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Active particles disturb the fluid around them as force dipoles, or stresslets, which govern their collective
dynamics. Unlike swimming speeds, the stresslets of active particles are rarely determined due to the lack
of a suitable theoretical framework for arbitrary geometry. We propose a general method, based on the
reciprocal theorem of Stokes flows, to compute stresslets as integrals of the velocities on the particle’s
surface, which we illustrate for spheroidal chemically active particles. Our method will allow tuning the
stresslet of artificial swimmers and tailoring their collective motion in complex environments.
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The study of swimming microorganisms could be hailed
as the biophysics “poster child” due to the ability of
classical physics to provide robust quantitative predictions
[1,2]. Mathematical theories developed from first principles
have been able to quantitatively capture the locomotion of
bacteria [3], spermatozoa [4], and algae [5], as well as their
collective dynamics [6] and their interactions with complex
chemical environments [7]. In addition, self-propelling
cells and artificial active particles [8,9] have provided
the soft matter community with model systems to discover
new physics [10,11].
The primary quantity of interest for a swimming body, and

what most theory work focuses on, is its swimming speedU.
A wealth of experimental data exists for a large variety of
biological cells [12].Mathematical methods have been devel-
oped to predict swimming speeds, in particular, resistive-
force [13] and slender-body theory [14]. These solve for the
force distribution along an organism by taking advantage of
the linearity of the Stokes equations for the fluid flow to
determine the swimming kinematics without requiring a full
computation of the flow. With its swimming speed known, a
swimmer is then seen to display long-time effective diffusion
at a rateD ∼U2τ, where the time scale τ is the relevant one for
loss of orientation, be it thermal noise or cell tumbling [15].
Beyond the swimming speed, an equally important

characteristic of a self-propelled body is its stresslet.
Since cells and active particles swim without applying
net forces to the surrounding fluid, the flows they induce
have the symmetry of a force dipole and decay spatially as
∼1=r2. Formally, the velocity field in the laboratory frame
at a location x away from a swimmer can generically be
written in the far field as u ¼ −3ðx · S · xÞx=8πμr5, where
r ¼ jxj and S is the trace-free second-rank stresslet tensor
which is symmetric when the swimmer does not apply any
net moment [16]. For axisymmetric swimming along a
direction e, one then obtains S ¼ Sðee − 1

3 IÞ, and the sign
of S allows one to distinguish between two types of
swimmers: pusher cells with S < 0 are pushed from behind

and include most flagellated bacteria; in contrast, puller
cells with S > 0 are pulled forward, e.g., the biflagellated
algae Chlamydomonas.
The stresslets of self-propelling cells and active particles

have been the subject of much less attention than their
swimming speeds, but they are no less important. The
magnitudes and signs of stresslets control pattern formation
and interactions in populations of cells [17], dictate which
type of swimmer suspension is unstable and displays
nonlinear fluctuations [18], and govern the physics of
collective locomotion [19,20]. The stresslet also controls
the interactions of active organisms with their environment
[21,22], enhanced transport through biological fluids
[23,24], and the rheology of active fluids [25].
If the stresslet of active swimmers is so important, why

do so few studies attempt to determine its value? The
difficulty lies in the fact that, unlike the swimming speed
which is purely a kinematic quantity, the stresslet includes
information about both kinematics and dynamics as it is
formally given by an integral on the surface of the swimmer
of both instantaneous surface velocities and surface stresses
[16]. Solving for both velocities and surface stresses can be
done numerically using the boundary element method [26],
but typically not analytically. An alternative method con-
sists of measuring, or computing, the flow far from the
swimmer and fitting it to the expected stresslet, but so far
this has been done only with the bacterium E. coli [27] and
requires an experimental apparatus able to distinguish the
far-field flow from measurement noise.
In this Letter, we propose a theoretical method to compute

