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Exotic hydrophytes are often considered as aquatic weeds, especially when forming
dense mats on an originally poorly colonized environment. While management efforts
and research are focused on the control and on the impacts of aquatic weeds on
biodiversity, their influence on shallow lakes’ biogeochemical cycles is still unwell
explored. The aim of the present study is to understand whether invasive aquatic plants
may affect the biogeochemistry of shallow lakes and act as ecosystem engineers.
We performed a multi-year investigation (2013–2015) of dissolved biogeochemical
parameters in an oligo-mesotrophic shallow lake of south-west of France (Lacanau
Lake), where wind-sheltered bays are colonized by dense mats of exotic Egeria densa
Planch. and Lagarosiphon major (Ridl.) Moss. We collected seasonal samples at densely
vegetated and plant-free areas, in order to extrapolate and quantify the role of the
presence of invasive plants on the biogeochemistry, at the macrophyte stand scale and
at the lake scale. Results revealed that elevated plant biomass triggers oxygen (O2),
dissolved inorganic carbon (DIC) and nitrogen (DIN) stratification, with hypoxia events
frequently occurring at the bottom of the water column. Within plants bed, elevated
respiration rates generated important amounts of carbon dioxide (CO2), methane
(CH4) and ammonium (NH4

+). The balance between benthic nutrients regeneration
and fixation into biomass results strictly connected to the seasonal lifecycle of the
plants. Indeed, during summer, DIC and DIN regenerated from the sediment are
quickly fixed into plant biomass and sustain elevated growth rates. On the opposite,
in spring and autumn, bacterial and plant respiration overcome nutrients fixation,
resulting in an excess of nutrients in the water and in the increase of carbon emission
toward the atmosphere. Our study suggests that aquatic weeds may perform as
ecosystem engineers, by negatively affecting local oxygenation and by stimulating
nutrients regeneration.

Keywords: carbon emission, methane, hypoxia, water stratification, nutrients regeneration, seasonal, primary
production, exotic plants
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INTRODUCTION

Global changes, such as the increase of water temperature,
the modifications of lakeshore for anthropic activities and the
unintentional introduction of plant fragments may favor the
spread of exotic aquatic plants (Gillard et al., 2017; Bertrin
et al., 2018). The settlement of invasive species, and the massive
developed biomass, has been recently recognized to strongly
influence biodiversity (Hussner et al., 2009; Strayer, 2010).
However, the effect of invasive species on ecosystem functioning
is little known and could be either neutral or positive, by
triggering significant changes on the basic processes of the
ecosystem (Crooks, 2002; Havel et al., 2015).

The presence of invasive macrophytes can strongly modify
aquatic local conditions, and particularly the water temperature,
the sediment chemistry and the nutrients cycling of the
colonized area, especially in the case of rootless or floating-leaved
hydrophytes (Urban et al., 2006; Pierobon et al., 2010; Andersen
et al., 2017; Vilas et al., 2017). Indeed, the massive plant coverage
at the air–water interface is recognized to generate thermal
and chemical stratification, even within very shallow waters
(Andersen et al., 2017). While submerged rooted macrophytes
at moderate biomass are known to increase sedimentary redox
potential thanks to radial oxygen loss (Racchetti et al., 2010;
Ribaudo et al., 2011), extremely dense submerged canopies
may lead to decreased redox potentials and increased benthic
nutrients fluxes, as a result of limited water mixing (Boros
et al., 2011). As in the case of floating hydrophytes, the
oxygen consumption from mineralization of plant detritus may
favor the production of anaerobic end-products and nutrients
regeneration such as methane and ammonium (Bianchini
et al., 2008; Pierobon et al., 2010; Oliveira-Junior et al.,
2018).

Benthic nutrients release from densely vegetated sediments is
favored by particles trapping by submerged shoots and sediment
accretion, and may therefore constitute a functional advantage
for plant development (Madsen et al., 2001). Macrophytes will
use nutrients regenerated from the sediment for their growth
and deplete them, especially in nutrients-poor contexts (Bini
et al., 2010). In oligotrophic systems, characterized by a low
productivity, the settlement of fast growing primary producers
can thus accelerate nutrients cycling and boost organic matter
degradation, especially in summer, in correspondence with
the maximum growth rates and elevated temperatures. On
the opposite, during the senescence of the plants in autumn,
respiration processes will be prevailing over nutrients fixation
and regenerate nutrients toward the water column (Bowes et al.,
1979; Pierobon et al., 2010; Ribaudo et al., 2011, 2012).

The balance between nutrients regeneration from sediments
and uptake by plants is a key concept for investigating the
net effect of the presence of large macrophytes stands within
nutrient-poor shallow lake (Bowes et al., 1979). Indeed, at the
lake scale, vegetated littoral zones are recognized as hotspots
of primary production that take advantage from watershed
nutrients incomes, while nutrients and organic matter outputs
to the pelagic zone depend on water currents and wind velocity
(Wetzel, 1992). Abundant plant biomass can self-sustain thanks

to organicmatter accretion and nutrients regeneration even when
the input from the watershed is low (Marion and Paillisson,
2003).

