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Abstract

With the growing demand for composite parts, more and more designs or re-designs are required to use such
materials. This paper presents a new methodology for designing composite structures by considering three
essential variables: the geometry, the architecture and the manufacturing process. The methodology proves to
be useful during the pre-design phase of the project, when important decisions have to be taken regarding the
choice of the manufacturing route and the investments needed. The methodology starts from the design (the
geometry of which relies on the designer’s creativity) and then gives clear insight into the possibilities offered by
the concepts from a composite point of view. These include the types of architecture and technologies that are
compatible as well as the manufacturing processes. The GAP methodology (Geometry, Architecture, Process) is
intended to provide an efficient way to start a composite project by giving a broad overview of the possibilities
and by reducing the risks of poor decisions at the very beginning of the project. In this article, innovative
composite structure design issues will be presented before the methodology itself is explained. Two generic case
studies are then presented to illustrate how the GAP methodology works.

Keywords: design methodology, composite materials, manufacturing processes, conceptual design

Highlights

• A new methodology is proposed for designing composite structures based on generation of concepts and
specific aspects of composite structures

• Key information is provided on the relationships between design geometry, architectures and manufactur-
ing processes for composite materials

• Two examples illustrate the methodology revealing the large number of solutions that composite structures
can offer

1 Introduction

During recent decades, the use of composite materials has been constantly increasing in various fields of appli-
cations from the recreational to the aerospace sector. The advantages of composite materials can be significant
for specific applications: in high-end products for example, where the mechanical properties of the structure are
of utmost importance, the mass to stiffness ratio can be a strong argument for choosing a composite structure
over a metallic one. Some figures have been given to demonstrate the positive impacts of weight savings in the
automotive industry, regarding decreases in fuel consumption and CO2 emissions [1]. The aim of lightweight
construction is to preserve or even expand a product functionality while reducing its overall weight. Existing
approaches for reducing mass include the use of less dense materials (metal foams, composite materials) or a
decrease in the material volume by reducing wall thickness in key structural components. This has led to a
huge development of composite parts in recent vehicles and the trend is still rising. Despite the increase of
both manufacturing and maintenance costs, the benefits obtained on the mass are still largely profitable. For
example in the two most recent programmes of Boeing and Airbus, for the 787 and the A350 respectively,
composites make up about 50% of the mass and about 90% of the aerodynamic wet surface. Another major
reason for the use of composite materials is that they make it possible to create simpler multifunctional struc-
tures thus drastically reducing the number of parts. A historic example is the new rotor hub for helicopters,
designed by Aérospatiale (now known as Airbus Helicopters) in the 1970s, see Fig. 1 [2]. The benefits of this
new design are shown in Table 1. It was possible to make weight savings and reduce part manufacturing costs
while also greatly reducing maintenance costs. For instance, the introduction of composite blades in helicopters
permitted a cost reduction of 13% [2]. The cost of possession is often lower for composite structures thanks
to their non-sensitivity to corrosion and fatigue if they are correctly designed. More recently, Carello et al.
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developed an innovative CFRP transverse leaf spring [3] with a weight reduction of 75% and a number of
parts that was reduced from four to one (Fig. 2). Elixir Aircraft is currently designing an aircraft for general
aviation implementing carbon fibres and a “one shot” wing. The company claims to have reduced the number
of parts from 17,000 (for an equivalent metallic built aircraft) to 600 with their full carbon composite solution [4].

Figure 1: Rotor of the Alouette III (a) and "Starflex" rotor of the Ecureuil (b)

Figure 2: Initial design (a) and final composite design (b) of an automotive damping system from Carello et
al. [3]

Alouette III (1957) Ecureuil (1974) Savings (%)