the stresslet induced by active swimmers. Twenty years ago,
Stone and Samuel derived an integral theorem to determine
the swimming speed of any swimmer using an auxiliary
problem of rigid-body motion [28]. This result relies on the
Lorentz reciprocal theorem, which has proved popular in the
hydrodynamics community to compute Marangoni, inertial,
or viscoelastic effects on the motion of particles, drops, and
bubbles [29–31], and even the flux of boundary-driven
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channel flows [32]. We show that a similar approach may be
undertaken to determine the value of the stresslet for active
particles of arbitrary shape.We derive a new integral theorem,
involving an auxiliary problem of a passive rigid particle in a
linear flow, allowing the determination of the full stresslet
tensor. After validating it for the classical problems of
swimming of a sphere (squirming) and locomotion of an
active rod, we show that the theorem allows one to determine
exactly, for the first time, the stresslet induced by ellipsoidal
swimmers of any aspect ratio.We apply our results to phoretic
particles and discover how the pusher-puller transition
depends on the geometry of the particle.
In seminal work, Batchelor [16] showed that the con-

tribution of an active particle of surface ∂V to the bulk
stress, i.e., the so-called stresslet tensor S, is given by

Sij ¼
Z

∂V

!
1

2
ðxjσiknk þ xiσjknkÞ

−
1

3
ðxkσklnlÞδij − μðuinj þ ujniÞ

"
dA: ð1Þ

For active particles or cells prescribing a relative surface
velocity us (or swimming gait), the second part of this
integral can be directly evaluated (its value does not depend
on the swimming velocity). In contrast, the first part
involves the surface traction, σ · n, which in general can
only be obtained by solving for the flow everywhere. In
order to calculate this first part of the stresslet integral, we
use the reciprocal theorem of Stokes flow written as [33]

Z

∂V
uiσ̄ijnjdA ¼

Z

∂V
ūiσijnjdA; ð2Þ

where we choose the dual flow field ðū; σ̄Þ, a solution of
Stokes’s equations that decays at infinity, to satisfy ū ¼
E · x on the particle’s boundary, where E is a constant,
symmetric, and traceless second-order tensor, and the origin
of x is chosen so that the particle is force and torque free.
The solution ðū; σ̄Þ is thus the instantaneous perturbation
flow induced by the presence of the same active particle
when stationary in a linear flow field; i.e., u ¼ −E · xþ ū.
The associated stress field can be formally written as
σ̄ðxÞ≡ μΣðxÞ∶E, where Σ is a dimensionless fourth-order
tensor symmetric with respect to the first two and last two
indices (due to the symmetries of σ̄ and E).
After changing indices, the left-hand side of Eq. (2)

becomes

Z

∂V
uiσ̄ijnjdA ¼ μ

#Z

∂V
nluskΣklijdA

$
Eij; ð3Þ

whereas the right-hand side is
Z

∂V
ūiσijnjdA ¼

#Z

∂V
1

2
ðxjσiknk þ xiσjknkÞdA

$
Eij; ð4Þ

where the term in parentheses has been replaced by its
symmetric part sinceE is symmetric. Equating Eqs. (3) and
(4), for any trace-free symmetric tensor E, we obtain

Z

∂V
1

2
ðxjσiknk þ xiσjknkÞdA ¼ μ

Z

∂V
nluskΣklijdA; ð5Þ

up to an isotropic second-order tensor. The trace-free
portion of this result is given by

Z

∂V

!
1

2
ðxjσiknk þ xiσjknkÞ −

1

3
ðxkσklnlÞδij

"
dA

¼ μ
Z

∂V
nlusk

#
Σklij −

1

3
Σklmmδij

$
dA: ð6Þ

Combining Eqs (1) and (6), we finally obtain the stresslet
tensor S as

Sij
μ

¼
Z

∂V
nlusk

#
Σklij −

δij
3
Σklmm − δikδjl − δilδjk

$
dA:

ð7Þ

The result in Eq. (7) is an explicit integral of the prescribed,
or measured, surface velocity us, and does not depend on
the swimming velocity of the particle—similarly to Eq. (1).
Provided Σ can be computed once and for all for the same
geometry (either analytically or numerically), this result
allows one to directly compute the stresslet generated by
the active particle or cell for any surface velocity and
without actually solving the associated flow problem.
This integral formulation can first be used to recover

classical results, starting with the stresslet induced by a
squirming sphere [34]. The dual flow field ū for a sphere of
radius a in a linear flow is a classical solution given by [33]

