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We experimentally investigate the sedimentation of a non-wetting drop confined between
two parallel walls. The whole system is immersed in a bath of liquid of low viscosity
and a lubricating film may be dynamically formed between the drop and the walls of
the cell. Depending on the thickness of the film and on the viscosity ratio between the
droplet and the surrounding liquid, viscous dissipation localizes either in the lubrication
layer or in the bulk of the drop. The velocity of the droplet is non-trivial as the thickness
of the lubricating layer may depend on the interplay between interfacial tension and
viscous dissipation. Interestingly, thin films whose nanometer thickness is set by long
range intermolecular interactions may lubricate efficiently the motion of highly viscous
droplets. We derive asymptotic models that successfully capture the settling velocity of
the drop in the different regimes observed experimentally. The effect of partial wetting
is finally illustrated by a sharp increase of the velocity of the drops that we attribute to
a wetting transition.

1. Introduction

Droplet dynamics in confined media is a major issue for petroleum engineering as oil
extraction commonly involves the displacement of microdroplets through pores of the
same scale. The formation of such emulsions stems from various interfacial instabilities
such as viscous fingering (Saffman & Taylor 1958; Homsy 1987), splitting in the porous
network (Jung et al. 2016), snap-off (Gauglitz & Radke 1990; Dangla et al. 2013),
or capillary instabilities in gradients of confinement (Pihler-Puzovic et al. 2012; Al-
Housseiny et al. 2012; Dias & Miranda 2013; Keiser et al. 2016). The resulting multiphase
flows generally involve large deformations of the interfaces (Zinchenko & Davis 2017),
which in turn modify the flow dynamics and make theoretical predictions of pressure
losses complex. Droplet dynamics is however not limited to multiphase flows in porous
media. Understanding the motion of a droplet in a confined environment is for instance
crucial for digital microfluidics systems, which are currently blooming (Baroud et al.
2010; Seemann et al. 2012). Such confined droplets may even constitute a model system
to describe the motion of biological cells in narrow environments (Zhou et al. 2007; Preira
et al. 2013).

Numerous studies have been dedicated to model systems consisting of isolated droplets
or bubbles moving in a uniform channel (Baroud et al. 2010). One of the fundamental
questions concerns the peculiar viscous dissipation in the vicinity of menisci and contact
lines (Snoeijer & Andreotti 2013). Pioneering advances in the field were achieved by
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Landau & Levich (1942) and Derjaguin (1993) who first described the coating of a plate
withdrawn from a bath of wetting liquid. This mechanism is dictated by a balance of
viscous stresses and surface tension. Bretherton (1961) adapted this problem to the case of
a long bubble moving in a capillary tube filled with a wetting liquid. Later works extended
this seminal study to the general case of viscous drops (Schwartz et al. 1986; Hodges et al.
2004). The recent development of digital microfluidic techniques has motivated numerous
works on the dynamics of viscous drops confined in Hele-Shaw cells (Shen et al. 2014;
Huerre et al. 2015; Zhu & Gallaire 2016; Ling et al. 2016; Yahashi et al. 2016). A particular
attention has been devoted to the lubricating role of the films of liquid separating the
drop from the walls of the cell.

Eri & Okumura (2011) investigated experimentally the settling of non-wetting drops
in a Hele-Shaw cell, in the limit where viscous dissipation inside the drop dominates the
resistance to the motion. Building up on these results, Yahashi et al. (2016) point out the
crucial effect of lubricating films between the drop and the walls, in the regime of weakly
confined drops. In the present paper, we explore experimentally and theoretically the
effect of strong confinement and viscosity ratio between the drop and external liquids.

Drops of dense silicone oil sediment in a vertical Hele-Shaw cell filled with a solution
of surfactant of lower viscosity. Depending on the confinement and on the contrast of
viscosity, different flow regimes are observed as a function of the ability of the solution
to lubricate the displacement of the droplet. In the following sections, we first present
the experimental setup and describe the evolution of the sedimentation velocity as a
function of the confinement and of the viscosity of the droplets in the ideal case where
the surrounding liquid perfectly wets the wall of the cell. In the next section, we discuss
these experimental data with different analytical models accounting for a self-lubrication
effect. We then illustrate the case of partial wetting and demonstrate how the system
may undergo a wetting transition with a dramatic impact on the droplet dynamics. We
finally conclude and point out possible implications of our work for the study of the
rheology of confined emulsions as encountered in petroleum engineering.