In this study, several sampling campaigns were carried out
in aquatic weed dense meadows of a shallow oligo-mesotrophic
lake, with the aim of understanding whether two invasive aquatic
plants can act as ecosystem engineers in a nutrient-poor system
(Crooks, 2002). More precisely, we hypothesized that dense
invasive macrophytes stands will (i) induce thermal and nutrients
stratification in the water column, and (ii) contribute to the
regeneration of nutrients from the sediments according to a
lifecycle seasonal pattern. To test those hypotheses, we worked
at two different spatial scales: (1) at the vegetated stand scale
for understanding the role of the two invasive hydrophytes
in enhancing nutrients regeneration and (2) at the lake scale,
to contextualize the role of massive stands in shallow lakes
concerning nutrients and carbon budgets.

MATERIALS AND METHODS

Study Area
Lacanau Lake is one of the oligo-mesotrophic shallow lakes of
the French Atlantic Lakes chain, located between the Gironde
and the Adour estuaries in South-West of France, together with
Carcans-Hourtin, Cazaux-Sanguinet, and Parentis-Biscarrosse
lakes (Cellamare et al., 2012;Moreira et al., 2015). French Atlantic
Lakes are Lobelia shallow lakes, known for being colonized by
a few macrophyte species, which are typically distributed along
the first meter of the water column. Macrophyte community
is here mainly composed by isoetids (Lobelia dortmanna L.,
Littorella uniflora (L.) Asch. and Isoetes boryanaDurieu) together
with some species of charophytes (Bertrin et al., 2018). This
community is recognized to reduce carbon benthic fluxes and
to contribute to sediment oxygenation through radial oxygen
loss. Their slow metabolism and low growth rates do not affect
biochemical cycles on the short term nor water stratification
(Ribaudo et al., 2017). Within those lakes, the nutrients budget
is mainly driven by benthic fluxes and input from the small
watershed and rainfalls (Buquet et al., 2017).

In French Atlantic Lakes, the strong wind and the oligotrophic
conditions do not allow the settlement of large canopy-forming
hydrophytes, which typically require still waters, nutrients
availability and organic-rich sediments. Nevertheless, since about
40 years, large submerged stands of two caulescent aquatic plants
[Egeria densa Planch and Lagarosiphon major (Ridl.) Moss] have
been found in some areas of those lakes. E. densa and L. major are
two non-native hydrophytes belonging to the Hydrocharitaceae
family, characterized by long erected stems with alternate or
opposed whorled leaves. They preferentially settle and develop
in sheltered creeks and ports of the lake, between −0.5 and
−3.5 m; sparse shoots could be present until 6 m deep. Within
French Atlantic Lakes, those hydrophytes develop a total biomass
up to 4000 gDW m−2 (Bertrin et al., 2017). They present
elevated growth rates, giving them a selective advantage over
other hydrophytes species, notably thanks to the presence of
adventitious roots allowing vegetative multiplication and large
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dispersion capacities (Haramoto and Ikusima, 1988). According
to available past reports (François, 1948), the two species have
not replaced other hydrophytes in French Atlantic Lakes. Indeed,
Myriophyllum spp. were present in 1940’s with sparse shoots, but
never developed such biomass and meadow extent.

Lacanau Lake’s surface is 16.2 km2 and the mean depth is
2.6 m, Secchi disk is 3.5 m (Moreira et al., 2015). Within the
lake, E. densa and L. major form dense stands, with total biomass
>50 gDW m−2 occupying 1.19 km2 (about 7% of the lake surface,
according to Bertrin et al., 2017). The substrate on which plants
develop is composed of a sandy substrate covered by a thick
layer of labile organic matter-rich sediment presenting 35 ± 21%
(n = 59) as loss of ignition (Bertrin et al., 2017).

Seasonal Vertical Stratification
In dense vegetated stands, water sampling was performed at
15 sites between June 2013 and November 2015 (Figure 1
and Appendix 1). For each site, measurements were carried
out in duplicates, twice during the day (in the morning, at
around 11 a.m. and in the early afternoon, before 3 p.m.) and
repeated during the growing seasons in this temperate region of
France: spring (March to June), summer (June to September),

FIGURE 1 | Location of the sampling stations within Lacanau Lake; the
correspondence to the sampling sites is reported in Appendix 1. Distribution
map of E. densa and L. major densely colonized areas (>50 gDW m−2) refers
to 2014 and is taken from Bertrin et al. (2017).

and autumn (September to November). Water samplings were
performed from a boat using a silicone pipe connected to a
peristaltic pump. One pipe’s extremity was inserted into the plants
stand deep to about 40 cm above the sediment; the other end
was connected to a syringe on the boat. Samples within the
plants (Vegetated – Bottom samples) were collected at depths
ranging from 100 to 330 cm, with an average of 249 ± 72 cm.
Samples taken just below the water column surface (Vegetated –
Surface samples) were collected directly from the boat without
the use of the pump. During each sampling cycle, the vegetated
stand height was systematically measured using a graduated
pole.

In unvegetated areas, water sampling was carried out during
the day (n = 1–6, collected between 10 a.m. and 5 p.m.) between
May 2013 and November 2015, at 14 sites where aquatic weeds
were totally absent, within parallel studies (Buquet et al., 2017;
Ribaudo et al., 2017; Jamoneau, unpublished; Figure 1 and
Appendix 1). Samples were collected at the top of the water
column (hereafter Plant-free – Surface samples) and, where the
depth allowed it, samples were also collected at −3 m by using a
2LNiskin bottle, hereafter referred as Plant-free – Bottom samples
(Buquet et al., 2017).