ū ¼ a5
E · x
r5

þ 5ðx ·E · xÞx
2

#
a3

r5
−
a5

r7

$
; ð8Þ

p̄ ¼ 5a3μ
x · E · x

r5
: ð9Þ

From this, the tensor σ̄ and thus Σ may be easily evaluated
[35]. Using Eq. (7), the stresslet is obtained as

S ¼ μ
Z

∂V

#
5ninjnk −

5

2
ðnjδik þ niδjkÞ þ δijnk

$
uskdA:

ð10Þ

For an axisymmetric squirming sphere [34], the prescribed
slip velocity is purely tangential, us ¼ usðζÞeθ (ζ ¼ cos θ
in spherical polar coordinates). In that case, the stresslet
simplifies to

S ¼ −
5μ
2

Z

∂V
ðnus þ usnÞdA; ð11Þ

and finally,
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S ¼ 15πμa2
#
ezez −

1

3
I
$ Z

1

−1
usðζÞζ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
dζ: ð12Þ

This result is equivalent to decomposing the slip velocity
onto the canonical squirming modes, with the second mode
providing the intensity of the stresslet [34,37,38].
Another classical model is the active rod. A rod of length

L and unit direction vector p imposes an axisymmetric slip
velocity us ¼ αðsÞp in its reference frame, with −L=2 ≤
s ≤ L=2 the arc length measured along the rod. To
determine the stresslet, the force distribution acting on a
rigid rod in a linear flow u ¼ −E · x must be computed.
The integral to calculate in Eq. (7) is

μ
Z

∂V
nlukΣklijdA ¼

Z

L
uk

Z

∂VR

μnlΣlkijdA; ð13Þ

where nlΣlkij is obtained through the force per unit length
acting on the rigid rod as

f̄k ¼
#Z

∂VR

μnlΣklijdA
$
Eij: ð14Þ

The force density f̄ can be obtained using resistive-force
theory [2,13] (with x ¼ sp),

f̄ðs; tÞ ¼ sζ⊥

#
pp
2

− I
$
· E · p; ð15Þ

and thus,
Z

∂VR

μnlΣklijdA ¼ sζ⊥

#
pipk

2
− δik

$
pj; ð16Þ

where ζ⊥ is the perpendicular drag coefficient for the rod
[2,13]. Using these results, Eq. (7) becomes finally

S ¼ −
#
1

2
ζ⊥U0

Z

L
sαðsÞds

$#
pp −

1

3
I
$
; ð17Þ

which is identical to the result of a direct calculation [35].
The power of the integral method in Eq. (7) may be

demonstrated on problems where a direct calculation of S is
not tractable analytically. Motivated by recent work on
phoretic swimmers, we illustrate this for an axisymmetric
active spheroidal particle (or swimmer) of axis ez and
semiaxes a and b. In this case, the flow field can still be
computed as a superposition of spheroidal harmonics [39],
but a direct calculation of the tensor S from a projection of
us on the relevant harmonics is much more difficult. In
contrast, the integral formulation allows one to determine
S exactly and explicitly, for an arbitrary us.
Focusing on an axisymmetric distribution of slip velocity

at the boundary, the stresslet S is a traceless symmetric
tensor invariant by rotation around ez and must therefore be
of the form S ¼ Sðezez − 1

3 IÞ. It is thus sufficient to
use as dual velocity field the axisymmetric solution of
Stokes’s equations decaying at infinity and satisfying
ū ¼ Eðezez − 1

3 IÞ · x on the spheroid’s boundary with

arbitrary E. Following classical work [40], the dual velocity
field ū and associated fluid force on the particle σ̄ · n can be
found explicitly. In particular, we have

σ̄ · n ¼ 2μ

!
2EGðξÞ
9FðξÞ

Iþ
#
1 −

2

3FðξÞ

$
E
"
· n; ð18Þ

where ξ≡ a=b is the aspect ratio and the function F is

FðξÞ ¼ 1

ðξ2 − 1Þ2

!
−3ξ2 þ ξð1þ 2ξ2Þffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξ2
p cos−1ξ