2. Experiments

2.1. Experimental setup

A Hele-Shaw cell made of two parallel glass slides separated by a gap of thickness e
ranging from 0.03 to 1 mm is filled with a surfactant solution and maintained vertically
(Figure 1a). The solution is composed of 4.5 % in mass of a commercial dishwashing soap
(Paic Citron, from Colgate-Palmolive) in deionised water. This concentration is large in
comparison with the critical micellar concentration of the soap (cmc ' 0.05 % in mass,
determined with the standard Wilhelmy plate method). Such high concentrations should
limit gradients in the local surfactant concentration at the interface and thus tend to
hinder Marangoni effects. All experiments are conducted at room temperature (20◦ C)
for which the density and viscosity of the surfactant solution are ρw = 997 kg.m−3 and
µw = 1 mPa.s, respectively.

A drop of fluorinated silicone oil (poly(3,3,3)-trifluoropropylmethylsiloxane, from
Gelest, Inc.) is inserted into the gap of the cell. The oil density ρo varies from 1220 to
1250 kg.m−3 depending on the selected viscosity µo ranging from 180 to 18000 mPa.s.
The presence of surfactant molecules ensures a non-wetting condition for the oil
droplet. In addition, while the interface between pure water and oil is very sensitive to
contamination, the large excess of surfactant molecules also impose a reproducible value
of the interfacial tension. The radius R of the drop, typically millimetric, is larger than
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Figure 1. (a) Front and side views of the experimental setup: A droplet of fluorinated silicone
oil of radius R is introduced in a Hele-Shaw cell of inner gap e immersed in a bath of surfactant
solution, and sediments under its apparent weight. A thin layer of solution of thickness b
separates the drop from the walls of the cell. (b) Photograph representing the front view of
a droplet (top of the picture) of radius R ' 2.5 mm and of viscosity µo = 1500 mPa.s, moving
down in a cell of gap thickness e = 400µm. That circular shape has been observed for all droplets,
regardless of their velocity. (c) Evolution of V as a function of the ratio R/e, for µo = 1500mPa.s
and e = 400 µm. For R/e > 5, V does not depend significantly on R/e. Inset: typical trajectory
of a drop exhibiting a steady velocity (for µo = 1500 mPa.s and e = 400 µm).
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2e, so that the volume of these strongly confined puddles is approximately Ω = πR2e.
As the surfactant solution totally wets the cell walls, a thin layer of solution of average
thickness b separates the drop from the wall. The water/oil interfacial tension γ is
measured with the sessile drop method and is between 5 and 6 mN/m depending on the
oil viscosity. Under these conditions, the denser oil drop settles down under gravity at a
constant velocity V (see inset of Figure 1b). The sedimentation velocity weakly depends
on the size of the drop. We interpret the weak dependence of the velocity as a result of
geometry. While droplets adopt the shape of pancakes for high confinement, they tend
to be spherical when e > 2R. As a result, we do not observe any significant evolution for
R/e > 5. All experiments are thus conducted within this limit.

2.2. Sedimentation velocity

We represent in Figure 2 the evolution of the settling velocity V of confined droplets
as a function of the gap e for various values of the oil viscosity µo. Regardless of µo, V
jumps by almost 5 orders of magnitude as e increases from 30 µm to 1 mm.

Interestingly, V appears very weakly dependent on µo for low values of e (e < 50 µm).
In an intermediate regime 50µm . e . 700µm, V is a decreasing function of µo. Finally,
for e & 700µm, the settling velocity becomes independent of the oil viscosity. The overall
dependence of the drop velocity with its viscosity (see figure 2) is thus weaker than the
simple inverse relationship that intuition might suggest. This result is in strong contrast
with the opposite case of droplets that totally wet the walls (Reyssat 2014).

Different regimes are observed as a function of the confinement. Two trends are
obtained for the lowest gaps (e . 500µm). While the evolution of the settling velocity
seems roughly proportional to e for the highest viscosity, we observe a variation with
e2 for droplets of low viscosity. However, all data tend to collapse in the same curve for
larger gaps. The dependence with the gap then follows V ∝ e6, which is particularly
striking.

3. Lubrication model

The weak dependence of the velocity with the viscosity of the drops suggests that
viscous dissipation occurs not only in the drop but also in the thin films of solution
separating the droplet from the walls of the cell. The aim of the present section is to
identify the lubricating role of these films in the droplet dynamics.