For each sampling, an aliquot was immediately transferred to
a beaker, in which water temperature and pH were measured
with a YSI Multiple Probe (model 556). Separated aliquots were
sampled in borosilicate vials and then analyzed in the laboratory
for dissolved oxygen (O2 – by Winkler method), alkalinity
(TAlk – by titration with HCl 0.1 M), carbon dioxide [CO2 –
by retrocalculation starting from TAlk and in situ pH, validated
by measures of dissolved inorganic carbon, DIC, to verify that
organic alkalinity was negligible (Abril et al., 2015)] and methane
(CH4 – by headspace GC-FID method) analyses, following the
methods reported in Ribaudo et al. (2017). A separate aliquot
was filtered (Whatman GF/F filters) and transferred to a 50 ml
plastic vial for subsequent dissolved inorganic nitrogen (NO3

−

and NH4
+) analyses by ionic chromatography (METROHM

881 – compact). An aliquot of 50 ml was filtered by GF/F filters
and transferred to a borosilicate glass flask for measurement of
dissolved organic carbon (DOC) by COTmeter. An aliquot of
500 ml was transferred to a PE-HD flask for total phosphorus
(TP) measurement by spectrophotometric assay after NF acid
mineralization T90-023, and total nitrogen (TN) after selenium
mineralization NF EN 25663. TP and TN were measured only at
vegetated sites and at the surface of some of plant-free sites (see
Appendix 1).

For vegetated stands, we calculated excess dissolved inorganic
carbon (eDIC, µM), as the difference between the in situ
DIC and a theoretical DIC at atmospheric equilibrium (for
CO2 = 400 ppmv), according to Abril et al. (2000). The apparent
oxygen utilization (AOU, µM) was calculated for vegetated
stands according to Dinauer and Mucci (2017), as the deviation
of oxygen from an O2 concentration in equilibrium with the
atmosphere.

Seasonal Nutrients and Carbon Budget
Together with seasonal samplings, plant harvesting was carried
out for biomass measurements. An additional winter sample was

Frontiers in Plant Science | www.frontiersin.org 3 December 2018 | Volume 9 | Article 1781

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01781 December 3, 2018 Time: 12:28 # 4

Ribaudo et al. Nutrients Regeneration in Aquatic Weed Stands

FIGURE 2 | Water pH (bars, left scale) and temperature (points, right scale) variations measured along different seasons in vegetated stands and plant-free areas at
the surface and at the bottom of the water column. Error bars represent standard deviation.

taken in February 2014 (n = 7), in order to obtain a winter value
for growth rate calculations. Samples were always collected by
the same operator to minimize the sources of error (Johnson
and Newman, 2011), using a telescopic rake (ground sampling
area = 0.28 m2). The plants were kept cold, transported fresh
to the laboratory in opaque bags and transferred to water-
filled containers until the moment of measurement, in order
to facilitate their handling. In laboratory, the dry weight (gDW)
was determined after 72 h at 70◦C and expressed as total
biomass (below + aboveground biomass, gDW m−2). Number
of shoots was counted for obtaining a shoot density (shoots
m−2).

The gross growth rate (GGR, expressed as gDW gDW−1d−1)
was calculated as follows:

GGR = NGR + abs(DR)

where NGR is the net growth rate (gDW gDW−1d−1), measured
at different temperatures for Egeria spp. by Haramoto
and Ikusima (1988) and Tavechio and Thomaz (2003)
corresponding to a value of 0.020, 0.050, 0.030, and 0.005
gDW gDW−1d−1, for spring, summer, autumn, and winter,
respectively. DR is the biomass decay rate (gDW gDW−1d−1),
measured at different seasons for Egeria spp. by Carvalho
et al. (2005), Carrillo et al. (2006), and Suzuki et al. (2015),
corresponding to a value of 0.016, 0.045, 0.036, and 0.014
gDW gDW−1d−1, for spring, summer, autumn, and winter,
respectively.

The GGR, NGR, and DR obtained for each sampling
site and season were multiplied by the biomass measured in
the same site and season, in order to obtain a daily gross

primary production (GPP, gDW m−2d−1), a daily net primary
production (NPP, gDW m−2d−1) and a daily decomposition
(DD, gDW m−2d−1). Each seasonal value (averaged from n = 15
sites) was then multiplied by 90 days (corresponding to one
season of 3 months) and then summed in order to obtain an
annual estimation. Further, weight production/decomposition
was converted into nutrients uptake/loss rates, by using an
average content of 0.360 g C gDW−1, 0.015 g N gDW−1 and
0.003 g P gDW−1 in the plant tissue (Carvalho et al., 2005;
Yarrow et al., 2009; Suzuki et al., 2015). In this way, we
obtained an estimation of the amount of carbon and nutrients
fixed/loss annually into/from biomass at the local and at the
lake scale by considering a total surface covered by plants of
1.19 km2.

Starting from the surface gas concentrations and local wind
speed, CO2 and CH4 diffusive fluxes at the water–air interface
were calculated, following the two-layer model proposed by Liss
and Slater (1974). Diffusive fluxes at the water–air interface (F)
were calculated as follows:

F = k × (Cmeas − Ceq)

where Cmeas is the gas concentration measured in the surface
sample expressed as mg C L−1, Ceq is the gas concentration in
surface sample in equilibrium with the atmosphere (calculated
in function of the temperature from Henry’s law – Sander,
1999) and k is the gas transfer velocity constant (cm h−1). Gas
transfer velocity varies in function of turbulence at the water–
air interface, which is mostly generated by winds in lakes (Repo
et al., 2007; Cole et al., 2010). Gas transfer velocity was calculated
using the average wind speed of 3.5 m s−1 measured over
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TABLE 1 | Summarized results of the three-way ANOVA on physicochemical parameters (plant presence, season, and sampling depth as fixed factors; sampling site as
random factor). For TN and TP only, a two-way ANOVA was performed (season and sampling depth as fixed factors; sampling site as random factor).