"
; ð19Þ

while the function G is not required for what follows [35].
Using our integral formulations, one then easily obtains

S ¼ −
2μ

3FðξÞ

Z

∂V
ðusnþ nusÞdA; ð20Þ

with us the prescribed slip velocity at the particle’s boun-
dary. This new result is valid for both prolate (ξ≥1) and
oblate (ξ≤1) spheroids [note that Fð1Þ ¼ 4=15, agreeing
with Eq. (11)].
We use spheroidal polar coordinates ðτ; ζ;ϕÞ with

ðx; yÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 ∓ 1

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ2

p
ðcosϕ; sinϕÞ (for prolate

and oblate spheroids, respectively), z ¼ kζτ, k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S jξ2 − 1j=2πHðξÞ

p
, with S , the surface area of the

spheroid, and

HðξÞ ¼ 1þ ξ2ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p cos−1
#
1

ξ

$
: ð21Þ

The surface of the particle is then defined by
τ ¼ τ0 ¼ ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξ2 − 1j

p
. For an active particle that pre-

scribes an axisymmetric slip velocity us ¼ usðζÞeζ, the
strength of the stresslet is then obtained as the integral

S ¼ −
2S μ

FðξÞHðξÞ

Z
1

−1
usðζÞζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2ð1 − ζ2Þ

ζ2 þ ξ2ð1 − ζ2Þ

s

dζ: ð22Þ

We can now apply this result to an autophoretic
spheroidal particle releasing a solute of diffusivity D with
fixed flux AðζÞ along its boundary. Interactions between
the particle surface and the solute lead to a phoretic fluid
slip velocity, u ¼ MðζÞðI − nnÞ · ∇C, induced along its
boundary [41]. When solute advection is negligible, its
concentration C is the solution to the diffusive problem

D∇2C¼0; Deτ ·∇Cj∂V ¼−AðζÞ; Cð∞Þ¼0: ð23Þ

With the new integral result above, Eq. (22), we can now
obtain the stresslet generated by the catalytic particle
without solving the actual Stokes flow problem. Since
Laplace’s equation is separable in spheroidal coordinates,
Eq. (23) can be solved explicitly for c as
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Cðτ; ζÞ ¼ −
X∞

n¼0

kð2nþ 1ÞCnðτÞ
2DC0

nðτ0Þ
InðξÞLnðζÞ; ð24Þ

InðξÞ ¼
Z

1

−1
AðζÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ ξ2ð1 − ζ2Þ

q
LnðζÞdζ; ð25Þ

where CnðτÞ ¼ QnðτÞ or QnðiτÞ for prolate and oblate
spheroids, respectively, and Ln and Qn are the Legendre
polynomials and function of the second kind, respectively.
The general expression for the resulting stresslet of
a spheroid, Eq. (22), can now be evaluated as S ¼
Sðezez − 1

3 IÞ, with strength

S ¼ −
μξ

DFðξÞ

ffiffiffiffiffiffiffiffiffiffi
8πS
HðξÞ

s Z
1

−1

MðζÞζð1 − ζ2Þ
ζ2 þ ξ2ð1 − ζ2Þ

∂c
∂ζ dζ: ð26Þ

Using Eq. (24), the stresslet intensity S of a catalytic
spheroidal particle of aspect ratio ξ is finally obtained as

S ¼ μS
D

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξ2 − 1j

p

FðξÞHðξÞ
X∞

n¼1

InðξÞJ nðξÞKnðξÞ; ð27Þ

with

J nðξÞ ¼
Z

1

−1

ζð1 − ζ2ÞMðζÞL0
nðζÞ

ζ2 þ ξ2ð1 − ζ2Þ
dζ; ð28Þ

KnðξÞ ¼
ð2nþ 1ÞCn

&
ξffiffiffiffiffiffiffiffiffi
jξ2−1j

p
'