3.1. General analytic expression for the drop velocity

We assume that a confined drop has the shape of a thick disc of volume Ω = πR2e,
since the film thickness b is much smaller than the gap e. The apparent weight of this
drop thus writes:

Fg = ∆ρgπR2e (3.1)

where ∆ρ = (ρo − ρw) and g = 9.81 m.s−2 is the gravitational acceleration. This driving
force is balanced by friction forces acting at the surface of the drop. However, due to the
large value of the viscosity ratio µo/µw, we disregard in the following derivations the drag
induced by bulk flows of surfactant solution around the drop. We also neglect the friction
in the peripheral menisci of surfactant solution around the drop. Both assumptions are
justified in Appendix A. Those negligible friction forces may however become dominant
in the dynamics of foams (Cantat 2013) or confined bubbles (Reyssat 2014), where the
viscosity ratio is conversely very small. In our experiments, the remaining source of
friction corresponds to viscous stresses on the walls of the cell over the area 2πR2 covered
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Figure 2. Evolution of the velocity of the confined drop V as a function of the gap of the cell
e. The blue squares, green triangles and red circles correspond respectively to µo = 180 mPa.s,
µo = 1500 mPa.s and µo = 18000 mPa.s. The dark green diamonds correspond to drops of
viscosity µo = 1500 mPa.s moving with a moderate gravity of magnitude g/2, obtained by
inclining the cell with an angle of 30◦ with respect to the horizontal. The straight lines represent
the resolution of the implicit Equation 3.19.

by the drop. Since both the driving force and the resistance are proportional to R2, the
droplet velocity should be independent of the size of the droplet as confirmed by the
experiments. We expect this force balance to be valid for large drops, typically within
the limit R/e > 5 as illustrated in Figure 1. Smaller droplets are less confined by the
wall, which changes their dynamics (they tend to move faster than larger ones). The
drops are separated from the glass slides by a film of water whose average thickness b
is set dynamically by a balance between viscous and interfacial forces. As in the classic
problem of a bubble penetrating in a capillary tube, we expect b to be a function of the
capillary number Caw = µwV/γ, where µw is the viscosity of water, V the velocity of the
drop and γ the interfacial tension between the oil and the surfactant solution (Bretherton
1961). In our experiments, Caw varies between 10−7 and 10−2. However, in contrast with
air bubbles, the viscosity of the drop µo cannot be neglected when compared with µw.
Indeed following Schwartz et al. (1986), b should also slightly depend on the viscosity
ratio µo/µw.

The velocity profile in a cross section of the Hele-Shaw cell is sketched in Figure 3a.
We assume in the following derivations that the flow is directed along the direction of
the average velocity V and only varies across the section of the cell. We neglect the two-
dimensional component of the flow at the periphery of the drop, as well as transversal
flows linked to the formation of “catamaran”-like dimples in the shape of the drops, as
described by Huerre et al. (2015) and Zhu & Gallaire (2016) . We finally define as Vint
the velocity at the interface, y = ±(e/2 − b), where y = 0 corresponds to the center of
the cell.
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We now derive the flow profile across the channel. In the region |y| < (e/2 − b), the
flow in the droplet follows a standard parabolic profile of average velocity V :

vdrop(y) =
3

2
(V − Vint)

[
1−

(
y

e/2− b

)2
]

+ Vint (3.2)

In the complementary region e/2 − b < |y| < e/2, the thin lubricating film undergoes a
simple shear flow with a no-slip boundary condition along the walls of the cell:

vfilm(y) = Vint
e

2b

(
2|y|
e
− 1

)
(3.3)

At the oil-film interface (|y| = e/2− b), the continuity of the tangential viscous stress in

the drop and in the film imposes µo
∂vdrop
∂y = µw

∂vfilm

∂y . As b� e, this leads to:

6µo
V − Vint

e
= µw

Vint
b

(3.4)

We finally obtain for the velocity at the interface:

Vint =
V

1 +m
(3.5)

with m = µwe/6µob. The dimensionless parameter m, quantifies the slipping of the drop
with respect to the solid wall: while the limit m� 1 indicates very inefficient lubrication
(Vint = 0), m� 1 conversely corresponds to full slip (Vint = V ).
The shear stress exerted by the film of water and the resisting the motion of the drop is
µwVint/b. Integrating this stress over the area 2πR2 on both sides of the drop provides
the friction force Ff = 2πR2µwVint/b acting on the drop. Inputting Equation 3.5 leads
to:

Ff =
2πR2µwV

b(1 +m)
(3.6)

We finally deduce the droplet velocity from the balance of Ff with the apparent weight:

V =
∆ρg eb

2µw
(1 +m) (3.7)

which may also be rewritten as:

V =
∆ρg e2

12µo

(
1

m
+ 1

)
(3.8)

We now describe the asymptotic limits corresponding to m� 1 and m� 1, respectively.