pH Temperature O2 CO2 CH4

Source df, residuals p df, residuals p df, residuals p df, residuals p df, residuals p

Plant presence 1, 31 0.0596 1, 31 0.0018 1, 31 <0.001 1, 28 <0.001 1, 26 0.0847

Sampling depth 1, 305 <0.001 1, 305 0.6804 1, 478 <0.001 1, 437 <0.001 1, 471 <0.001

Season 1, 305 <0.001 1, 305 <0.001 1, 478 <0.001 1, 437 <0.001 1, 471 0.0550

Plant × Depth 1, 305 <0.001 1, 305 0.4911 1, 478 <0.001 1, 437 <0.001 1, 471 0.0130

Season × Depth 1, 305 <0.001 1, 305 <0.001 1, 478 0.1675 1, 437 0.9790 1, 471 0.3187

Plant × Season 1, 305 <0.001 1, 305 0.1870 1, 478 <0.001 1, 437 0.0312 1, 471 0.6093

Plant × Season ×
Depth

1, 305 <0.001 1, 305 0.2377 1, 478 0.9595 1, 437 0.9122 1, 471 0.7920

NH4
+ NO3

− DOC TN TP

df, residuals p df, residuals p df, residuals p df, residuals p df, residuals p

Plant presence 1, 31 0.4659 1, 31 0.0082 1, 26 <0.001 1,12 – 1, 12 –

Sampling depth 1, 538 <0.001 1, 519 0.0052 1, 216 0.0667 1, 56 0.0497 1, 56 0.4002

Season 1, 538 <0.001 1, 519 <0.001 1, 216 0.0045 1, 56 <0.001 1, 56 0.0141

Plant × Depth 1, 538 0.0046 1, 519 0.9777 1, 216 0.1326 1, 56 – 1, 56 –

Season × Depth 1, 538 0.0287 1, 519 <0.001 1, 216 0.9738 1, 56 0.4862 1, 56 0.6519

Plant × Season 1, 538 0.0220 1, 519 <0.001 1, 216 <0.001 1, 56 – 1, 56 –

Plant × Season ×
Depth

1, 538 0.0871 1, 519 0.1509 1, 216 0.8363 1, 56 – 1, 56 –

the lake at all seasons (Bertrin et al., 2017) and the equation
of Crusius and Wanninkhof (2003). Fluxes were calculated for
CO2 and CH4 and then summed for obtaining a total carbon
flux: F was then expressed as mg C m−2h−1. Calculated fluxes
were thus diffusive and did not account for ebullition processes;
in our study, CO2 and CH4 diffusive fluxes merely served to

compare the dynamics of C with and without plants. Hourly
fluxes were averaged and upscaled for each sampling season
(90 days each), and then summed to obtain a budget for the
growing season of the plants (March toNovember). Finally, fluxes
calculated for vegetated stands were upscaled to the lake’s surface
covered by invasive plants (1.19 km2), while fluxes calculated in

FIGURE 3 | Seasonal variation of some physicochemical parameters in function of plant density and space occupation by invasive aquatic plants. Mean ± SD are
reported.

Frontiers in Plant Science | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1781

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01781 December 3, 2018 Time: 12:28 # 6

Ribaudo et al. Nutrients Regeneration in Aquatic Weed Stands

FIGURE 4 | Boxplots of dissolved oxygen, carbon dioxide, and methane measured along different seasons in vegetated and plant-free areas at the surface and the
bottom of the water column.

plant-free areas were upscaled to the unvegetated lake’s surface
(15.01 km2).

Statistical Analyses
We tested the influence of the presence/absence of dense
vegetated stands on the biogeochemistry of the water column

by a three-way ANOVA. The presence/absence of vegetated
stands (Plant presence, two levels: vegetated vs. plant-free areas),
season (Season, three levels: spring vs. summer vs. autumn)
and sampling depth (Depth, two levels: surface vs. bottom)
were considered as fixed factors, while sampling site (Site, 29
levels) was considered as a random factor. When checking
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FIGURE 5 | Boxplots of ammonium and nitrate measured along different seasons in vegetated and plant-free areas at the surface and the bottom of the water
column.

for analysis of variance assumptions, we found that almost
every physicochemical parameter was not normally distributed
(Shapiro–Wilk test for normality assumption). Nevertheless,
considered the width of the dataset and that homogeneity of
variances was always attained (Levene’s test for homoscedasticity
assumption), we decided not to apply any data transformation.
Post hoc analyses were performed by Tukey’s Honestly Significant
Difference (HSD) test.

In order to test the correlation between physicochemical
parameters, linear regressions and Pearson correlation
coefficients were performed. Statistical analyses were performed
with R Program (R – Development Core Team 2018). Mean
values are reported with their standard deviation.

RESULTS

Seasonal Vertical Stratification
Water temperature measured in vegetated stands was
significantly lower than that measured in plant-free areas
irrespective of the season (annual mean 18.7 ± 4.4 and
20.0 ± 4.3◦C, for vegetated and plant-free areas, respectively).
At both vegetated and plant-free areas, water temperature varied
seasonally (summer higher than spring and autumn; HSD test,
p < 0.001) (Figure 2 and Table 1). The vegetated stands were
thermally stratified in summer (surface warmer than bottom;

HSD test, p < 0.001), contrary to plant-free sites, which were
never stratified. pH differences between vegetated and plant-free
sites depended upon the season and the depth (Figure 2). At
plant-free areas, differences between surface and bottom were
significant only during summer (HSD test, p < 0.001), unlike
vegetated stands, where the water column was stratified all year
around.