Number of parts 377 70 81
Weight (kg) 105 (kg) 55 48

Number of bearings 30 0 100
Number of seals 45 0 100

Grease points 22 0 100
Cost 100 45 55

Table 1: Savings with the "Starflex" conception

Thus, composite part manufacturers or industries aiming to move to composite solutions are facing chal-
lenges in composite design. The large choice of material compositions (i.e. matrix and fibres combinations),
architectures and manufacturing processes makes the design process complex and difficult, as the designers face
a hyper-choice of materials and technologies that can be overwhelming. Most of the time, designing composite
is understood as, and limited to, the choice of stacking and sizing using the TSAI method or derivative, with
or without an optimization scheme [5–11] because the geometry is already constrained. For example, in the
latest generation of aircraft, like the B787 or the A350, the fuselage geometry is almost the same as in the
previous generation of metallic aircraft with a thin skin, stiffeners and circumferential frame [12]. Thus this
step in the history of composite in aircraft is known as “black metal”. In car bodies, the evolution is almost
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the same since new composite parts are proposed to directly replace metallic parts or subcomponents [13]. Of
course, introducing such complex materials remains a strong challenge and this step is necessary. In this con-
text, some authors have proposed very interesting and useful methods for selecting materials [14–20], in general
cases or more particularly, for sandwich structures [21, 22]. These approaches will help the designers but it is
also well known that “In composite, materials do not pre-exist the structure”, highlighting that a composite
part is only obtained after a manufacturing phase, which depends on industrial constraints such as the scale of
production, the certification requirements, the availability of materials, the size of the part, the cost, and many
other constraints. Nevertheless, a limited number of authors have proposed general methods. Monroy Aceves
et al. [23] have developed a methodology to help designers select a shortlist or optimum design of composite
structure from a large number of alternatives and have applied it to a wind turbine blade [24]. The link between
composite structure design and manufacturing methods remains to be established from a general point of view.
Hambali et al. [25] have proposed a selection method for ranking five types of processes for manufacturing an
automotive bumper beam based on six main selection factors and twelve subfactors. Bader [26] has assessed the
manufacturing costs of a simple component with different composite materials and by different a priori man-
ufacturing routes in the context of aeronautics. A simple comparison methodology is introduced on the basis
of cost-performance efficiency. Eventually, engineers wishing to totally or partially redesign their product are
faced with a very complex set of problems involving a large number of possibilities and challenging objectives
such as a reduction of the number of parts (and, if possible, converging to a "one shot" solution [4]) with lower
manufacturing costs. Fig. 3 summarizes the dilemma introduced here:

Figure 3: Dilemma arising in the process design for a composite part

Good knowledge and discussion with experts in the field of composite materials and structures will certainly
help the engineer to take the right decisions at the right time in the choice of materials and architectures.
However, according to the experience of the authors in many industrially-driven collaborative projects, the
solutions may be strongly influenced by the past experiences of the experts or the pseudo-experts according to
the proverb “If all you have is a hammer, everything looks like a nail". This proverb can of course encourage
the authors of the papers themselves to keep an open mind. So the GAP composite design methodology
(acronym of Geometry, Architecture, Process) aims to be a starting point in a composite design process and,
in this methodology, we would like to emphasize the importance of creating concepts in sufficient number and
variety to tackle the issue of hyper-choice raised above. To introduce the method, this paper first presents
its key feature: creativity in a design process. This is followed by a general overview of composite structure
geometries, architectures and processes with key information for the development of the methodology. The
GAP methodology itself is then presented and, in the last part, its use is illustrated through two case studies.
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2 Key features of the GAP methodology

2.1 Creativity in the design process

It can be said that creativity is the primary quality needed by a designer in order to imagine innovative solutions.
Howard defines the creative process as "a cognitive process culminating in the generation of an idea" and points
out the differences with the design process defined as "a labour intensive process culminating in the proposal of
a product or process" [27,28]. While these definitions show a real distinction between the two processes, we can
be certain that the creative process is clearly embedded within the design process. Many design procedures are
governed by simulations and calculations nowadays. Topology optimization [29], for instance, is commonly used
and integrated in the design process. It certainly gives a good optimization for a given volume of matter, but
the resulting shape needs to be reworked for manufacturability. There are many methods intended to stimulate
creativity and help generate ideas and solutions to a given problem. The best known and most commonly used
technique to date is brainstorming, which brings a group of persons together to work on a subject and think
of a large number of different ideas, possibly creating links between them. No judgement should be made on
the ideas and it is crucial to let the members propose unrealistic ideas which could be a source of inspiration.
One alternative to the brainstorming method is the brainwriting, also called the 6-3-5 method [30], which is
based on the same principle as brainstorming but can ensure equal participation for all the group members.
Working with analogies can also be a good source of inspiration. It implies finding solutions based on those
already known for similar functions. These analogies are particularly used in bio-inspired solutions, which are
premised on the observation of nature [31]. In contrast, it is also possible to think by contradiction and then
generate solutions to answer a given problem. A method called Evaporating Cloud [32] takes advantage of
these contradictions; its name comes from the fact that the contradictions will disappear at the end of the
methodology. The TRIZ method (theory of inventive problem solving) [33] is also well-known for its strong
ability to solve technical problems by generating innovative solutions based on existing solutions. Creativity is
fundamental for the methodology presented in this paper as it is the starting point of the GAP methodology.
The first step is to create a large number of pre-concepts with information on only geometric boundaries, named
the functional surfaces. It is important to scan every possibility when it comes to the design of a new product,
simply because the probabilities of finding a good solution are higher if you pick up ideas from a large number
of designs. As stated before, the use of various methods to stimulate creativity can thus prove useful here, the
important thing being to think with total liberty and no restrictions. The importance of concepts should never
be underestimated because they are the starting point of the final product. Having too few concepts strongly
increases the risk of wasting time on a first bad idea and can result in a poor final solution as stated by professor
Ullman [34]:

2.2 Geometry of composite parts

The shapes of metal parts have already been classified in mechanical industry in order to be used with different
manufacturing routes, especially in metal and plastic forming industries. There are three main categories in this
classification; prismatic shapes, thin-walled shapes and bulk shapes, as shown in Fig. 4 [35], where a geometric
example is given for each shape. As a matter of fact, we will consider here that all these shapes could possibly
be manufactured in composite materials. Prismatic parts can be referred to as beams, thin-walled parts as plate
or shell structures and bulk parts could be seen as solids. For example, a composite fuselage is made of a thin
skin (shell), circular frame (beams) and stringers (beams). These basic shapes have been manufactured since
the beginning of the composite area. It is also possible to make solid shaped composite parts with very thick
laminate like the Starflex shown in Fig. 1, which is made with about 400 plies of glass fibres or with recent
ultra-thick laminates described in [36, 37]. It is also possible to obtain solid, shaped composite parts by using
very thick sandwich cores, forged carbon or 3D composites [38], or by stitching composite subparts together.
Thus, today, shape should not be considered a limitation in composite design and nearly every part shape can
be achieved. To sum up, in the creative design process of a new composite structure, the geometry can be a
good starting point, by thinking about a beam-, plate- or solid-dominated shape.
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Figure 4: Shape classification according to CES EduPack [35]

2.3 Architectures of composite parts

To illustrate the concept of architecture of a composite structure, the reader is invited to consider the work of
Krivanek and Yount from NASA on the issue of “Composite payload fairing structural architecture assessment
and selection” [39]. With the shape of the fairing fixed, there are many possibilities for making the structure in
composite materials, as illustrated in Fig. 5.

Figure 5: Composite construction technologies or architecture for evaluation of a fairing (reproduced from [39])

The authors classified the possible solutions in three relevant categories: stiffened, sandwich and hybrid.
Another interesting case study is that of Urik and Malis [40] on an innovative wing for light aircraft. The
solutions compared in this example are a traditional design with sandwich skins (Fig. 6a), a geodesic solution
(Fig. 6b) and a corrugated sandwich structure (Fig. 6c).

This kind of classification can be extended to various other architectures and as in the preliminary and non-
exhaustive review below. The first and most popular architecture is, of course, the laminate but it encompasses
various sub-categories of technological solutions:

• Unidirectional or NCF based laminates [41–46]

• Thin or ultra-thin ply based laminates [47–52]

• Textile based laminates [53,54]:

– Woven [55–61]

– Braids [61–64]

– Knitted [65,66]

• Glare [67–70]
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Figure 6: Architectures for an aircraft wing (a) standard sandwich box, (b) Geodesic structure, (c) Multi-web
or corrugated integral sandwich structure (reproduced from [40])

• Fiber steering [71,72]

• 2.5D solutions: laminate with stitching or Z-Pinning [42,73–75]

The second most popular and historic solution is sandwich structures which are always a light and soft
core with two strong faces. Sandwich structures can themselves be classified as symmetric and asymmetric,
which have different uses in practice. Symmetric sandwiches are for bending or pressurized structures and
asymmetric sandwiches may replace stiffened structures for very lightweight, non-pressurized parts of helicopters
or drones [76, 77]. As for laminates, there are, in fact, many solutions for the core and a non-exhaustive list is
proposed here with some examples for reference:

• Foams, balsa, cork [78–84]

• Honeycomb and other shapes [76–81,85,86]

• Plywood [87,88]

• Entangled [89,90]

• Kagome, tetrahedral, pyramidal or other lattice cores [91–95]

• Corrugated [40,96,97]

• Folded [98,99]

• X-Cor [100]

• Hierarchical [99, 101]

• Nap Core [102]

• And probably more...