C0
n

&
ξffiffiffiffiffiffiffiffiffi
jξ2−1j

p
' · ð29Þ

This new result, impossible to compute directly analyti-
cally otherwise, allows one to characterize the role of
geometry on the strength of the stresslet for active particles.
For illustration, let us focus on a Janus particle with an
active half (ζ > 0) of uniform activity and mobility, and an
inert half (ζ < 0), where both quantities are zero. We plot in
Fig. 1 the strength of the stresslet as a function of the aspect
ratio of the Janus particle, showing the critical role of
geometry. For positive activity (i.e., solute release on the
surface of the particle) and positive mobility (i.e., slip
velocity in the same direction as the local concentration
gradient), oblate particles act as pushers (S < 0) while most
prolate particles are pullers (S > 0). The spherical limit
(ξ ¼ 1) corresponds to a weak pusher swimmer while the
pusher-puller transition occurs for a blunt prolate with
aspect ratio ξ ≈ 2 (Fig. 1).
These results can be rationalized physically by inspect-

ing the distribution of solute around the particle (see Fig. 1,
insets). For an oblate or spherical particle, the highest
solute concentrations are found at the active pole. The slip
velocity along the active boundaries is therefore oriented
from the equator to the pole leading to a pusher-type
signature on the flow. In contrast, for a prolate phoretic
particle, the sharp local curvature near the active pole

FIG. 1. Stresslet intensity (scaled by μSA0M0=D) for a phoretic Janus particle of spheroidal shape as a function of its aspect ratio
with AðζÞ ¼ A0 and MðζÞ ¼ M0 on the active right half (gray) and AðζÞ ¼ MðζÞ ¼ 0 on the inert left half (white). The sign of
stresslet is reversed by changing the sign of either A0 or M0, but not both. The distribution of concentration is also shown.
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results in a local minimum of the concentration at the pole
(chemical solute is efficiently diffused away from that
point) and the absolute maximum of the surface concen-
tration is instead found at an intermediate position on the
active half of the particle. When ξ → ∞, one can show that
this local maximum of concentration is found at a distance
zmax ≈ 0.2a away from the equator. In that case, the slip
velocity is still oriented from the equator to the pole for
0 ≤ z ≤ zmax but in the reverse direction for zmax ≤ z ≤ a,
the latter being dominant and inducing a puller signature.
In summary, we outlined in this work a new method,

based on the reciprocal theorem for Stokes flows, to
compute the stresslet generated by an active particle.
The method requires knowledge of (i) the instantaneous
geometry of the particle, (ii) the prescribed slip velocity
along its boundary, and (iii) a dual Stokes problem of an
identical rigid particle in a linear flow. The main advantage
of this approach is that it does not require one to solve for
the actual flow field around the active particle. After the
formal derivation of the method, we verified it for the
classical cases of active spheres and rods for which an
alternative, direct calculation is possible [35]. We then
demonstrated how to use our new integral formulation to
derive a result impossible to obtain directly, namely, the
stresslet for spheroidal phoretic particles.
As an extension for future work, we note that when the

particle is not torque free, the present approach could easily
be generalized to compute the rotlet generated by the active
particle (i.e., the strength of the torque locally induced by
the swimmer) by repeating the analysis presented in this
Letter with a dual flow field where the second-rank tensor
E is antisymmetric.
We envision our method to be particularly relevant to

fixed-shape phoretic swimmers where the dual problem can
be solved once and for all. The result of Eq. (27) could then
be directly used to sculpt the strength of the stresslet as a
function of the chemical and geometrical characteristics of
the particle, allowing one to potentially tune interactions of
active particles with boundaries and to create active fluids
with predesigned collective or rheological characteristics.

Funding from the EU (CIG to E. L.) and by the French
Ministry of Defense (DGA to S. M.) is gratefully
acknowledged.

*e.lauga@damtp.cam.ac.uk
†sebastien.michelin@ladhyx.polytechnique.fr

[1] J. Lighthill, SIAM Rev. 18, 161 (1976).
[2] E.LaugaandT. R.Powers,Rep.Prog.Phys.72, 096601(2009).
[3] E. Lauga, Annu. Rev. Fluid Mech. 48, 105 (2016).
[4] L. J. Fauci and R. Dillon, Annu. Rev. Fluid Mech. 38, 371

(2006).
[5] J. S. Guasto, R. Rusconi, and R. Stocker, Annu. Rev. Fluid

Mech. 44, 373 (2012).
[6] D. L. Koch and G. Subramanian, Annu. Rev. Fluid Mech.