Dissolved oxygen and carbon dioxide significantly varied
according to the sampling depth and the season at vegetated
sites (Table 1; HSD test, p < 0.001), whereas in plant-free
areas values were constant along the year and homogenous
in the water column (Figures 3, 4; HSD test, p < 0.001).
At plant-free sites, O2 averaged 97 ± 17% and CO2 averaged
945 ± 65 ppmv. At vegetated sites, CO2 was generally much
above 400 ppmv and presented significantly higher values than
plant-free sites (Figures 3, 4; HSD test, p < 0.001). The bottom
of the vegetated stands was generally undersaturated: often
hypoxic (<50%) and frequently below <20%. Average O2 values
measured at the surface of vegetated stands were <100% in
spring and autumn, while in summer they were >100%. In
this season, CO2 values measured at the surface of vegetated
stands averaged 228 ± 39 ppmv and reached very low values
(down to 8 ppmv). At vegetated stands, DIC mean values were
of 0.8 ± 0.4, 0.6 ± 0.4, and 0.8 ± 0.3 mM (surface+bottom
pooled data) for spring, summer, and autumn, respectively.
At plant-free areas, DIC mean values were of 0.4 ± 0.3,
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FIGURE 6 | Scatter plots of O2 and CO2 (Left), CH4 (Middle), and NH4
+ (Right) measured at the bottom of the vegetated and plant-free areas (seasonal data

pooled). Regressions are calculated through a linear model for CO2, and through an exponential model for CH4 and NH4
+. n.s. indicates a not significant

relationship.

FIGURE 7 | Apparent oxygen utilization (AOU) and excess of dissolved inorganic carbon (eDIC) plotted according different seasons at the surface and at the bottom
of the vegetated stands. Respiration and remineralization processes are reflected in positive values of AOU and eDIC, whereas the effects of photosynthesis are
reflected in negative values. The graphical representation takes inspiration on Dinauer and Mucci (2017).

0.5 ± 0.1, and 0.4 ± 0.1 mM for spring, summer, and autumn,
respectively.

CH4 values did not vary seasonally at vegetated neither at
plant-free areas (Figures 3, 4 and Table 1); at vegetated stands,
the water column was significantly stratified for CH4, with
mean values of 1.92 ± 0.91 µM (from 0.05 to 38.7 µM) and
13.71 ± 31.97 µM (from 0.05 to 227 µM), measured at the
surface and at the bottom, respectively (HSD test, p < 0.001). At
the bottom of vegetated stands, values were significantly higher
values than at the bottom of plant-free sites (HSD test, p< 0.001),
where CH4 averaged 0.20± 0.06µMand 0.19± 0.05µM, for the
surface and the bottom, respectively. Overall, values at plant-free
sites were comprised between 0.05 and 0.67 µM.

Dissolved inorganic nitrogen varied seasonally, with NO3
−

declining from spring to autumn, at both vegetated and plant-
free areas. Values were significantly higher at vegetated sites;

nevertheless, no stratification of the water column was detected
(Figures 3, 5 and Table 1). At vegetated stands, NO3

− values
averaged 78.1 ± 51.1, 19.5 ± 14.0, and 2.5 ± 1.7 µM
(surface + bottom pooled data) for spring, summer, and
autumn, respectively. At plant-free sites, NO3

− values averaged
20.0 ± 17.8, 16.4 ± 20.0, and 0.8 ± 1.2 µM (surface + bottom
pooled data) for spring, summer, and autumn, respectively.
NH4

+ values varied seasonally at both vegetated and plant-
free sites, with a marked stratification in the vegetated water
column (Figures 3, 5 and Table 1). Here, surface values were
comprised between 0.01 and 12.7 µM (mean 2.7 ± 0.6 µM),
while bottom values were comprised between 0.01 and 86.9 µM
(mean 7.0 ± 4.3 µM). At plant-free sites, values ranged from
0.1 to 11.5 µM (mean 3.4 ± 0.5 µM) and from 0.1 to 12.0 µM
(mean 3.2 ± 0.4 µM), at the surface and at the bottom,
respectively.
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TABLE 2 | Dissolved organic carbon (DOC), total nitrogen (TN), and total
phosphorus (TP) measured along different seasons in vegetated stands and
plant-free areas at the surface and at the bottom of the water column
(mean ± SD).