In aeronautics or, more generally, for lightweight structures, stiffened structures have been widely used since
the 1930s and the invention of the “monocoque” fuselage. The main categories are [39] [12] [103–105]:

• L or T stringers

• Omega stringers

• Isogrid or orthogrid

• PRSEUS

A renewal of geodesic structures, which were applied for the first time on the Wellington aeroplane during
World War II [12] can be observed nowadays. In particular, the successful developments by Russian industry in
this domain have been decisive for this renewal [106–109]. A short, non-exhaustive list of technologies is given
here:
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• Isogrid

• Lattice structure

• Isotruss

Other kinds of architectures exist, in particular to make thick parts:

• Forged carbon [110,111]

• 4D thermostructural composites [112]

• Textile preform [53,54] [38] [113–115]

– Interlock [115]

– Braids: tubular, 3D weaving [99,113,114,116,117]

– Knitted fabrics [118]

Thus, the term "architecture" in this paper will refer to these macro-scale definitions and tentative classi-
fications. For a given geometry, many architectures are possible but the inverse is rarely true. The choice of
the architecture is also rather important as it determines the mechanical behaviour of the part (i.e. a sandwich
structure takes advantage of a high bending stiffness compared to thin laminates), and it also drives the possible
manufacturing routes.

2.4 Manufacturing processes

Here, too, the possibilities are numerous. However, the manufacturing processes are closely bound to the
materials, the architecture, the way fibres are placed and the use of open or closed moulds. According to
Astrom [119], manufacturing processes are mainly classified as thermoset-matrix techniques or thermoplastic-
matrix techniques. For thermoset based composites, the following main families can be found [112] [120] [121]:

• Hand lay-up and autoclave

• ATL or AFP and autoclave

• Filament winding

• Out-of-autoclave processes:

– Resin Transfer Molding

– Liquid Resin Infusion

– Resin Film Infusion

For thermoplastics, compression moulding on laminate preforms can be applied after a heating phase. Re-
cently, ATL or filament winding has become possible with thermoplastic composites. To end, two other processes
have to be taken into account: pultrusion and overmoulding.They are able to produce “net shaped” parts which
are, of course, of great interest for industrial purposes. Other authors [120, 122] use a different approach to
classify these manufacturing processes. It depends on the main characteristic of the process: manual, compres-
sion, injection, continuous, and automated processes will be added to this list. Additive manufacturing is also
under development, mainly for short-fibres composites [123] but it will not be considered here since it is still at
a fairly early stage.
In order to highlight the influence of the manufacturing processes on the design process of a composite part, we
propose tables to help during the analysis. The first three tables below (table 2,table 3, table 4) give the com-
binations between manufacturing processes and part geometry. The shape categories are taken from the shape
classification presented in Fig. 4 and the processes are those most commonly used for manufacturing composite
parts. Three symbols are used in the table to indicate whether the combination is used in normal practice,
barely used (which could mean that the process is not perfectly suitable for the shape) or not applicable at all.
References are also provided inside the tables; they give some examples or applications to which the reader can
refer.

The second part of the analysis concerns the relationship between the architecture and the manufacturing
processes (table 5). The third part is the relationship between the reinforcements and the manufacturing
processes (table 6). The different types of reinforcement that exist in the market cannot be used with every
manufacturing process. This table gives an idea of the possibilities available for each process. The choice of the
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Prismatic Shapes

Solid Hollow

Circular Non-circular Circular Non-circular

Plain Stepped Plain Stepped Plain Stepped Plain Stepped

Manual Processes
Hand Lay-up x x – – – – – –

Spray-up x x x x x x x x

Compression-based processes
Thermoplastic Stamping x x x x x x x x
Compression Moulding x x x x x x x x