43, 637 (2011).

[7] H. C. Berg, E. coli in Motion (Springer-Verlag, New York,
2004).

[8] W. F. Paxton, S. Sundararajan, T. E. Mallouk, and A. Sen,
Angew. Chem. 45, 5420 (2006).

[9] R. Golestanian, T. B. Liverpool, and A. Ajdari, New J. Phys.
9, 126 (2007).

[10] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323
(2010).

[11] M.Marchetti, J. Joanny, S.Ramaswamy,T.Liverpool, J. Prost,
M. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1143 (2013).

[12] C. Brennen and H. Winet, Annu. Rev. Fluid Mech. 9, 339
(1977).

[13] R. G. Cox, J. Fluid Mech. 44, 791 (1970).
[14] R. E. Johnson, J. Fluid Mech. 99, 411 (1980).
[15] H. C. Berg, Random Walks in Biology (Princeton University

Press, Princeton, NJ, 1993).
[16] G. K. Batchelor, J. Fluid Mech. 41, 545 (1970).
[17] D. C. Guell, H. Brenner, R. B. Frankel, and H. Hartman, J.

Theor. Biol. 135, 525 (1988).
[18] D. Saintillan and M. J. Shelley, C.R. Phys. 14, 497 (2013).
[19] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein,

and J. O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).
[20] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein,

Phys. Rev. Lett. 98, 158102 (2007).
[21] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Phys. Rev.

Lett. 101, 038102 (2008).
[22] K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley,

and R. E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).
[23] X. L.Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).
[24] A. Jepson, V. A. Martinez, J. Schwarz-Linek, A. Morozov,

and W. C. K. Poon, Phys. Rev. E 88, 041002 (2013).
[25] D. Saintillan, J. Exp. Mech. 50, 1275 (2010).
[26] T. Ishikawa, G. Sekiya, Y. Imai, and T. Yamaguchi,

Biophys. J. 93, 2217 (2007).
[27] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E.

Goldstein, Proc. Natl. Acad. Sci. U.S.A. 108, 10940 (2011).
[28] H. A. Stone and A. D. T. Samuel, Phys. Rev. Lett. 77, 4102

(1996).
[29] L. G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980).
[30] R. V. Raja, G. Subramanian, and D. L. Koch, J. Fluid Mech.

646, 255 (2010).
[31] O. S. Pak, J. Feng, and H. A. Stone, J. Fluid Mech. 753, 535

(2014).
[32] S. Michelin and E. Lauga, Phys. Fluids 27, 111701 (2015).
[33] L. G. Leal, Advanced Transport Phenomena: Fluid Me-

chanics and Convective Transport Processes (Cambridge
University Press, Cambridge, England, 2007).

[34] J. R. Blake, J. Fluid Mech. 46, 199 (1971).
[35] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.117.148001, which in-
cludes Ref. [36], for details of the direct calculation of
stresslets in the cases of a spherical squirmer, an active rod
and an ellipsoidal particle.

[36] H. Lamb, Hydrodynamics, 6th ed. (Dover, New York, 1932).
[37] S. Michelin and E. Lauga, J. Fluid Mech. 747, 572

(2014).
[38] O. S. Pak and E. Lauga, J. Eng. Math. 88, 1 (2014).
[39] A. Kanevsky, M. J. Shelley, and A.-K. Tornberg, J. Comput.

Phys. 229, 958 (2010).
[40] G. B. Jeffery, Proc. R. Soc. A 102, 161 (1922).
[41] J. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).