Vegetated Plant-free

Surface Bottom Surface Bottom

DOC (mg L−1) Spring 12.3 ± 0.3 12.4 ± 0.5 14.2 ± 1.6 14.9 ± 0.9

Summer 13.2 ± 0.4 13.1 ± 0.4 13.9 ± 0.9 14.4 ± 0.9

Autumn 13.5 ± 0.5 13.6 ± 0.7 13.4 ± 0.8 13.8 ± 1.2

TN (mg L−1) Spring 0.7 ± 0.2 0.8 ± 0.2 0.6 ± 0.2 –

Summer 0.5 ± 0.1 0.7 ± 0.3 0.6 ± 0.1 –

Autumn 1.1 ± 0.1 1.3 ± 0.5 1.2 ± 0.4 –

TP (mg L−1) Spring 0.06 ± 0.07 0.06 ± 0.06 0.02 ± 0.01 –

Summer 0.06 ± 0.04 0.07 ± 0.03 0.02 ± 0.01 –

Autumn 0.08 ± 0.09 0.12 ± 0.06 0.06 ± 0.04 –

In general, CO2, CH4, and NH4
+ concentrations at the

bottom layer of the water column were inversely dependent
on O2 values for vegetated stands (Figure 6), whereas their
relationship was never significant for values measured at the
surface. In vegetated stands, AOU at the surface ranged from
−0.10 (summer) to 0.20 mM (autumn), with mean values
comprised between −0.01 ± 0.03 and 0.5 ± 0.5 mM, measured
in summer and autumn, respectively. At the bottom, values were
comprised between −0.13 (summer) and 0.33 mM (spring), with
mean values ranging from 0.02 ± 0.09 to 0.11 ± 0.09 mM,
measured in summer and spring, respectively. eDIC at the
surface ranged from −0.01 (summer and spring) to 0.52 mM
(autumn), with mean values comprised between 0.00 ± 0.02 and
0.17 ± 0.17 mM, measured in summer and spring, respectively.
At the bottom, eDIC values ranged between −0.01 (summer and
autumn) to 1.78 mM (spring), with mean values ranging from
0.19 ± 0.23 and 0.38 ± 0.35 mM, measured in summer and
spring, respectively. The relationship between AOU and eDIC in
vegetated stands (Figure 7), evidenced a prevalence of respiration
processes at the bottom all year round, while photosynthesis was
prevailing during summer at the surface of colonized areas.

For DOC, TN, and TP, values varied seasonally, with
no significant differences between surface and bottom values
(Tables 1, 2). At vegetated stands, DOC values were significantly
lower than those measured at plant-free sites at all seasons except
in autumn (HSD test, p < 0.001).

Seasonal Nutrients and Carbon Budget
In vegetated stands, the height of the vegetation and the relative
proportion of occupation in the water column varied according
to the season (one-way ANOVA, p < 0.001, F2,22), with relatively
short stems in winter and spring, when plants occupied about
44% of the water depth (Figure 3), which turned longer and
thicker in summer and autumn (56 and 52% of the water
depth). In some cases, the vegetated stands occupied 80% of
the water column height; shoot density varied between 22 ± 17
to 407 ± 475 shoots m−2, measured in winter and summer,
respectively.

Vegetated stands were mainly constituted by Egeria densa (at
least 80% of the biomass at each station), whereas Lagarosiphon
major occurred only in few stations with a much lower biomass.
Biomass values, as well as GPP, DD, and NPP, varied seasonally
at all stations, with a marked increase in summer and autumn
compared to spring and winter (Table 3A). Biomass ranged
from 46 to 1339 gDW m−2, measured in winter and summer,
respectively. When transforming GPP, DD, and NPP in nutrients
uptake, loss, and fixation, respectively, we can estimate that dense
vegetated stands fix a positive amount of nutrients, on an annual
scale (Table 3B). When upscaling those values to the vegetated
areas within the lake, on an annual basis, we can estimate that
vegetated stands fix 2319 ± 1196 tons C year−1, 97 ± 50 tons N
year−1 and 19 ± 10 tons P year−1 during their growth.

Coherently with concentrations measured at the surface of the
water column, diffusive carbon fluxes calculated at the water–
air interface followed a seasonal pattern (Figure 8). At vegetated
stands, the highest values were recorded in spring (2.3 ± 2.4 mg
Cm−2d−1) and the lowest in summer (0.2 ± 0.8 mg Cm−2d−1);
at plant-free sites, the highest value was recorded in spring
(0.6± 0.7 mg Cm−2d−1) and the lowest in autumn (0.2± 0.1 mg
C m−2d−1). During 1 year, at the scale of the growing season of
the plants (March to November) we can estimate that vegetated
stands release 332± 417mg Cm−2, while plant-free areas release
108 ± 94 mg C m−2. At both vegetated and plant-free sites, the
major contribution to diffusive fluxes carbon is given by CO2 and,
only in a minor part, by CH4. When upscaling to the lake scale,
we can estimate that dense vegetated stands emit 396 ± 489 kg
C per growing season, whereas plant-free areas emit, in the same
period, an estimated amount of 1622 ± 1403 kg C.

DISCUSSION

Biogeochemical Functioning in Invasive
Macrophyte Stands
The first evidence of our study is that the presence of a
massive biomass development of invasive plants generates the
stratification of the water column. The thermal and chemical
stratification of the water column has been reported in a few
studies concerning other submerged aquatic vegetation (Mazzeo
et al., 2003; Andersen et al., 2017). Vilas et al. (2017) found that
water stratification due to extensive colonization of Potamogeton
crispus started when plants occupied more than 50% of the
water column, which is a value that is overpassed in most of
our samplings. Nevertheless, the variability measured within
our dataset could be given by episodic wind events disturbance
on sediment resuspension and water mixing. Conversely, water
stagnation and related extreme values can be attributable to
prolonged and extremely calm weather conditions (Søndergaard
et al., 1992; Gale et al., 2006). Water stratification/mixing is also
dependent on the biomass degree and stand ages of the sites,
which can present a variable quantity of organic matter buildup
in the sediment and thus influence the degree of respiration and
consumption of oxygen (Boros et al., 2011).