3.2. Inefficient lubrication: m� 1

In the limit m � 1, the film does not play any significant role. Since b � e the flow
inside the droplet is described by a classical Poiseuille velocity profile:

v(y) =
3

2
V (1−

(2y

e

)2
) (3.9)

Integrating the resulting viscous stress over the interface of the drop gives Ff =
12µoV πR

2/e, which finally leads to the sedimentation velocity:

VPois =
∆ρg

12µo
e2, (3.10)
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General case

Figure 3. a) Velocity profile in a cross section of a half cell, for an intermediate value of the ratio
m = µwe/6µob. The origin of the y-coordinates is here taken in the middle of the gap, where
the z-component of the velocity is maximal. b) Velocity profile in the limit m� 1. The film of
water plays no lubricating role and the droplet undergoes a classical Poiseuille flow. c) Velocity
profile in the limit m � 1. The drop moves as a solid plug and the film of water undergoes a
Couette flow of shear rate V/b.

which can also be directly obtained by considering m� 1 in Equations 3.7. and 3.8. This
prediction describes very well the experimental data corresponding to the oil of the lowest
viscosity (µo = 180 mPa.s) and small values of Caw, i.e. high confinement (Figure 2),
with no adjustable parameter (see also the dimensionless Figure 4). However, velocities
measured with oils of higher viscosity or cells of larger gaps are higher than predicted in
this asymptotic regime. In the following sections, we describe how the surrounding fluid
can enhance the mobility of the droplet.

3.3. Full lubrication: m� 1

In the limit m� 1, the drop is simply translated as a solid block along the cell, while
the lubrication film undergoes a Couette flow of shear rate V/b. The resisting force acting
on the plug is thus given by:

Ff = 2πR2µwV

b
(3.11)

However, the thickness b of the lubrication film should also depend on the dynamics.
In his seminal work, Bretherton (1961) describes the film left behind a bubble moving
in a capillary tube at velocity V . The thickness of the deposited film follows a non-

linear law: b = 1.34 rCa
2/3
w , where r is the radius of the tube and the capillary number,

Caw = µwV/γ, which compares (thickening) viscous stresses with (thinning) surface
tension. This law is in very good agreement with experimental results within the range
10−5 . Caw . 10−2. At higher capillary numbers, the thickness of deposited the film
tends to saturate as it becomes comparable with the radius of the tube (Taylor 1961;
Aussillous & Quéré 2000; Klaseboer et al. 2014). In the opposite limit of low Caw,
repulsive intermolecular interactions become dominant when the thickness of the film
falls under a few hundreds of nanometers (Israelachvili 2011). Disjoining pressure may
then stabilise nanometric films (Bergeron & Radke 1992) and lead to a saturation of
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the coating thickness to a value bΠ of the order of tens of nanometers, as first proposed
by a referee of Bretherton’s paper (Bretherton 1961). This effect was later modelled by
Teletzke et al. (1988) and Chaudhury et al. (2014) and directly observed in a recent study
by Huerre et al. (2015).

The work of Bretherton (1961) has also been extended to the motion of non-wetting
viscous drops, which is relevant to our situation. Schwartz et al. (1986), Hodges et al.
(2004) and more recently Balestra et al. (2017) have shown both theoretically and numer-
ically that Bretherton’s law should be corrected by a multiplying prefactor P depending
of the ratio µo/µw. Indeed, the finite viscosity of the drop amplifies viscous stresses and
results into thicker films. In the range of experimental parameters corresponding to our
experiment, P should be close to 22/3, which corresponds to the asymptotic value for
very viscous drops (µo/µw →∞), also derived by Bretherton.

