
the other variables, followed by filtration on 0.2 µm cellu-
lose acetate syringe filters (Sartorius). DOC and δ13C-DOC
were stored in 40 mL borosilicate bottles and preserved by
addition of 50 µL of H3PO4. DSi and major cations were
stored in 20 mL high-density polyethylene scintillation vials
and preserved with HNO3 (50 µL from DSi, 10 µL for ma-
jor cations). TA was stored un-poisoned in 100 mL polyethy-
lene vials. DOC concentrations and δ13C signatures were
measured with a modified Thermo HiPerTOC TOC anal-
yser and interfaced with a Thermo delta + XL IRMS as de-
scribed by Bouillon et al. (2006). DSi was measured with
the colorimetric method of Koroleff (1983), with a preci-
sion of ±0.1 µmol L−1. TA was measured in 50 mL sam-
ples using automated Gran titration with 0.1 M HCl as titrant,
with a reproducibility of ±1 µmol kg−1. Samples for ma-
jor cations were measured with inductively coupled plasma–
atomic emission spectrometry (ICP-AES) and with a repro-
ducibility better than ±3 %.

The dissolved concentration of CO2 is expressed as pCO2
in parts per million (ppm), following Henry’s law (Henry,
1803). Measurements of TA and pH were used to compute
pCO2 and DIC using the carbonic acid thermodynamic dis-
sociation constants of Cai and Wang (1998), with an es-
timated accuracy of ±5 % and ±5 µmol kg−1, respectively
(Frankignoulle and Borges, 2001). Measured TA and pH val-
ues were well within the range of applicability of the pCO2
calculation according to Abril et al. (2015), with pH > 7 and
TA > 1000 µmol kg−1, even in freshwaters.

Air–water fluxes of CO2 (FCO2) and CH4 (FCH4) were
calculated according to

F = k · �G, (1)

where F is the flux of the gas, �G is the air–water gradient
of the gas, and k is the gas transfer velocity.

Values of k were computed using wind speed field mea-
surements with a handheld anemometer, and the parameter-
ization as a function of wind speed given by Raymond and
Cole (2001) (the “non-dome” parameterization). The k val-
ues in estuarine environments are highly variable and pa-
rameterizations as a function of wind speed are site-specific
due to variable contribution of fetch limitation and tidal cur-
rents (Borges et al., 2004). The parameterization of Ray-
mond and Cole (2001) probably provides minimal k values;
thus, the FCO2 and FCH4 values given hereafter are consid-
ered conservative estimates. Atmospheric pCO2 values were
retrieved from the National Oceanic and Atmospheric Ad-
ministration Earth System Research Laboratory atmospheric
measurement network database at the Guam station (Mariana
Islands, 13.386◦ N 144.656◦ E) located in the Pacific Ocean,
approximately at the same latitude as the Mekong delta. The
atmospheric pCO2 values were converted from dry air to hu-
mid air using the water vapour formulation as a function of
salinity and temperature given by Weiss and Price (1980).
For the three sampling periods, the dry air CO2 mixing ra-
tio averaged 376 ± 4 ppm and the humid air CO2 mixing ra-
tio averaged 362 ± 3 ppm. For CH4, a constant atmospheric
value of 1.8 ppm was used. The Henry constant of CO2 and
CH4 was computed from salinity and temperature according
to Weiss (1974) and Yamamoto et al. (1976), respectively,
and the Schmidt number for CO2 and CH4 was computed
from temperature according to Wanninkhof (1992). The air–
water CO2 and CH4 values were area-averaged and scaled
to the surface of the three estuarine branches using surface
areas derived from satellite images from Google Earth.

2.4 Mixing models

Mixing models were used to investigate sources and sinks
of TA, DIC, O2, and δ13C-DIC along the salinity gradient.
We used a mixing model for TA, DIC, and O2 that assumes
a conservative mixing and no gaseous exchange with the at-
mosphere for a solute (E) according to

ES =
�

EM − EF

SalM − SalF

�
Sal + Ef, (2)

where ES is the concentration of E at a given salinity (Sal),
EF is the concentration of E at the freshwater end-member
(with a salinity of SalF), and EM is the concentration of E at
the marine end-member (with a salinity of SM).
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Figure 2. Seasonal evolution of daily freshwater discharge in the
Mekong River at Tân Châu in 2003 and 2004. Thick lines and black
triangles indicate the three sampling periods.

The conservative mixing of δ13C-DIC was computed ac-
cording to Mook and Tan (1991):

δ13C − DIC =
�
Sal(DICFδ13C − DICF − DICMδ13C − DICM)

+ SalFDICMδ13C − DICM − SalMDICFδ13C − DICF
��

�
Sal(DICF − DICM) + SalFDICM − SalMDICF

�
, (3)

where Sal is the salinity of the sample, DICF and δ13CF-DIC
are, respectively, the DIC concentration and stable isotope
composition at the freshwater end-member, and DICM and
δ13CCM-DIC are, respectively, the DIC concentration and
stable isotope composition at the marine end-member.

2.5 Data set

The geo-referenced and time-stamped data set is available in
the Supplement of the paper (Table S1).

