The fundamental group of partial compactifications of the complement of a real line arrangement
Résumé
Let A be a real projective line arrangement and M (A) its complement in CP 2. We obtain an explicit expression in terms of Randell's generators of the meridians around the exceptional divisors in the blow-up ¯ X of CP 2 in the singular points of A. We use this to investigate the partial compactifications of M (A) contained in ¯ X and give a counterexample to a statement suggested by A. Dimca and P. Eyssidieux to the effect that the fundamental group of such an algebraic variety is finite whenever its abelianization is.
Domaines
Géométrie algébrique [math.AG]
Fichier principal
The fundamental group of partial compactifications of the complement of a real line arrangement.pdf (227.7 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...