Although the 2D geometry of the present problem is more complex than for the
axisymmetric case of capillary tubes (Burgess & Foster 1990; Reichert et al. 2018), we
propose to extrapolate Bretherton’s law to the case of droplets confined in a Hele-Shaw
cell, as properly derived by Park & Homsy (1984). The gap of the cell e then replaces
the radius r of the capillary tube. However, the moving contact line is not perpendicular
to the velocity, except at the apex of the drop. As a consequence, the film separating the
drop of oil from the wall is not rigorously uniform, as shown experimentally by Huerre
et al. (2015). However, we assume in the following that the average thickness of the
lubricating layer is set by a relation of the form:

bBr = αeCa2/3w (3.12)

where α is a numerical factor of the order of unity.
Nevertheless, we expect such a law to fail for low values of Caw. In this limit, we assume

b to be equal to a value bΠ dictated by the disjoining pressure in the film (Teletzke et al.
1988; Chaudhury et al. 2014). The actual value of bΠ depends on the type of interactions
involved in the disjoining pressure ΠD. In the case of ideal van der Waals forces, we
expect the pressure in the film to be ΠD = −A/6πb3Π , where A is the Hamaker constant
(Israelachvili 2011). Balancing this pressure with the Laplace pressure 2γ/e thus leads
to:

bΠ =

(
−Ae
12π γ

)1/3

(3.13)

Considering A ∼ −10−20 J, γ ∼ 5 · 10−3 mN/m and e ∼ 50µm, we obtain a typical
estimate of bΠ ∼ 10 nm. Nevertheless, molecular interactions are not limited to van der
Waals forces. Other terms such as electrostatic repulsion may also play a role in the
disjoining pressure and lead to other expressions for the film thickness. However, we
expect the order of magnitude of bΠ to remain on the order of a few tens on nanometers.
Studying in detail the evolution of such thin films is beyond the scope of the current
work. As detailed below, our experiment nevertheless constitutes a way to probe such
thin films. We hope our study will motivate future investigations.
In the following sections we describe the regimes corresponding to both Bretherton and
van der Waals limits.

3.3.1. Bretherton film limit: b > bΠ (self-lubrication)

Inputting Bretherton’s law in Equation 3.11 provides the friction force acting on the
drop:

Ff =
µ
1/3
w γ2/3V 1/3

αe
2πR2 (3.14)
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Interestingly, the friction force is a sub-linear function of the velocity, as discussed in
more details at the end of the paper. Balancing this force with gravity, we obtain:

V =
α3

8

(∆ρg)
3

µwγ2
e6 (3.15)

As mentioned earlier, α should be independent of the viscosity ratio, since µo/µw > 100
in our experiments (Schwartz et al. 1986; Hodges et al. 2004; Balestra et al. 2017). Within
this limit, V should almost be independent of µo and be proportional to e6 as observed
experimentally (Figure 4). Fitting the experimental data with equation 3.15 provides an
estimate of the numerical prefactor α = 0.7 ± 0.05. This regime is very similar to the
self-lubrication behavior observed in self-propelled droplets in capillary tubes (Bico &
Quéré 2002) and in sedimenting droplets in Hele-Shaw cells (Yahashi et al. 2016).

Rescaling Equation 3.15 by the velocity VPois (Equation 3.10), we obtain the dimen-
sionless velocity Ṽ :

Ṽ =
3α3

2

µo
µw

(
e

lc

)4

(3.16)

This dependence of the rescaled velocity Ṽ on (e/`c)
4

may be observed on the dimen-
sionless graph, on the Figure 4.

3.3.2. Van der Waals film limit: low Caw

In this regime, b = bΠ which leads to a friction force Ff = 2πR2µwV/bΠ . We thus
expect the settling velocity of the droplet to be:

V =
∆ρg bΠ

2µw
e =

∆ρg

2µw

(
−Ae4

12πγ

)1/3

(3.17)

As in the previous regime, the velocity is independent of µo, but is now proportional
to e4/3. Experimental data are in fair agreement with this prediction for strongly
confined drops (e < 200µm) of the highest viscosity, as illustrated in Figure 2. Adjusting
Equation 3.17 leads to an estimation of the Hamaker constant A ' −2 · 10−20 J. This
evaluation of A corresponds to thicknesses bΠ ranging from 10 to 30 nm depending on the
confinement, which is comparable to the values reported by Huerre et al. (2015). Rescaling
Equation 3.17 by the velocity VPois (Equation 3.10), we obtain the dimensionless velocity
Ṽ for the van der Waals limit:

Ṽ =

(
18

π

)1/3
µo
µw

(
−A
γe2

)1/3

(3.18)

3.4. Configuration diagram

The three regimes described in the previous section correspond to different asymptotic
solutions of the equation:

V =
∆ρge

2

(
e

6µo
+
max(bΠ ; bBr)