3 Results and discussion

3.1 Spatial and seasonal variations in the main
branches of the Mekong delta (M�y Tho, Hàm
Luông, C ´̂o Chiên)

The three sampling cruises covered three distinct phases of
the hydrological cycle (Fig. 2): low water (April 2004), close
to high water (October 2004), and falling water (Decem-
ber 2003). This strongly affected the salinity intrusion into
the three inner estuarine channels (M�y Tho, Hàm Luông,
C ´̂o Chiên): in December 2003 and October 2004, freshwa-
ter was observed throughout the inner estuarine channels
down to the mouths, while in April 2004 the salinity intru-
sion occurred up to 60 km upstream of the estuarine mouths
(Fig. 3). The pCO2 values showed a general inverse pattern
compared to salinity and strongly decreased offshore from
the mouth of the three delta arms in December 2003 and Oc-
tober 2004, while the decreasing pattern of pCO2 occurred
within the three estuarine channels in April 2004. In De-
cember 2003 and October 2004, the pCO2 values upstream

(freshwater) ranged between 1895 and 2664 ppm, well above
atmospheric equilibrium (362 ppm) and above the range of
values (703–1597 ppm) reported by Alin et al. (2011) in
the upstream reaches of the Mekong river network during
the high water period (September–October 2004–2005). This
difference might be due to a stronger human influence on
the densely populated Mekong delta, or to geomorphology
(lowland rivers versus higher-altitude rivers). The pCO2 val-
ues from the extensive data set in the Mekong River at Tân
Châu (∼ 100 km upstream of the area we sampled) ranged
between 390 and 4861 ppm and averaged 1325 ppm (Li et
al., 2013), encompassing the pCO2 values we obtained in the
freshwater part of the delta. The pCO2 values in five streams
of the Red River network in northern Vietnam ranged be-
tween 750 and 2400 ppm and averaged 1597 ppm (Le et al.,
2017), comparable to the pCO2 values we obtained in the
freshwater part of the Mekong delta. The pCO2 values in
freshwaters were significantly correlated to %O2 (Fig. 4) in-
dicating biological control of both these variables. Similarly,
the correlation between pCO2 and δ13C-DIC (Fig. 4) resulted
from the degradation of organic matter that leads to a pref-
erential release of 12CO2 (since organic matter is isotopi-
cally light compared to the background DIC pool), leading
to more negative δ13C-DIC values. The high pCO2 values
in freshwaters in December 2003 and October 2004 corre-
sponded to low %O2 values (69–84 %) indicative of degra-
dation of organic matter. In April 2004, the most upstream
sampled stations of the delta (freshwater) were characterized
by pCO2 values (479–753 ppm) closer to atmospheric equi-
librium and high %O2 values (98–106 %) indicative of fresh-
water phytoplankton development during low water, prob-
ably related to an increase in water residence time related
to low freshwater discharge (Reynolds and Descy, 1996), as
also observed in other tropical rivers (for example Descy et
al., 2017). Phytoplankton development during low water was
also reported in the Upper Mekong River (confluence with
the Tonle Sap River) by Ellis et al. (2012), based on ele-
mental and lignin analyses. The impact of biological activ-
ity on CO2 dynamics in the uppermost freshwater part of
the estuary was confirmed by δ13C-DIC values that were
higher in April 2004 (−8.7 ± 0.4 ‰, n = 5) compared to
December 2003 (−10.6 ± 0.6, n = 6 ‰) and October 2004
(−10.9 ± 0.3 ‰, n = 15). Indeed, pCO2 was positively re-
lated to freshwater discharge, while %O2 and δ13C-DIC were
negatively related to freshwater discharge (Fig. 5), as also
shown in other tropical rivers such as the Oubangui (Bouil-
lon et al., 2012b, 2014). The data set in the Mekong River
at Tân Châu reported by Li et al. (2013) shows a similar
seasonal pattern, with lower pCO2 values during low wa-
ter (March–May) and higher pCO2 values during high wa-
ter (October–December). In April 2004, there was a marked
increase in pCO2 from the most upstream stations (salin-
ity 0) to the stations located at 60 km from Vı̃nh Long (cor-
responding roughly to a salinity of 2). This increase in pCO2
was mirrored by a general decrease in %O2, suggesting en-
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Figure 3. Distribution as a function of distance downstream of the city of Vı̃nh Long of salinity, partial pressure of CO2 (pCO2, ppm),
oxygen saturation level (%O2, %), and dissolved silica (DSi, µmol L−1) in the three branches of the Mekong delta (M�y Tho, Hàm Luông,
and C ´̂o Chiên) in December 2003, April 2004, and October 2004. The vertical dotted lines indicate the location of the river mouths.

hanced organic matter degradation in the oligohaline estu-
arine region, typical of estuarine environments (for exam-
ple Morris et al., 1978; Bianchi, 2006). In parallel, there
was a general increase in DSi from salinity 0 to 2 suggest-
ing that part of the enhanced organic matter degradation in
the upper estuary in April 2004 was fuelled by the decay of
freshwater diatoms due to haline (osmotic) stress (for exam-
ple Muylaert and Sabbe, 1999; Ragueneau et al., 2002), as
also observed in other tropical estuaries such as the Tana
and the Kidogoweni in Kenya (Bouillon et al., 2007a, b).
In December 2003 and April 2004, a general gradual in-
crease in pCO2 was also observed along the estuarine chan-
nels towards the mouth, although the %O2 decrease was less
marked than in April 2004. The TA values at zero salin-

ity ranged from ∼ 960 to ∼ 980 µmol kg−1 in October 2004
and December 2003, respectively, significantly lower than in
April 2004 (∼ 1400 µmol kg−1) (Mann–Whitney (MW) test
at 0.05 level, p < 0.0001). These values are higher than the
HCO−