Injection processes
Reinforced Thermoplastics x x • • • • – –
Resin Injection Moulding x x • • • • – –
Resin Transfer Moulding x x • • • [124] • [124] – –

Continuous processes
Pultrusion • x • x • x • x

Filament Winding x x x x • • • •
Pullwinding • x • x • x • x

Automated processes
Automated Tape Laying x x x x x x x x

Automated Fibre Placement x x x x x x x x

•: Normal practice –: Less-common practice x: Not applicable

Table 2: Processes vs Prismatic Shape

Thin-Walled Shapes

Curved Flat

Axisymmetric Non-axisymmetric

Shallow Deep Re-entrant Shallow Deep Re-entrant No cutouts Cutouts

Manual Processes
Hand Lay-up • • x • [125] • [125] x • [125,126] •

Spray-up • • x • • x • [127,128] •

Compression-based processes
Thermoplastic Stamping • [129] – x • [129] – [130] x • [129] –
Compression Moulding • – x • – x • –

Injection processes
Reinforced Thermoplastics • – x • – x • •
Resin Injection Moulding • – x • – x • •
Resin Transfer Moulding • – x • – x • •

Continuous processes
Pultrusion x x x x x x x x

Filament Winding x x x x x x x x
Pullwinding x x x x x x x x

Automated processes
Automated Tape Laying • • x • [131] – x • [131] •

Automated Fibre Placement • [132] • x • [133] – x • [133] •

•: Normal practice –: Less-common practice x: Not applicable

Table 3: Processes vs Thin-Walled Shape

reinforcement has to be governed by the mechanical strength desired, on the one hand, and by the manufacturing
process used on the other.

These tables are neither exhaustive nor definitive in this article and are likely to be improved in later
publications. They are presented here as an illustration of the GAP methodology proposed in the present
article. They can be used in two configurations in the methodology: if there is a manufacturing constraint, they
can help with the choice of the geometry during the creative phase, and, they can be used as a tool for selecting
geometries during the screening phase (more details about this phase are given in Part 3). Finally, it should
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Bulk Shapes

Parallel Features Transverse Features

Solid Hollow Solid Hollow

Simple Complex Simple Complex Simple Complex Simple Complex

Manual Processes
Hand Lay-up x x – – – – – –

Spray-up x x x x x x x x

Compression-based processes
Thermoplastic Stamping x x x x x x x x
Compression Moulding x x x x x x x x

Injection processes
Reinforced Thermoplastics • – x x • – x x
Resin Injection Moulding • – x x • – x x
Resin Transfer Moulding • [134] – x x • – x x

Continuous processes
Pultrusion • [135] x • [135] x • x • x

Filament Winding x x x x • • x x
Pullwinding • x • x x x x x

Automated processes
Automated Tape Laying x x x x x x x x

Automated Fibre Placement x x x x x x x x

•: Normal practice –: Less-common practice x: Not applicable

Table 4: Processes vs Bulk Shape

Architectures

Thin laminate Thick laminate Sandwich Tube Geodesic Overmolded 3D

Manual Processes
Hand Lay-up • [125,126] – • [136] x x x x

Spray-up • [127,128] – x x x x x

Compression-based processes
Thermoplastic Stamping • [129] x – [137] x x • [138] x
Compression Moulding x x – [136] x x x x

Injection processes
Reinforced Thermoplastics • – – [137] • [135] x • [138] – [135]

Resin Injection Moulding • • [132] • [136,137] x x x •
Resin Transfer Moulding • • [134] • [137] • [135] x x • [135]

Continuous processes
Pultrusion • • – [139] • [135] x x • [135]

Filament Winding x x x • [135] • [140] x x
Pullwinding x x x • [135] x x x

Automated processes
Automated Tape Laying • [131] – x x x x x

Automated Fibre Placement • [132,133] – x x x x x

•: Normal practice –: Less-common practice x: Not applicable

Table 5: Processes vs Architectures

be noted that other solutions exist. For example, some manufacturing processes can be combined and adapted
directly to the manufacturing process of one part, as is the case for the frames manufactured by Airbus [142].