µw

)
(3.19)

where bBr and bΠ are respectively defined by Eqs. 3.12 and 3.13. We arbitrarily assume
that b = max(bΠ ; bBr). Although the transition between both film regimes is actually
smoother, we found this simple interpolation to be in good agreement with experiments.
The implicit Equation 3.19 can be solved numerically and captures correctly the ex-
perimental data obtained for different values of viscosity ratio and effective gravity, as
represented in Figure 2.
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Figure 4. Dimensionless velocity Ṽ = V/VPois as a function of the rescaled gap thickness
e/`c, with `c the capillary length. The purple dashed line corresponds to the Poiseuille regime

characterized by Ṽ = 1. For most of the experimental measurements, the rescaled velocity Ṽ
is larger than unity, which enhances the lubricating role of the films of water between the drop
and the walls.

Using equation 3.10, Equation 3.19 may be rewritten in a dimensionless implicit form:

Ṽ = 1 + 6
µo
µw

max

((
−A

12πγe2

)1/3

;
α

122/3

(
µw
µo

)2/3(
e

`c

)4/3

Ṽ 2/3

)
(3.20)

In figure 4 we plot the dimensionless velocity Ṽ as a function of confinement e normalized
by the capillary lenght `c. The lubricating properties appear clearly here, as Ṽ > 1 for
all data points. The drops of the most viscous oils (µ = 18000 mPa.s) are always fully
lubricated, either by a Bretherton film (Ṽ ∝ e4) or by a van der Waals film (Ṽ ∝ e−2/3).
Less viscous oils benefit less from the lubricating properties of water films. In particular,
for oils less viscous than about 200 mPa.s, the regime dominated by dissipation in the
drop is clearly observed (Ṽ = 1, blue squares in figure 4).

Describing the problem in terms of configuration diagram may be useful to get a
global view of the different regimes. For a given oil viscosity, two or three regimes may
be observed as the gap is increased. For very high confinement the thin film of water
acts as a lubricant and the settling velocity is proportional to e4/3 in the case of an ideal
van der Waals film, as defined in Equation 3.17. In the opposite limit, self lubrication
plays a leading role and leads to V proportional to e6 as described by Equation 3.15.
Between both regimes, the effect of the film may be negligible and the droplet undergoes
a classical Poiseuille flow with a velocity varying with e2 (Equation 3.10). We define as
e4/3→2 and e2→6 the characteristic gaps at the transitions from the regimes V ∝ e4/3 to
V ∝ e2 and V ∝ e2 to V ∝ e6, respectively. Both characteristic gaps are readily deduced
by equating the corresponding velocities:

e4/3→2

`c
=

(
µo
µw

)3/2(−18

π

A

γ`2c

)1/2

(3.21)
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and

e2→6

`c
=

(
2

3α3

µw
µo

)1/4

(3.22)

where `c = (γ/∆ρg)1/2 is defined as the capillary length, whose value is generally of the
order of 1 mm (in our particular system, `c ' 1.5 mm).
However a direct transition from the regime V ∝ e4/3 to V ∝ e6 can also be observed if
e4/3→2 > e2→6. This transition is characterized by the following gap:

e4/3→6

`c
=

(
−16

3πα9

A

γ`2c

)1/14

(3.23)

This direct transition is only observed for the highest viscosity ratios:

µo
µw

>

(
π2

486α3

γ2 `4c
A2

)1/7

(3.24)

In our system, the numerical value of the right hand side of Equation 3.24 is of the
order of 1650, which is in fair agreement with our experimental observations. Indeed
we can clearly define two regimes (V ∝ e2 and V ∝ e6) for µo = 180 mPa.s, and two
regimes (V ∝ e4/3 and V ∝ e6) for µo = 18000 mPa.s. However, the two low-velocity
regimes V ∝ e4/3 and V ∝ e2 seem transitional in the intermediate case µo = 1500 mPa.s
(Figure 2). We present in Figure 5, the configuration diagram corresponding to these
different transitions. In the case of high contrast of viscosity, the deposited film plays
the role of a lubricant, which leads to settling velocities proportional to e and e6 for
respectively strong and weak confinements. Conversely, dissipation is concentrated in
the bulk of the droplet when the contrast in viscosity is modest, which results in a
velocity proportional to e2.

4. Partially wetting drops: lubrication film properties recovered
through a wetting transition

In contrast with the ideal complete wetting situation described so far, practical con-
figurations commonly involve partial wetting. In such cases, we do not expect to obtain
any lubricating film below a certain value of Caw (Marchand et al. 2012), which should
strongly affect the droplet dynamics. We performed a series of experiments where the
solution of surfactant is replaced by ethanol. In this system, ethanol partially wets the
walls of the cell with a receding contact angle of the order of 30◦. The viscosity of ethanol
is µw = 1.2 mPa.s at 20◦C.