3 concentration of 949 µmol kg−1 reported by Meybeck
and Carbonnel (1975) at Phnom Penh from January 1961
to 1962. The data of Meybeck and Carbonnel (1975) were
obtained about 230 km upstream of our sampling sites in
the Mekong delta; thus, the difference could be due to the
general downstream increase in dissolved ions typically ob-
served in rivers (for example Whitton, 1975), but we cannot
exclude methodological differences or long-term changes.
Li and Bush (2015) did not identify clear long-term trends
in HCO−

3 at two stations in the Lower Mekong River from
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1960 to 2011. Our TA values converge with the median
(1082 µmol kg−1) of a large data set during the 1972–1996
period from 42 stations in the Lower Mekong delta com-
piled by the Mekong River Commission and reported by Li
et al. (2014) and the average of TA (1026 µmol kg−1) re-
ported by Huang et al. (2017). The seasonal variations in
TA follow those of freshwater discharge (Fig. 5), as also
shown in other major rivers such as the Mississippi (Cai et
al., 2008) and the Oubangui (Bouillon et al., 2012b, 2014).
TA in freshwater was correlated to Ca2+ with a slope of 2.0
(Fig. S1 in the Supplement) consistent with the weathering
of calcite (CaCO3, HCO−

3 : Ca2+ = 2 : 1) and to Mg2+ with a
slope of 2.2 consistent with the weathering of dolomite ((Ca,
Mg)CO3, HCO−

3 : (Ca2+, Mg2+) = 2 : 1). Such stoichiomet-
ric ratios between HCO−

3 and Ca2+ and Mg2+ might also re-
sult from weathering of silicate rocks such as anorthite (Ca-
plagioclase feldspar, CaAl2Si2O8, HCO−

3 : Ca2+ = 2 : 1),
chlorite (Mg5Al2Si3O10, HCO−

3 : Mg2+ = 2 : 1), or olivine
(MgSiO4, HCO−

3 : Mg2+ = 2 : 1). However, Li et al. (2014)
have shown, based on an extensive water chemistry data
set, that carbonate rock weathering largely dominates sili-
cate weathering in the Lower Mekong River, and this seems
to also be the case in the Upper Mekong River (Manaka et al.,
2015). TA in freshwater was also correlated to Na+ but with
a slope of 0.5, lower than expected from the weathering of al-
bite (NaAlSi3O8; HCO−

3 : Na+ = 1 : 1), and to K+ but with a
slope of 14, higher than expected from the weathering of mi-
crocline (K-feldspar, KAlSi3O8, HCO−

3 : K+ = 1 : 1). Weath-
ering of calcite alone would not account for all of the TA, but
this would be the case for a mixture of weathering of calcite
and dolomite (Fig. S2), also in agreement with the analysis
of Li et al. (2014).

As a function of salinity, pCO2 and %O2 showed regu-
lar decreasing and increasing patterns, respectively, in the
three delta channels (Fig. 6). The lowest offshore pCO2
value was observed in October 2004 (314 ppm at 27.0
salinity), lower than in December 2003 (509 ppm at 17.9
salinity) and April 2004 (423 ppm at 31.9 salinity). TA
showed a linear evolution against salinity, indicative of near-
conservative mixing behaviour. This was consistent with a
near-conservative mixing behaviour of major cations (Ca2+,
Mg2+, K+, Na+) (Fig. S3). DIC generally followed the sea-
sonal and spatial patterns of those of TA. δ13C-DIC showed a
typical increasing pattern with salinity (Mook and Tan 1991;
Bouillon et al., 2012a), resulting from the mixing of freshwa-
ter with more negative δ13C signatures (−14 to −8 ‰) and
marine water with a δ13C signature close to 0 ‰. The 13C-
depleted signature in freshwater DIC results mainly from
the degradation of organic matter, which contributes CO2
with a signature close to that of the source organic carbon,
which in the Mekong delta for POC ranged between −28
and −26 ‰, and from the weathering of carbonate and sil-
icate minerals (which are typically driven by reaction with
CO2 derived from organic matter). CH4 showed very strong
seasonal variations in freshwaters of the Mekong delta with

Figure 4. Variation in the partial pressure of CO2 (pCO2, ppm)
as a function of oxygen saturation level (%O2, %) and stable iso-
tope composition of dissolved inorganic carbon (δ13C-DIC, ‰) in
the freshwaters (salinity 0) of the three branches of the Mekong
delta (M�y Tho, Hàm Luông, and C ´̂o Chiên) in December 2003,
April 2004, and October 2004. The vertical dotted line indicates
O2 saturation (100 %); the horizontal line indicates the average at-
mospheric pCO2 value.

values < 20 nmol L−1 in April 2004 and values ranging be-
tween 25 and 220 nmol L−1 in October 2004 (significantly
different, MW test p < 0.0001). The seasonal CH4 variation
could result from the flooding of riparian and floodplain ar-
eas and/or CH4 inputs from surface run-off during the rainy
season and high water period leading to high CH4 values in
October 2004. The downstream decrease in CH4 in the es-
tuarine salinity mixing zone is typical (Borges and Abril,
2011; Upstill-Goddard and Barnes, 2016), resulting from
CH4 riverine loss in the estuary due to emission to the at-
mosphere, microbial CH4 oxidation, and mixing with marine
waters that have CH4 concentrations close to atmospheric
equilibrium (Rhee et al., 2009). The CH4 concentration in
the most offshore sampled station was indeed close to atmo-
spheric equilibrium in April 2004 (2 nmol L−1) for a salinity
of 31.9 but was higher in October 2004 (17 nmol L−1), re-
flecting the lower salinity of 17.0. These values encompassed
the CH4 concentrations of 4–6 nmol L−1 reported by Tseng
et al. (2017) 150 km offshore from the Mekong delta river
mouth.