The stratification of dissolved oxygen has important cascade
effects on the local biogeochemistry, and in particular on
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TABLE 3 | (A) Total biomass (measured), gross primary production, decomposition, and net primary production (estimated) for vegetated stands of E. densa and
L. major at different seasons. (B) Nutrients mobilization (uptake, calculated from GPP; loss, calculated from DD; fixation, calculated from NPP) within dense mats of
E. densa and L. major at stand and lake scales.

(A) Total biomass GPP DD NPP

gDW m−2 gDW m−2d−1 gDW m−2d−1 gDW m−2d−1

Spring 319 ± 245 11.7 ± 5.2 −5.2 ± 2.3 6.5 ± 2.9

Summer 668 ± 414 76.5 ± 38.7 −32.8 ± 16.6 36.4 ± 18.4

Autumn 567 ± 537 36.9 ± 26.2 −20.1 ± 14.3 16.8 ± 11.9

Winter 87 ± 50 1.6 ± 1.0 −1.2 ± 0.7 0.4 ± 0.3

(B) Carbon Nitrogen Phosphorus

g C m−2year−1 g N m−2year−1 g P m−2year−1

Stand scale Uptake 4105 ± 2125 171 ± 89 34 ± 18

Loss −1920 ± 1007 −80 ± 42 −16 ± 8

Fixation 1949 ± 1005 81 ± 42 16 ± 8

tons C year−1 tons N year−1 tons P year−1

Lake scale Uptake 4885 ± 2528 204 ± 105 41 ± 21

Loss −2285 ± 1198 −95 ± 50 −19 ± 10

Fixation 2319 ± 1196 97 ± 50 19 ± 10

the dynamics of carbon and nitrogen. In the dark bottom
of the water column, under a thick layer of stems, plants
respiration is not compensated by an equivalent oxygen release
(Tavechio and Thomaz, 2003). The elevated heterotrophic
respiration rates, filled up by the availability of labile dead
biomass, generate here important amounts of DIC. This carbon

is diffused to the water column surface, where it can be
emitted toward the atmosphere as CO2. This process appears
to be connected to the seasonal variations in net primary
production and biomass decomposition of the plants. Indeed,
unlike the plant-free areas, carbon emissions from vegetated
stands are accentuated in spring and autumn, and much lower

FIGURE 8 | Hourly and total diffusive carbon fluxes (from CO2 and CH4) calculated from concentrations measured at the surface of the water column of vegetated
and plant-free areas.
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in summer. Coherently, the negative eDIC values measured
in summer in the euphotic layer above the canopy indicate
that this carbon is likely re-utilized by photosynthesis and
only partially diffused toward the surface and then toward the
atmosphere. In summer, the CO2 undersaturation measured
at the surface indicates indeed a complete sequestration of
CO2 in the water column. This is typical of freshwater
systems where the biogeochemical functioning is seasonally
determined by the ecophysiology of dense macrophyte mats
(Bowes et al., 1979; Wang et al., 2006; Pierobon et al.,
2010).

The quantity of DIC present in the whole water column
is just satisfactory to support the daily primary production
of the plants. Indeed, in summer, plants present a NPP of
36.4 ± 18.4 gDW m−2d−1, which corresponds to a fixation
of 13.1 ± 6.6 g C m−2d−1. If we consider the mean value
of 0.6 ± 0.4 mM DIC measured in summer for the whole
water column, for a fixed volume of water having a base of
1 m2 and an average height of 2.8 ± 0.4 m, we can estimate
that the water column contains about 20 g C. This quantity is
likely entirely consumed in a day by the plants in summer, as
the carbon loop constituted by respiration-uptake is very fast
and relates of an efficient coupling between bacterial nutrients
regeneration and assimilation by plant shoots. Thus, the bottom
part of the water column acts as a source of carbon, whereas
the canopy of plants at the surface acts as a sink. In spring and
autumn, the lower NPP do not allow the sequestration of the
whole DIC generated from the organic matter degradation. This
approximation is confirmed by the eDIC values, indicating the
prevalence of respiration processes in the bottom of the vegetated
water column all over the year, and in spring and autumn also at
the surface.

The oxygen consumption and the settlement of
hypoxic/anoxic conditions favor the production and buildup
of methane and ammonium. Methanogenic bacteria develop
thanks to the availability of dissolved organic matter (DOM)
derived from the decomposition of decaying biomass (Zhang
et al., 2018). A part of this methane is possibly consumed by
aerobic methanotrophy within the canopy of the plants near
the surface (Yoshida et al., 2014). However, a large amount
of CH4 is diffused toward the surface of the water column,
that contributing to carbon emissions from the vegetated
stands. Nevertheless, calculated carbon diffusive fluxes are
much lower than those measured in other systems colonized by
floating-leaved invasive plants (Pierobon et al., 2010; Ribaudo
et al., 2012; Oliveira-Junior et al., 2018). That confirms that,
despite the elevated concentrations measured at the bottom
of the water column, the CH4 oxidation and the CO2 uptake
within submerged-leaved plants can significantly reduce the
net effect on carbon emissions. Under hypoxic and anoxic
conditions, the nitrification process is limited (Seitzinger,
1988), so that NH4

+ accumulates in the lower layer of water
column. As in the case of CO2, during summer, NH4

+ can
be efficiently taken up by dense vegetation. Indeed, a mean
value of 6 ± 13 µM NH4

+ measured for the whole water
column, corresponds to a quantity of about 0.22 g N for a
water column of 2.8 ± 0.4 m high. This quantity is completely

depleted by primary production, as the corresponding NPP
in summer is of 36.4 ± 18.4 gDW m−2d−1, and thus is
equivalent to a fixation of 0.5 ± 0.3 g N m−2d−1. Inversely, in
spring and autumn, the dissolved nitrogen regenerated from
decomposition cannot be wholly exhausted by fixation into
biomass.