In Figure 6, we plot V as a function of e for drops of oil of respective viscosities
µo = 180, 1500 and 18000 mPa.s. At the lowest values of e (most confined cells), V
tends to follow the regime described by Equation 3.10 (dashed lines), which corresponds
to a Poiseuille flow without any lubrication. In contrast with the previous experiments
conducted with a wetting solution, this regime is obtained with oils of all viscosities,
which confirms the absence of a lubricating film. As the thickness of the cell is increased,
we observe a jump in the velocity for a critical thickness. This jump is particularly
dramatic for the most viscous oils: the velocity increases by two orders of magnitude
for the oil of viscosity 18000 mPa.s. Beyond this critical thickness, the settling velocity
follows the self-lubrication regime described by Equation 3.15. We interpret the jump as
the consequence of a wetting transition: a lubricating film is deposited as Caw reaches
a critical value. This critical velocity has been discussed in simpler geometries for a
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Figure 5. Configuration diagram describing the different asymptotic regimes as a function of
the gap of the cell and of the viscosity ratio. The range of parameters explored in our experiments
are represented with the horizontal lines corresponding to the different oil viscosities. Depending
on the viscosity ratio, one or two transitions can be observed. The frontiers between each regime
are represented by colourful lines. Blue, green and red lines correspond respectively to Equations
3.21, 3.22 and 3.23. In each domain, the asymptotic expression of the velocity V corresponds to
the scaling of Equations 3.17 (cyan domain), 3.15 (yellow domain) and 3.10 (magenta domain).

The scaling of the rescaled expression Ṽ = V/VPois is written in brown, and correspond

respectively to Equations 3.18, 3.16 and by definition Ṽ = 1.

variety of viscosity contrasts (Eggers 2001; Lorenceau et al. 2003; Snoeijer et al. 2006;
Marchand et al. 2012). In the present case, the deposited fluid is much less viscous than
the oil in the drops, which is reminiscent from the air entrainment problem. In this limit,
Eggers and Lorenceau et al. found that the critical velocity for entrainment depends
logarithmically on the viscosity ratio, while Marchand et al. rather suggest a stronger
power-law dependence on the viscosity of air. However, in our experiments the component
of the velocity normal to the contact line varies along the boundary of the drop (Burgess
& Foster 1990). This component decreases from the front to the sides of the drop, which
should delay or smoothen the transition. We also observe an important scattering of the
experimental data due to a high sensitivity to local imperfections. As a general trend,
smaller drops tend to undergo the transition for lower gaps than larger drops. Following
the steps of the recent works of Hammoud et al. (2017) and Zhao et al. (2018), a better
characterization of this transition may be achieved in the axisymmetric geometry of a
capillary tube.

5. Conclusion

Our experimental study describes the sedimentation velocity of a droplet of viscous
oil in a Hele-Shaw cell filled with a less viscous solution (µo/µw � 10). Depending
on the confinement and on the wetting properties of the solution, different regimes are
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Figure 6. Settling velocity V as a function of the gap of the cell e for partially wetting drops
of oil in a cell filled with ethanol. Blue squares, green triangles and red circles correspond
respectively to µo = 180 mPa.s, µo = 1500 mPa.s and µo = 18000 mPa.s. We interpret the
important jump observed beyond a critical gap to be a consequence of a wetting transition. The
dotted lines correspond to the “Poiseuille regime” (equation 3.10) and the solid lines correspond
to the “self-lubricated” regime with a Bretherton film (equation 3.15, with α = 0.7)
.

observed. In particular, we demonstrated a possible self-lubrication effect of the droplet
by the solution, which dramatically amplifies the sedimentation mobility. In the absence
of lubrication, the sedimentation velocity scales as ∆ρge2/µo. However, self-lubrication
leads to a velocity proportional to e6 in the case of low confinement and to a velocity
proportional to e4/3 for high confinements (in the case of a wetting solution). Although
we mainly focused on the case of a perfectly wetting carrying liquid, we observe a stiff
signature of a wetting transition in the case of partial wetting.