Biogeosciences, 15, 1093–1114, 2018 www.biogeosciences.net/15/1093/2018/



A. V. Borges et al.: Carbon dynamics and CO2 and CH4 outgassing 1101

Figure 5. Variation as a function of freshwater discharge (m3 s−1)

of the partial pressure of CO2 (pCO2, ppm), oxygen saturation level
(%O2, %), total alkalinity (TA, µmol kg−1), and stable isotope com-
position of dissolved inorganic carbon (δ13C-DIC, ‰) in the fresh-
waters (salinity 0) of the three branches of the Mekong delta (M�y
Tho, Hàm Luông, and C ´̂o Chiên) in December 2003, April 2004,
and October 2004. Sampling dates (mm/yy) are indicated in the bot-
tom panels.

TSM values showed marked spatial gradients in Octo-
ber 2004 with high values up to 447 mg L−1 in freshwaters
and low values (2 mg L−1) in marine waters. In April 2004
and December 2003, TSM values in freshwaters were sig-
nificantly lower (MW test, p < 0.0001) and the spatial varia-
tions along the salinity gradient were less obvious. POC con-
centration ranged between 0.2 and 4.0 mg L−1, and the sea-
sonal and spatial variations in POC were very similar to those
in TSM. %POC values ranged between 2 and 4 %, typical
for the corresponding range of TSM values in world rivers
(Meybeck, 1982; Ludwig et al., 1996) and in estuaries (Abril
et al., 2002) and within the range measured in the Lower
Mekong just upstream of the confluence with the Tonle Sap
river during an annual cycle by Ellis et al. (2012). How-
ever, %POC values were distinctly higher (up to ∼ 13 %)
in marine waters in October 2004, probably resulting from
a phytoplankton bloom, as also testified by low POC : PN
ratios (as low as 4.9), high %O2 (up to 114 %) and δ13C-
DIC (up to 0 ‰) values, and low pCO2 (as low as 232 ppm
at salinity 12.9) values. The phytoplankton bloom probably
resulted from higher light availability in marine waters ow-
ing to lower TSM values (down to 2 mg L−1). Reported sea-
sonal cycles of remotely sensed chlorophyll a concentration
also indicate higher phytoplankton biomass and primary pro-
duction in October compared to April and December (Gao
et al., 2013; Loisel et al., 2017). The δ13C-POC values in
the freshwater part of the delta (salinity < 1) from the three

sampling campaigns averaged −26.7 ± 0.7 ‰ (n = 34), dis-
tinctly higher than the data from Ellis et al. (2012), which av-
eraged −29.8 ± 0.9 ‰, but similar to data collected by Mar-
tin et al. (2013; average −26.4 ‰) at the same site as the
Ellis et al. (2012) study. These δ13C-POC values are consis-
tent with the expected dominance of terrestrial C3 vegetation
in the riverine organic carbon load.

In October 2004, DOC showed a decreasing pattern while
δ13C-DOC values increased, as typically observed in estu-
aries (Bouillon et al., 2012a). Within the freshwater zone
(salinity < 1), DOC values (2.4 ± 0.2 mg L−1, n = 19) were
within the range (0.9–5.1 mg L−1) reported by Huang et
al. (2017), and δ13C-DOC values (−27.8 ± 0.6 ‰, n = 19)
were again consistent with a dominance of terrestrial C3
vegetation inputs and close to values reported by Martin et
al. (2013) slightly upstream in the Lower Mekong. The δ13C
values were significantly lower in DOC than POC for the
same samples in October 2004 (Fig. 7) (Wilcoxon matched-
pair test at the 0.05 level, p < 0.0001), probably reflecting
the more refractory nature of riverine DOC compared to
POC, the latter being removed faster during estuarine mix-
ing and gradually replaced by POC of phytoplankton origin
with a higher δ13C value.