PRL 117, 148001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 SEPTEMBER 2016

148001-5

http://dx.doi.org/10.1137/1018040
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1146/annurev-fluid-122414-034606
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1146/annurev-fluid-121108-145434
http://dx.doi.org/10.1002/anie.200600060
http://dx.doi.org/10.1088/1367-2630/9/5/126
http://dx.doi.org/10.1088/1367-2630/9/5/126
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
http://dx.doi.org/10.1017/S002211207000215X
http://dx.doi.org/10.1017/S0022112080000687
http://dx.doi.org/10.1017/S0022112070000745
http://dx.doi.org/10.1016/S0022-5193(88)80274-1
http://dx.doi.org/10.1016/S0022-5193(88)80274-1
http://dx.doi.org/10.1016/j.crhy.2013.04.001
http://dx.doi.org/10.1103/PhysRevLett.93.098103
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1103/PhysRevLett.101.038102
http://dx.doi.org/10.1103/PhysRevLett.101.038102
http://dx.doi.org/10.1103/PhysRevLett.102.168101
http://dx.doi.org/10.1103/PhysRevLett.84.3017
http://dx.doi.org/10.1103/PhysRevE.88.041002
http://dx.doi.org/10.1007/s11340-009-9267-0
http://dx.doi.org/10.1529/biophysj.107.110254
http://dx.doi.org/10.1073/pnas.1019079108
http://dx.doi.org/10.1103/PhysRevLett.77.4102
http://dx.doi.org/10.1103/PhysRevLett.77.4102
http://dx.doi.org/10.1146/annurev.fl.12.010180.002251
http://dx.doi.org/10.1017/S0022112009992928
http://dx.doi.org/10.1017/S0022112009992928
http://dx.doi.org/10.1017/jfm.2014.380
http://dx.doi.org/10.1017/jfm.2014.380
http://dx.doi.org/10.1063/1.4935415
http://dx.doi.org/10.1017/S002211207100048X
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.148001
http://dx.doi.org/10.1017/jfm.2014.158
http://dx.doi.org/10.1017/jfm.2014.158
http://dx.doi.org/10.1007/s10665-014-9690-9
http://dx.doi.org/10.1016/j.jcp.2009.05.030
http://dx.doi.org/10.1016/j.jcp.2009.05.030
http://dx.doi.org/10.1098/rspa.1922.0078
http://dx.doi.org/10.1146/annurev.fl.21.010189.000425


Supplemental Information to “Stresslets induced by active swimmers”

Eric Lauga

1, ⇤
and Sebastien Michelin

2, †

1Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, CB3 0WA, United Kingdom.
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I. DIRECT CALCULATION OF THE STRESSLET OF A SQUIRMING SPHERE

In the reference frame of a translating force-free sphere, the velocity field generated by an axisymmetric tangential

slip flow at the sphere’s boundary u(r = a) = u

s

(⇣)e

✓

can be written as a superposition of squirming modes [1, 2].

With ⇣ = cos ✓ in spherical polar coordinates,
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The traction on the boundary of the squirmer (r = a) can also be computed explicitly as
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Using the definition of the stresslet, Eq. (1) in the main article, with n = e

r

and x = ae

r

on the boundary
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or finally
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II. RECIPROCAL CALCULATION OF THE STRESSLET OF A SQUIRMING SPHERE

Using the results presented in this article, the stresslet of the squirming sphere can be directly computed from

the slip velocity distribution provided one is able to find the tensor ⌃ such that the perturbation to the stress field
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introduced by a fixed rigid particle in a linear flow field u = �E · x is defined as

¯� = ⌃ : E. For a given E, the

perturbation flow and pressure field are obtained [3] as
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Taking the symmetric part of the gradient of the flow field, the stress tensor � = �p̄1+µ(r¯
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⌃

klij

=

µa

5

r

5
(�

ik

�

jl

+ �

jk

�

il

) +

5µa

3

2r

5
(�

il

x

j

x

k

+ �

ki

x

j

x

l

+ �

jl

x

i

x

k

+ �

kj

x

i

x

l

)

� 5µa

5

r

7
(�

kl

x

i

x

j

+ �

jl

x

k

x

i

+ �

il

x

j

x

k

+ �

jk

x

i

x

l

+ �

ik

x

j

x

l

) + 5µ

✓
7a

5

r

9
� 5a

3

r

7

◆
x

i

x

j

x

k

x

l

, (10)

and on the sphere’s surface
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Then, applying the fundamental result of the main article, Eq. (7), the stresslet of a general spherical active particle

is obtained as
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III. DIRECT CALCULATION OF THE STRESSLET OF AN ACTIVE ROD