This work may also provide some insight into the rheology of dense emulsions in
confined environments. Such a situation is indeed common in petroleum engineering when
the size of oil droplets is of the same scale as the pores of the reservoirs. By analogy with
standard rheology data, we can define an effective viscosity µeff ∼ ∆ρge2/V and express
it as a function of the apparent shear rate V/e . The three different regimes presented in
Figure 5 correspond to the following expressions:

• Lubrication through the thin van der Waals film: µeff ∼ µwe/bΠ ∼ µw
(
γe2

−A

)1/3
,

• Absence of lubrication: µeff = µo,
• Lubrication through the Bretherton film: µeff ∼ (µwγ

2e2)1/3(V/e)−2/3.
If the apparent shear rate could be increased as a control parameter, the confined emulsion
would thus appear as a shear thinning fluid. The effective viscosity is constant at low
shear rate and displays a power law behavior with an exponent -2/3 for high shear
rates. Such a behavior is reminiscent of classical works on the rheology of foams and
concentrated emulsions, although dissipation in Plateau borders tends to lead to a lower
exponent (Princen & Kiss 1989; Denkov et al. 2008; Cantat 2013; Cohen-Addad & Höhler
2014).
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In our model, we assumed the lubricating film to be uniform in order to simplify
the description of the system,, which is not rigorous as demonstrated experimentally
by Huerre et al. (2015). Nevertheless, we hope that our work will motivate further
investigations where the thickness profile and, more generally, the impact of the 2D
geometry of the droplet will be taken into account.

Finally, our experiments demonstrate the critical role of the lubricating film of water
in the dynamics of highly viscous drops. As a perspective, it might be expected that
any variation of the thickness of that film, induced by e.g. rough (Seiwert et al. 2011) or
slippery (Li et al. 2014) walls, could hinder the self-lubrication regime (equation 3.15)
and thus dramatically modify the mobility of the drops.
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Appendix A

We here justify our choice to neglect the resisting contribution of the flow of water in
the front and rear menisci as well as in the bulk around the drop.

Dissipation in the bulk of water surrounding the drop

The resisting force resulting from the flow of water around the drop scales as F bulkw =
12πµwV R

2/e which has to be compared to the friction force Ff = 2πR2µwVint/b, exerted
by the walls on the drop. Using Equation 3.5, we obtain: F bulkw /Ff = 6b(1 + m)/e. As
plotted in Figure 7a, this ratio is at most 2.10−1 within the range of our experimental
parameters. The contribution of viscous dissipation in the bulk of the surrounding water
to the overall friction force can thus be neglected.

Dissipation in the front and rear menisci

Following recent work on the motion of wetting droplets in Hele-Shaw cells (Reyssat
2014) or on the dissipation involved in the displacement or deformation of foams (Cantat
2013; Sauret et al. 2015; Viola et al. 2016), we expect the friction force resulting from
the flow in the advancing and receding menisci of water around the drop to follow

Fmenisw ' 20γRCa
2/3
w . Comparing Equation 3.6 with this force yields: Fmenisw /Ff '

3b(1+m)Ca
−1/3
w /R. As plotted in Figure 7b, this ratio is of the order of 0.2 for the largest

gaps, but lower than 0.1 for more confined drops, which justifies that the contribution of
the menisci may be neglected in the overall estimation of the friction.

Inertial resistance of water

The inertial resistance of the displaced water also hinders the motion of the drop
and scales as Fi ∼ ρwV 2Re. The comparison of inertia to the friction force acting on the
surface of water written in Equation 3.6 leads to Fi/Ff = ρwV be(1+m)/µwR, which can
be viewed as the relevant Reynolds number. For our experiments, this Reynolds number
remains smaller than 1 as long as e < 1 mm, which justifies neglecting the contribution
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Figure 7. (a) Ratio of the viscous force from the bulk of the surrounding liquid to the force
exerted by the lubrication film as a function of e. Blue squares correspond to µo = 180 mPa.s,
green triangles to µo = 1500 mPa.s, and red circles to µo = 18000 mPa.s. The ratio roughly
corresponds to 6b(1 + m)/e, and its value is smaller than 0.2 for all the experiments, so that
the contribution of the surrounding liquid is negligible. (b) Ratio of the viscous force in the
menisci at the periphery of the drop to the force from the lubrication film as a function of e.

Fmenis
w /Ff ' 3b(1+m)Ca

−1/3
w /R, is smaller than 0.2 for all the experiments and the contribution

of the menisci may be neglected.

of inertia in the fluid surrounding the drop in the overall drag force. For e > 1 mm the
drop velocity is observed to saturate as inertial resistance starts to dominate.
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