3.2 Distinct patterns in side channels compared to the
main branches of the Mekong delta

The sampled biogeochemical variables showed distinct pat-
terns in the side channels of the Mekong delta compared to
the main channels (M�y Tho, Hàm Luông, and C ´̂o Chiên),
irrespective of the sampling period. The observed patterns
are consistent with the influence from the very extensive
ponds devoted to shrimp farming that border the side chan-
nels of the Mekong delta (Tong et al., 2010). TSM, POC,
and %POC values were generally higher in the side channels
than in the three main estuarine channels. In December 2003,
TSM and POC were statistically higher in the side channels
than in the three main channels (MW test p = 0.0273 and
p < 0.0001, respectively) but not for the other two cruises,
although the statistical comparisons were probably obscured
by the mixing-induced changes along the salinity gradient.
The DOC concentrations from the October 2004 cruise were
also higher in the side channels (MW test p = 0.0267).
Higher %POC values could indicate a higher contribution
of phytoplankton biomass to TSM, and this is consistent
with the δ13C-POC values that were about 5–6 ‰ lower than
the values in the three main estuarine channels at the same
salinity values. There is an isotopic fractionation by phyto-
planktonic primary production of about 20 ‰ during DIC
uptake (Hellings et al., 1999), corresponding roughly to the
difference in δ13C values between POC (overall average:
−27.4 ± 1.8 ‰) and DIC (overall average: −8.2 ± 2.4 ‰)
in the side channels. The phytoplankton primary produc-
tion was probably sustained by high inorganic nutrient in-
puts from shrimp farming ponds typically observed in adja-
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Figure 6.
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Figure 6. Distribution as a function of salinity of the partial pressure of CO2 (pCO2, ppm), oxygen saturation level (%O2, %), total alkalinity
(TA, µmol kg−1), dissolved inorganic carbon (DIC, µmol kg−1), stable isotope composition of DIC (δ13C-DIC, ‰), dissolved CH4 concen-
tration (nmol L−1), total suspended matter (TSM, mg L−1), particulate organic carbon (POC, mg L−1), percent of POC in TSM (%POC,
%), POC-to-particulate nitrogen ratio (POC : PN, mg : mg), stable isotope composition of POC (δ13C-POC, ‰), dissolved organic carbon
(DOC, mg L−1), and stable isotope composition of DOC (δ13C-DOC, ‰) in the three branches of the Mekong delta (M�y Tho, Hàm Luông,
and C ´̂o Chiên) and side channels in December 2003, April 2004, and October 2004. The vertical dotted lines indicate the location of the river
mouths. Horizontal dotted lines indicate the CO2 and O2 atmospheric equilibrium.
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Figure 7. Stable isotope composition of dissolved organic carbon
(δ13C-DOC, ‰) as a function of the stable isotope composition of
particulate organic carbon (δ13C-POC, ‰) in the three branches of
the Mekong delta (M�y Tho, Hàm Luông, and C ´̂o Chiên) and side
channels in October 2004. The solid line indicates the 1 : 1 line.

cent channels (for example Cardozo and Odebrecht, 2014)
or within the ponds themselves (Alongi et al., 1999a). How-
ever, the more negative δ13C-DIC values in the side chan-
nels indicate sustained CO2 production from organic matter
degradation related to the shrimp ponds (Alongi et al., 2000)
(MW test p = 0.0253 in December 2003 and p = 0.0040 in
April 2004). This is consistent with generally higher pCO2
values and lower %O2 in the side channels compared to the
adjacent estuarine channels. As for TSM and POC, pCO2
and %O2 were only statistically different between side and
main channels in December 2013 (MW test p < 0.0001 for
both), as the statistical comparisons were probably obscured
by the mixing-induced changes along the salinity gradient.
Although there was indication of phytoplankton develop-
ment based on δ13C-POC (see above), the overall system was
net heterotrophic, leading to accumulation of CO2, CH4, and
light DIC and a decrease in O2. The distinctly higher CH4
values in side channels compared to main estuarine channels
would indicate that part of the organic matter degradation in
the side channels occurs in sediments (MW test p = 0.0369
in April 2004 and p < 0.0001 in October 2004). Alongi et
al. (1999b) showed that methanogenesis in the sediments of
shrimp farming ponds is low in the Ca Mau province. This al-
lows us to suggest that the high CH4 in the side channels were
presumably coming from the side channel sediments and not
from the shrimp farming ponds. The generally higher TA val-
ues in the side channels than in estuarine channels could also
indicate the effect of diagenetic anaerobic processes (for ex-
ample Borges et al., 2003) (MW test p < 0.0001 in Decem-
ber 2003 and October 2004).

We further explored data using the difference (or anomaly)
between observed data and data predicted from conservative
mixing models, noted as � (Fig. 8). Negative �δ13C-DIC
values were correlated to those of �O2 and �DIC, in par-
ticular in the side channels, as expected from production of
CO2 and consumption of O2 due to degradation of organic
matter. In October 2004, distinct positive �δ13C-DIC val-