An active rod of length L and orientation vector p is considered. The rod is slender enough so that resistive force

theory can be used to determine the force density applied on the rod. First we note that the last terms in Eq. (1) of

the main article disappear since
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where A

R

(s) is the circle around the rod at section s. Clearly by symmetry the integral

R
@VR(s) ndAR

(s) = 0 and

thus these terms disappear. Calling f the force per unit length exerted on the swimming rod, the stresslet is given by
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To determine f we need to pay a closer look to the velocity distribution on the rod. We call Up the swimming speed

and write the swimming gait as u(s) = U0↵(s) where U0 is a characteristic velocity and ↵ a dimensionless function

characterising the distribution of velocity. The total velocity relative to the fluid at rest at infinity is

u = U0↵(s)p+ Up, (15)

resulting (resistive force theory) into a force per unit length f given by

f = �⇣k[U0↵(s) + U ]p, (16)
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where ⇣k is the local tangential drag coe�cient along the rod. Inertia is negligible and the rod is force-free, thereforeR
fds = 0 and thus the swimming speed is given by

U = �U0h↵i, (17)

where h↵i = (

R
L

↵(s)ds)/L. The resulting force density is thus

f(s) = �⇣kU0[↵(s)� h↵i]p. (18)

From this result and using x = sp and ⇣k = ⇣?/2 with ⇣? the normal drag coe�cient, the stresslet can be computed

from Eq. (14) above:
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Defining s in [�L/2, L/2], this result is strictly equivalent to the reciprocal calculation presented in the main text,

Eq. (17).

IV. ELLIPSOID

A. Spheroidal coordinates

We consider here a general axisymmetric ellipsoid of axis e

z

, and note a (resp. b) the semi-axis along e

z

(in the plane

normal to e

z

). The ellispoid is characterized by its surface are noted S and its aspect ratio ⇠ = a/b. ⇠ � 1 (resp. ⇠  1)

corresponds to a prolate (resp. oblate) spheroid. Prolate (resp. oblate) spheroidal coordinates (⌧, ⇣,�) are defined
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a positive scaling constant that relates the aspect ratio ⇠ and the surface area of the ellipsoid (see main text). The

unit vectors and scale factors can be expressed for both oblate and prolate spheroids, at the surface of the ellispoid
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The area of the ellipsoid’s surface can be expressed as
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B. Je↵ery’s solution

Following [4], the solution of Stokes’ equations that decay at infinity and satisfies

¯

u = E(e

z

e

z

� 1/3) · x at the

spheroid’s boundary is obtained as

¯
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and �(x) is the positive root of
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The force applied on the spheroid’s boundary is then
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C. Reciprocal calculation of the stresslet of an active ellipsoid

Considering now an active spheroid prescribing a slip velocity at its boundary, the approach followed to derive

Eq. (6) in the main text can be adapted to the present axisymmetric setting in order to derive the traction part of

the resulting stresslet as
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and finally
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D. Finding the concentration distribution around an axisymmetric catalytic particle

The previous result can be used to determine the stresslet generated by an active autophoretic (or catalytic) particle

of spheroidal shape whose surface properties are axisymmetric and characterized by a chemical activity (i.e. solute

release rate) A(⇣) and mobility M(⇣). Writing c the concentration of the solute, and neglecting advection, the solute

dynamics is completely described by the following Laplace problem:

Dr2
c = 0, De

⌧

· rc|
@V

= �A(⇣), c(x ! 1) = 0, (34)

and the slip velocity imposed by the particle at its surface is computed as u
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= M(⇣)(1� nn) ·rc.

Laplace’s equation is separable in spheroidal polar coordinates:
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where ± corresponds to oblate and prolate spheroids, respectively. Its general solution is of the form

c =
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with C
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(⌧) = Q

n

(⌧) or Q

n

(i⌧) for prolate and oblate spheroids, respectively, and Q
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is the n-th Legendre function
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to obtain the concentration distribution
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