2.5 Summary

In this section, we propose to tackle the complex problem of the design of a composite part following three main
axes of development: the shape, the manufacturing process and the architecture of the structure. The GAP
methodology can thus be represented simply by the diagram shown in Fig. 7. Some of the interdependencies
between these axes were underscored previously but not in an exhaustive way. The complex issue concerning
the choice of materials is intentionally not included in our thinking because this has already been addressed in
the literature. Moreover, it can also be considered as too constraining during the creativity process and this

9



Reinforcements

Mat Short fibers UD Fabric Pre-preg Non-crimp fabric 3D braiding 3D weaving

Manual Processes
Hand Lay-up • [126] • [126] – • [125] • [125] x x x

Spray-up • [127] • [127] x x x x x x

Compression-based processes
Thermoplastic Stamping x x • [129] • [129,130] x x x x
Compression Moulding • • • • • x x x

Injection processes
Reinforced Thermoplastics • • • • • x • [135] –
Resin Injection Moulding x x • • • • [128] – –
Resin Transfer Moulding x – [124] • [134] • [134] – [141] • [134] • [135] –

Continuous processes
Pultrusion • • – x • x • [135] x

Filament Winding x x – x • x x x
Pullwinding x x – x • x x x

Automated processes
Automated Tape Laying • • – x – [131] x x x

Automated Fibre Placement • • x x – [132] x x x

•: Normal practice –: Less-common practice x: Not applicable

Table 6: Processes vs Reinforcements

choice should ultimately be made according to the industrial context and the mechanical constraints of the
product. In the following section, the GAP methodology is explained and illustrated by two examples.

Figure 7: GAP methodology structure

3 The GAP methodology

3.1 The scope of the methodology

The GAP methodology defines a way to create of innovative composite material based solutions. As stated in
the previous sections, to face the dilemma (Fig. 3) of the design or re-design of a part or a complete mechanical
subassembly, a resolution scheme is proposed and includes the three axes: Geometry, Architecture and Process.
One of the direct consequences of this approach is that thinking first about the geometry gives more freedom
for creativity to generate as many solutions as possible. We thus suggest the following methodology (Fig. 8):

• Create innovative solutions by thinking about geometry first

• These solutions can be imagined according to three possible configurations:

– No constraints at all: free design
– Architecture constraints: for example, laminates or sandwiches required
– Manufacturing objectives: for example, "one shot" parts

Once these solutions have been created, a more classic design procedure must be performed to make a go/no
go decision on each design. This can be based, among other things, on Figure of Merit, Key Performance
parameters [39] [143], material selection procedure [14] [15–24], manufacturing process selection, sizing, or cost
evaluation depending on the industrial context. Thus, the GAP methodology is part of the conceptual and
preliminary design as defined in the design flow by Ashby [14] shown in Fig. 9. At this stage of the project, the
idea is to imagine as many concepts as possible in the conceptual part in order to obtain a short list of concepts
at the end of the preliminary phase.
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Figure 8: GAP methodology

Figure 9: Integration of the GAP methodology in the design flow for a generic project [14]

3.2 Case studies

Two purely academic examples are proposed in this section. The GAP methodology was tested on bachelor’s
degree students of INSA Toulouse who had a very limited knowledge of composite materials (10 hours of courses).

Case study 1: Economy seat
The subject was: “Make a composite solution for an economy class seat of a short range aircraft. It is attached
to the floor by four point links located at the centre of the structure. Use the GAP methodology then propose
three solutions based on plate or shell shapes and three others based on beam shapes. For dimensions, use the
dimensions of your own chair. Then explain how to manufacture your solution.”
A selection of the solutions imagined by the students is shown in Fig. 10 to Fig. 13 and illustrates the wide
variety of design solutions proposed that are a good starting point for such a project.

For the beam-based concepts, the students proposed two kinds of solutions with various geometries: solutions
composed of simple composite beams joined together (Fig. 10 a to f) and solutions using more complex beams
in order to reduce the number of parts (Fig. 10 g to m), even going as far as a one shot solution (Fig. 10 k).

For the shell-based and plate-based concepts, there were more possibilities (Fig. 11 and Fig. 12). For
each solution, there were several ways of manufacturing the seat: assemblies, one shot injection, folding of
thermoplastic plates, etc. After designing the first concepts, each solution should be analysed considering
the manufacturing processes suitable in an industrial context. It can also be noted that, at that step of the
methodology, some solutions could be realized with either laminates or sandwich structures. Multi-material
solutions could also be considered...