ues were associated with positive �O2 and negative �DIC
in the Hàm Luông and C ´̂o Chiên resulting from high phy-
toplankton production in the most offshore waters, as men-
tioned in the previous section. The relation between positive
�DIC and negative �O2 in the side channels also indicates
degradation of organic matter, while negative �DIC and pos-
itive �O2 in October 2004 in the Hàm Luông and C ´̂o Chiên
confirm the occurrence of high phytoplankton production in
the most offshore waters. The slope of the linear regression
of �DIC as a function of �O2 in the side channels ranged
from 3.4 to 4.4. These values are distinctly higher than those
expected from the degradation of organic matter following
the Redfield stoichiometry (�DIC : �O2 = 106 : 138 = 0.8).
The slope of the relation between �DIC and �O2 in Octo-
ber 2004 in the Hàm Luông and C ´̂o Chiên (1.4) was lower
than in the side channels but still higher than that predicted
from Redfield stoichiometry. One possible explanation is that
the change of concentration due to the exchange of gases
with the atmosphere (equilibration) is faster for O2 than
CO2 due to the effect on the latter of the buffer capacity
of seawater. Another explanation that could explain the dis-
tinctly higher �DIC : �O2 ratio in the side channels relates
to anaerobic organic matter degradation in sediments that
seems higher compared to estuarine channels as also sug-
gested by higher CH4 concentrations. The relative change of
TA and DIC can be used to identify the processes involved
in the generation of these quantities (for example Borges et
al., 2003). The theoretical relative change of �TA versus
�DIC was derived from the stoichiometry of biogeochem-
ical reactions, based on Brewer and Goldman (1976) for aer-
obic respiration, on Smith and Key (1975) for CaCO3 dis-
solution, and on Froelich et al. (1979) for anaerobic reac-
tions. The slope of the linear regression of �TA versus �DIC
ranged between 0.55 and 0.87. Such values might have re-
sulted from a combination of aerobic organic matter degra-
dation (�TA : �DIC = −0.2) and dissolution of CaCO3 (or
CaMg(CO3)2) (�TA : �DIC = 2.0). Accordingly, the calcu-
lated values of relative changes of �TA versus �DIC would
require that CaCO3 dissolution corresponded to 34 and 48 %
of aerobic organic matter degradation. Such a large CaCO3
dissolution is very unlikely in the Mekong delta because
Ca2+ and Mg2+ showed conservative mixing as a function
of salinity (Fig. S3) and because particulate inorganic carbon
(PIC) is relatively low in the Mekong delta compared to POC.
The %PIC of TSM (∼ 0.1 %) reported by Huang et al. (2017)
is 1 order of magnitude lower than the %POC of TSM (1–
8 %) we report (Fig. 6). The values of the slope of the lin-
ear regression of �TA versus �DIC (range 0.55–0.87) were
intermediary between the theoretical slopes for aerobic or-
ganic matter degradation (�TA : �DIC = −0.2) and sulfate
reduction (�TA : �DIC = 0.9), suggesting that TA and DIC
were produced from the combination of these two processes.
Such a scenario is very likely with sulfate reduction domi-
nating in the sediments and aerobic respiration dominating
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Figure 8. Deviations from conservative mixing lines of stable isotope composition of dissolved inorganic carbon (DIC) (�δ13C-DIC, ‰) as a
function of O2 (�O2, µmol kg−1) and of DIC (�DIC, µmol kg−1), of �DIC as a function of �O2, and of total alkalinity (�TA, µmol kg−1)

as function of �DIC in the three branches of the Mekong delta (M�y Tho, Hàm Luông, and C ´̂o Chiên) and side channels in December 2003,
April 2004, and October 2004. α indicates the slope of the linear regression line (dotted line).

in the water column. Our data do not allow us to determine
whether these processes mainly occurred in the side chan-
nels or in the shrimp farming ponds themselves, although
Alongi et al. (1999b) showed a strong dominance of aero-
bic respiration over other diagenetic degradation processes
in sediments of shrimp ponds in the Ca Mau province. This
would then suggest that sulfate reduction was mostly occur-
ring within the side channels. The �TA : �DIC slope from
the side channels correlated negatively to average salinity
(Fig. 9), which is counter-intuitive since a higher contribution
of sulfate reduction (�TA : �DIC ratio closer to 0.9) would
have been expected at higher salinity (e.g. Borges and Abril,
2011). This pattern might result from a higher aerobic res-
piration in the water column of the side channels during the
periods of low water (higher salinity) and/or a lower signal
from sulfate reduction occurring within the shrimp farming
ponds. The former scenario is consistent with the negative
correlation between �O2 and salinity (Fig. 9).

3.3 Comparison with the Ca Mau mangrove creeks

The Ca Mau peninsula accounts for the largest proportion
of remaining mangrove forests in the Mekong delta system.
Data were gathered in two mangrove creek networks (Tam

Giang and Kien Vang), allowing the comparison with data in
the three estuarine channels of the Mekong delta (M�y Tho,
Hàm Luông, and C ´̂o Chiên) and associated side channels
(hereafter referred to as B ´̂en Tre Mekong delta, based on
the name of the province), where the bordering mangrove
forests have been cleared for the implementation of shrimp
farming ponds. Data comparison is limited to the April and
October 2004 cruises (Fig. 10). pCO2 was negatively related
to %O2 in Ca Mau creeks and the B ´̂en Tre Mekong delta ow-
ing to organic matter degradation as confirmed by the posi-
tive relation between �δ13C-DIC and %O2. Data in the Ca
Mau mangrove creeks allowed us to expand the range of vari-
ations in pCO2, %O2, and δ13C-DIC; the maximum pCO2
value in the Ca Mau mangrove creeks was 6912 ppm com-
pared to 2926 ppm in the B ´̂en Tre Mekong delta; the min-
imum %O2 and δ13C-DIC values were, respectively, 37 %
and −14.6 ‰ in the Ca Mau mangrove creeks compared to
66 % and −11.4 ‰ in the B ´̂en Tre Mekong delta. As previ-
ously noted by Borges and Abril (2011), the spatial variations
in pCO2 and %O2 in the Ca Mau mangrove creeks were re-
lated to the size of the creeks, the narrower and presumably
shallower creeks being characterized by higher pCO2 values
and lower %O2 and δ13C-DIC values. Salinity was highly
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Table 1. Average ± standard deviation in air–water fluxes of CO2 (FCO2, mmol m−2 d−1) and CH4 (FCH4, µmol m−2 d−1), and wind
speed (m s−1) in December 2003, April 2004, and October 2004 in the three inner estuarine branches of the Mekong delta (M�y Tho, Hàm
Luông, and C ´̂o Chiên), respective river plume and side channels, and in the Ca Mau province mangrove creeks.