Biogeochemical Processes From Local
to Lake Scale
Invasive species are known to colonize new areas thanks to
peculiar ecophysiological adaptations, such as fast growth rates
and phenotypic plasticity, and to the availability of resources
and space (Riis et al., 2010; Gillard et al., 2017). As pristine
conditions, the lake investigated in this study is characterized
by low concentrations of phosphorus and nitrogen (Cellamare
et al., 2012): furthermore, the total nutrients discharge from
the watershed has been reduced during the past decades thanks
to the management of rural activities (Buquet et al., 2017).
Nevertheless, the extended photoperiod and mild temperatures
characterizing the region, coupled to the availability of space and
the absence of other canopy-forming hydrophytes, constitute a
very favorable unsaturated ecological niche for aquatic weeds
to spread. The settlement of invasive hydrophytes in originally
oligo-mesotrophic systems is reported elsewhere (Nagasaka,
2004; Mjelde et al., 2012; Bolpagni et al., 2015), that contrasting
with the general tendency of the establishment of invasive
plants in meso-eutrophic freshwaters (Kelly and Hawes, 2005;
Hussner et al., 2009). Our study shows that the presence
of such a massive area of primary production and biomass
decomposition affects the carbon budget of the whole lake.
Indeed, if we extend the carbon diffusive fluxes calculated for
vegetated and plant-free areas to their correspondent surface
area (1.19 and 15.01 km2, respectively), it results that, during
their vegetative growth, plant stands release three fold more
C per surface area than plant-free sites. Although they cover
only 7% of the lake area, plant stands contribute to 20% of
the lake carbon emissions and constitute a hotspot of carbon
release (Wang et al., 2006). On the opposite, in Lacanau Lake,
dense beds formed by aquatic weeds could be responsible
for the storage of a part of the nutrients incoming the lake
from the catchment area (Reddy et al., 1987; Søndergaard
et al., 2003). During the year 2014, the total mass balance
of the lake (including inputs from the watershed and the
unvegetated sediments) results in a net storage of 67 tons
N year−1 and 0.16 tons P year−1 within the lake (Buquet
et al., 2017). We here estimate that invasive vegetated stands
require more than 200 tons N year−1 and 40 tons P year−1

for their gross primary production, but this quantity is not
available in the lake, neither coming from the watershed, neither
originating from benthic fluxes in unvegetated areas (Buquet
et al., 2017). Concomitantly, the fast renewal (NPP) and decay
(DD) of biomass result in the almost total reutilization of the
nutrients regenerated from the sediment, and in a small part of
nutrients stocked in the sediment, through sediment accretion.
In correspondence with vegetated stands, we observe indeed
an accumulation of low-density, highly organic fluffy sediments
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(Bertrin et al., 2017). The predominance of recycled sedimentary
N and P is well known in marine systems for seagrasses growth
(Bartoli et al., 1996; Deborde et al., 2008). Carvalho et al. (2005)
suggest that due to the rapid decomposition of Egeria spp. at high
temperatures, a very small exportation of nutrients is expected
from its stands to distant regions of the lake. Effectively, DOC
measured in vegetated stands being lower than those of plant-
free areas, we can expect that a process of priming effect boosts
benthic bacterial communities, fueled by the continuous supply
of fresh labile plant material, and rapidly degrading organic
matter to inorganic compounds (Findlay et al., 1986; Marion
and Paillisson, 2003). Bini et al. (2010) also commented that, in
dense Egeria spp. vegetated stands, the nutrients regeneration is
ephemeral, temporally limited to the vegetative growth of the
plants, and spatially restricted to the areas of the lake that are
colonized. Our results show that effectively, in summer, this could
be the case. Nevertheless, the seasonal investigation performed
on water chemistry shows an excess of nutrients during the
seasons of slow plant growth. Especially in spring, when nutrients
regeneration is elevated and not fully compensated by fixation
into biomass, the nutrients export from vegetated to plant-free
areas could be possible thanks to a low shoot density allowing the
water circulation during strong wind events (Losee and Wetzel,
1993; James and Barko, 1994; Bertrin et al., 2017). In addition,
according to the elevated concentrations of TN and TP measured
in autumn, fresh organic matter deposition, reduced light and
dynamic redox conditions in plant stands wouldmake these areas
potential temporary sources of available P for phytoplankton in
plant-free areas (Buquet et al., 2017). Unfortunately, the sampling
strategy adopted in this study was not designed for, from a spatial
and a temporal point of view, detecting any diffusive gradient of
nutrients between the vegetated stands and unvegetated areas.
Moreover, investigations focusing on the sediments underlying
the plants are needed to complete the current knowledge.

CONCLUSION

In this study, we show that, once settled, Egeria densa and
Lagarosiphon major are able to act as ecological engineers and
modify the sites they colonize, by keeping a not-limiting nutrients
level along the year, thanks to the formation of dense stands
where a constant production of labile organic matter stimulates
the microbial loop. We here show that in vegetated areas of the

lake, the whole nutrients level is generally higher than in the
rest of the lake, that seasonal fluctuations of oxygen and carbon
are intensified and that an impact on the whole-lake ecosystem
functioning is possible.
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