As for case study number 2, these solutions have to be screened with particular parameters belonging to
each industrial context.
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Figure 10: Beam-based solutions for an economy seat

Figure 11: Shell and plate-based solutions for an economy seat

Case study 2: Composite support
The subject was: “Make a composite solution for a support. Use the GAP methodology and propose solutions
based on plate or shell shapes and others based on beam shapes. Then explain how to manufacture your
solution.” The functional surfaces for this case study are shown in Fig. 14. In order to give an idea of the size
of the composite part to be designed, we specify that the dimensions between the corners are 700x400 mm. A
selection of the solutions imagined by the students is presented in Fig. 15 to Fig. 17 and shows the wide variety
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Figure 12: Shell and plate-based solutions for an economy seat

Figure 13: Mixed solutions beam/shell/solid for an economy seat

of solutions proposed that are a good starting point for such a project. These solutions were then screened with
the constraints of manufacturing cost for a medium series.

Unlike the situation in case study 1, the geometry is constrained by the imposed functional surfaces here.
This adds difficulties for the designer but such situations are common in the industry. The rules for designing
the structure are simple: the geometry must necessarily coincide with the functional surfaces and the design
space falls within the limits set by these surfaces. Otherwise, the design remains free and all kinds of shapes
can be imagined to join these surfaces. There is no limit on the number of components, i.e. the structure
could be imagined in one shot manufacturing or by assembling several parts. Among the beam-based solutions
(Fig. 15), some may appear too fragile (Fig. 15 a, e, f and j) and reinforcements might be needed. The solution
in Fig. 15-g appears to be too complex and should be discarded. In contrast, plate and shell-based solutions
(Fig. 16) or mixed concepts (Fig. 17) look simpler to manufacture. The generation of the first concepts must
not impose limits on the manufacturing possibilities, the next screening step will determine and eliminate the
geometries considered as too costly to manufacture.

An overview of the concepts created in the first instance is given in Fig. 15 to Fig. 17. It is interesting to note
the diversity of architectures and approaches encompassed by the three families of forms defined above. The
majority of the solutions tend to use shells, which is understandable as composite structures are mainly oriented
towards these forms. Given the large choice of architecture and processes available for composite materials,
having a clear vision of the possibilities of manufacturing at this early stage is a great asset for pre-concepts.
At this point, the GAP methodology suggests reviewing every pre-concept imagined and screening with the
help of important criteria relative to the composite part. Criteria could be anything from the manufacturing
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Figure 14: Functional surfaces for the support

Figure 15: Beam solutions for a composite support

cost to the mass, the structure resistance, the technological difficulties etc. As pre-concepts are rather sketchily
detailed geometries, one criterion should be based on the technological difficulties that may arise later in the
manufacture of the part. In one of the solutions proposed here, there may be a bonding issue between the
omega-shaped beams and the support that has not been considered. The designer’s experience is of great value
here to judge whether the concepts have good potential. In cases where the concepts are not mature enough
to properly indicate the selection criteria, other design iterations can be considered to facilitate this screening
step. At the end of that phase, a short list of solutions should be given. The concepts chosen are obviously
those that obtain the best score and two or three concepts should be enough to continue. Iterative design loops
must then be carried out along with numerical simulations to validate the geometry and find the best stacking
and thickness for the part.
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Figure 16: Shell and plate-based solutions for a composite support

Figure 17: Mixed beam/shell/solid solutions for a composite support

4 Conclusion

The task of designing composite parts is made challenging by the complexity of the materials and the large
number of decisions that have to be taken throughout the project. The GAP methodology provides a solution to
help the right decisions to be taken during the early pre-concept phase by enabling the emergence of numerous
solutions. Considering this step as one of the most important, since bad decisions at this stage could lead to
a mediocre final result, the GAP methodology provides tools to perform a rapid analysis of the first concepts
by integrating the three main sets of problems impacting the design of composite structures. The methodology
relies heavily on imagination and creativity for the design part. It also relies on a specific analysis of each
concept giving enough information to select the most valuable concepts that will be developed more precisely
later on. Early decisions that have to be taken are decisive for any project. Bad decisions at this point imply
a waste of time and money that could become critical at some point. The GAP methodology is a solution
for reducing the risks of poor decisions when it comes to designing - or re-designing - a mechanical product in
composite materials.
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