FCO2 FCH4 Wind speed
(mmol m−2 d−1) (µmol m−2 d−1) (m s−1)

December 2003

Inner estuarine branches (IEBs) 122 ± 33
River plume (RB) 56 ± 25
IEB + RB 90 ± 33 5.3 ± 3.2
Side channels 85 ± 45 4.6 ± 3.6

April 2004

Inner estuarine branches 105 ± 64 43 ± 14
River plume 18 ± 6 7 ± 4
IEB + RB 69 ± 35 29 ± 12 8.1 ± 2.9
Side channels 37 ± 31 19 ± 17 5.1 ± 1.3
Ca Mau mangrove creeks 61 ± 68 22 ± 17 3.5 ± 3.5

October 2004

Inner estuarine branches 135 ± 73 193 ± 162
River plume 44 ± 129 46 ± 9
IEB + RB 70 ± 159 87 ± 32 6.1 ± 5.7
Side channels 88 ± 19 701 ± 890 3.8 ± 3.0
Ca Mau mangrove creeks 116 ± 78 298 ± 224 3.9 ± 2.6

Average of cruises

Inner estuarine branches 121 ± 57 118 ± 68
River plume 39 ± 49 26 ± 10
IEB + RB 76 ± 80 58 ± 23
Side channels 70 ± 37 360 ± 387
Ca Mau mangrove creeks 89 ± 79 160 ± 121

variable among the two sampling cruises (Fig. 11), on av-
erage 33.2 in April 2004 and 14.1 in October 2004 (MW
test p < 0.0001), following the hydrological cycle (Fig. 2).
The seasonal variations in CH4 were also very marked (MW
test p < 0.0001), with much lower values in April 2004
(range 4–46 nmol L−1, average 19 nmol L−1) than in Octo-
ber 2004 (range 19–686 nmol L−1, average 210 nmol L−1).
This is probably related to the seasonal salinity changes, the
lowest CH4 values corresponding to the highest salinities
(Fig. 11). We hypothesize that the increase in salinity leads
to an increase in benthic sulfate reduction due to the increase
in SO2−

4 availability and a decrease in the transfer of CH4
from sediments to the water column due to a partial inhibi-
tion of methanogenesis and/or an enhancement of anaerobic
CH4 oxidation. Such a hypothesis is consistent with the neg-
ative relationship in mangroves between sediment–air CH4
fluxes and salinity (Borges and Abril, 2011). The pCO2 was
higher and %O2 was lower in October than April 2004, al-
though the differences are not as dramatic as for CH4, al-
beit statistically significant (Fig. 11). This could indicate the
occurrence during the rainy season (October) of the input

of high-CO2 and low-O2 waters or additional organic mat-
ter (that fuelled remineralization) from freshwater (surface
run-off). In October 2004, the CH4 concentrations in the
Ca Mau mangroves were generally higher than in the B ´̂en
Tre Mekong delta three main channels; however, the highest
CH4 concentrations were recorded in the side channels of the
B ´̂en Tre Mekong delta, most probably resulting from intense
methanogenesis fuelled by high organic matter loads from
the shrimp farming ponds.

3.4 CO2 and CH4 emissions to the atmosphere

As expected from the distribution of pCO2, the FCO2 values
were higher in the inner estuarine branches (M�y Tho, Hàm
Luông, C ´̂o Chiên) than in the outer estuary (river plume)
and the side channels (Table 1). In addition, wind speed was
lower in the side channels and mangrove creeks than in the
more open waters of the inner and outer estuaries. Although
the pCO2 in the side channels was higher than in the adja-
cent inner estuarine branches at similar salinities (Fig. 6), the
overall pCO2 within the inner estuarine branches was higher,
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Figure 9. Variation as a function of salinity of the slope of the
regression line of the deviation from conservative mixing lines of
total alkalinity (�TA, µmol kg−1) and of dissolved inorganic car-
bon (�DIC, µmol kg−1) of O2 (�O2, µmol kg−1) in the side chan-
nels of the Mekong delta in December 2003, April 2004, and Octo-
ber 2004. The dotted line indicates the linear regression. Error bars
indicate standard deviation.

owing to high values in the upper estuary. Despite some vari-
ations in wind speed among the cruises, the seasonal varia-
tions in FCO2 in the inner estuarine branches followed the
seasonal hydrological cycle, with the highest FCO2 values
in October 2004 during high water and the lowest FCO2 val-
ues in April 2004 during low water (Table 1). The FCO2
values in the inner estuarine branches were well correlated
to freshwater discharge (Fig. 12). This indicates that the
FCO2 seasonal variations are related to the riverine inputs
either directly as CO2 or as organic matter that can be de-
graded within the estuary. During our cruises seasonal vari-
ations in water temperature were weak (range 26.7–31.5 ◦C,
on average 29.2 ◦C), owing to the subtropical climate. Conse-
quently, marked seasonality of pCO2 and FCO2 due to mod-
ulation of biological activity by water temperature does not
occur, unlike in temperate estuaries (for example Frankig-
noulle et al., 1998). The potential contribution of riverine or-
ganic carbon and CO2 inputs in sustaining estuarine FCO2
was computed from freshwater discharge multiplied by POC
and excess DIC (EDIC, computed as the difference between
observed DIC and DIC computed from TA and the atmo-
spheric pCO2 value; Abril et al., 2000). The average for the
three cruises of riverine input of POC (60 × 106 mol d−1) and
EDIC (53 × 106 mol d−1) exceeded FCO2 in the three estu-
arine branches (53 × 106 mol d−1), showing that these inputs
were sufficient to sustain the CO2 emissions from the estuary
and that part of the riverine POC and EDIC is transported to
the outer estuary (river plume). FCO2 in the side channels

Figure 10. Distribution as a function of oxygen saturation level
(%O2, %) of the partial pressure of CO2 (pCO2, ppm), stable iso-
tope composition of dissolved inorganic carbon (δ13C-DIC, ‰),
and dissolved CH4 concentration (nmol L−1) in the three branches
of the Mekong delta (M�y Tho, Hàm Luông, and C ´̂o Chiên) and side
channels and in the mangrove creeks of the Ca Mau province in
April and October 2004. The vertical dotted line indicates O2 satu-
ration (100 %); the horizontal line indicates the average atmospheric
pCO2 value.

and outer estuary (or river plume) also showed a less signif-
icant correlation with water discharge (Fig. 12) because pro-
cesses other than riverine inputs such as the inputs of carbon
from the shrimp farming ponds for side channels and pri-
mary production for the outer estuary control CO2 dynamics
in these systems. A phytoplankton bloom in the river plume
in October 2004 explains why FCO2 values were equivalent
to those in December 2003, although freshwater discharge
was about 2 times lower.

www.biogeosciences.net/15/1093/2018/ Biogeosciences, 15, 1093–1114, 2018
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Figure 11. Average ± standard deviation of the partial pressure of
CO2 (pCO2, ppm), oxygen saturation level (%O2, %), dissolved
CH4 concentration (nmol L−1), and salinity in the mangrove creeks
of the Ca Mau province in April and October 2004. MW: Mann–
Whitney (at 0.05 level).

Figure 12. Average air–water CO2 fluxes (FCO2, mmol m−2 d−1)

in the inner and outer estuaries and side channels of the Mekong
delta as a function of freshwater discharge (m3 s−1) in Decem-
ber 2003, April 2004, and October 2004. Sampling dates (mm/yy)
are indicated in the bottom of the panel. Dotted lines indicate the
linear regression lines.

Differences of FCH4 between the two 2004 cruises were
very marked, with values in inner estuarine branches more
than 4 times higher in October than April 2004 (MW test
p < 0.0001). In April 2004, the FCH4 values in the side
channels of the B ´̂en Tre Mekong delta were equivalent to
those in the Ca Mau mangrove creeks but were more than 2
times higher in October 2004.

The average FCO2 in the inner estuarine branches of the
Mekong delta (118 mmol m−2 d−1) is higher than in the Pearl
River inner estuary (46 mmol m−2 d−1; Guo et al., 2009) and
the Yangtze River inner estuary (41 mmol m−2 d−1, Zhai et

al., 2007), the two other major river systems bordering the
East China Sea that have been documented for CO2 dynam-
ics. The higher value in the Mekong is probably related to
the dominance of freshwater in the inner estuary and low
intrusion of seawater within the estuary, related to the geo-
morphology (relatively narrow and linear estuarine channels,
compared to the typical “funnel” shape estuarine morphol-
ogy in the Yangtze and Pearl river estuaries). Indeed, the av-
erage salinity in the Pearl River inner estuary was 17 (Guo
et al., 2009), higher than the average salinity of 4 in the
Mekong inner estuarine branches during our cruises. The av-
erage FCO2 in the Ca Mau mangrove creeks (89 mmol m−2

d−1) was well within the range (−8–862 mmol m−2 d−1) and
close to the average (63 mmol m−2 d−1) of CO2 fluxes in
mangrove estuarine creeks compiled globally by Rosentreter
et al. (2018).

The FCH4 seasonal variations within a given estuary and
the FCH4 variations from one estuary to another are noto-
riously large; thus, comparison of the FCH4 in the Mekong
delta with previously published studies is not easy. The av-
erage FCH4 value in the inner estuarine branches of the
Mekong delta (118 µmol m−2 d−1) is within the range of
values in European estuaries (17–1352 µmol m−2 d−1) com-
piled by Upstill-Goddard and Barnes (2016) but distinctly
higher than the range of values for Indian estuaries (7–
15 µmol m−2 d−1) reported by Rao and Sarma (2016). The
FCH4 in the Yangtze and Pearl river estuaries reported by
Zhang et al. (2008) and Zhou et al. (2009) of 61 and 64 µmol
m−2 d−1, respectively, are also higher than the range of
FCH4 in Indian estuaries. The FCH4 in the Mekong delta
inner estuarine branches was higher than the value in the
Yangtze River and Pearl River estuaries probably because of
the lower intrusion of seawater into the Mekong delta (see
above). The average FCH4 in the Ca Mau mangrove creeks
(160 µmol m−2 d−1) was well within the range (9–409 µmol
m−2 d−1) and close to the average (283 µmol m−2 d−1) of
CH4 fluxes in mangrove estuarine creeks compiled globally
by Call et al. (2015).
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