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Abstract 

  

Objective. Modern neuroscience research asks for electrophysiological recording of local field potentials (LFPs) in 

moving animals. Wireless transmission has the advantage of removing the wires between the animal and the recording 

equipment but is hampered by the large amount of data to be sent at a relatively high rate. Approach. To reduce 

transmission bandwidth, we propose an encoder/decoder scheme based on adaptive non-uniform quantization. Our 

algorithm uses the current transmitted codeword to adapt the quantization intervals to changing statistics in LFP 

signals. It is thus backward adaptive and does not require sending side information. The computational complexity is 

low and similar at the encoder and decoder side. These features allow for real-time signal recovery and facilitate 

hardware implementation with low-cost commercial microcontrollers. Main results. As proof-of-concept, we 

developed an open-source Neural Recording Device called NeRD. The NeRD prototype digitally transmits 8 channels 

encoded at 10 kHz with 2 bits per sample. It occupies a volume of 2 × 2 × 2 cm3 and weighs 8 grams with a small 

battery allowing for 2 hours 40 min of autonomy. The power dissipation is 59.4 mW for a communication range of 8 

m and transmission losses below 0.1%. The small weight and low power consumption offers the possibility to mount 

the entire device on the head of rodents without resorting to separate head-stage and battery backpack. The NeRD 

prototype is validated in recording LFPs in freely moving rats at 2 bits per sample while maintaining an acceptable 

signal-to-noise ratio (>30 dB) over a range of noisy channels. Significance. Adaptive quantization in neural implants 

allows for lower transmission bandwidths while retaining high signal fidelity and preserving fundamental frequencies 

in LFPs.  
 

Keywords: Neurotechnology; Neurophysiology; Wireless transmission; Neural telemetry; Neural implants; Local field potential 
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1. INTRODUCTION 

 

NDERSTANDING the neural bases of natural behavior 

and of neurological disorders involving the motor 

system like Parkinson’s disease implies recording 

individual neurons or local field potentials (LFPs) in 

moving animals. Usually this is accomplished via 

extracellular electrodes implanted in the brain and a 

tethered connection between the animal and the recording 

equipment. Although signal multiplexing methods can 

greatly reduce the number of wires, the tether may still 

affect the animal’s movements. In contrast, a wireless 

transmission bypasses this limitation by entirely 

removing the wires. For obvious reasons of robustness to 

noise, most studies considered digital [1-5] rather than 

analog [6-8] transmission. Yet, the system requirements 

in terms of low-power consumption and high throughput, 

typically several Mbit/s (e.g. > 5 Mbit/s for 16 channels 

at 20 KHz sampling rate and 16 bits of resolution), are 

difficult to achieve simultaneously using standard 

protocols (e.g. Bluetooth is too slow and WIFI consumes 

too much energy).  

 

To reduce transmission bandwidth, the approach usually 

adopted is to perform online detection of neural events 

followed by data compression of the spike waveform  [11-

12]. This way, only spike characteristics and spike times 

are transmitted [1, 9, 10]. Yet, such a compression throws 

away the signal between the spikes and may introduce 

permanent errors due to imperfections in the detection of 

neural events [13-15]. And last, but not least, this 

approach is not applicable to LFPs. This is a serious 

drawback as the LFP represents an increasingly important 

signal in neuroscience and medicine. It underlies neural 

processes and may indicate neurological disorders, e.g. 

Parkinson’s disease produces prominent LFP oscillations 

at beta frequencies in the basal ganglia of animal models. 

Thus, there is a need to record LFPs in moving animals 

with reduced transmission bandwidth and low 

computational and energy overhead (keep in mind that the 

device has to be mounted on the animal’s head). 

 

Data acquisition of neural signals is traditionally done 

through uniform quantization. A uniform quantizer is 

optimum only if the probability density function (pdf) 

𝑝(𝑥) of the input signal 𝑥 is uniform. If not, the 

quantization intervals should be non-uniformly 

distributed so as to yield an optimum representation of the 

input pdf. Yet, a fixed non-uniform quantizer would not 

be optimum for any LFPs as the pdf is not known a priori 

and the LFP signal is non-stationary; that is, the pdf 

changes over time. We can thus define our problem to that 

of adapting the quantization cells over time to changing 

statistics in the LFP. To this aim, we propose in this paper 

a backward adaptive algorithm. Our algorithm merely 

uses the current transmitted codeword to adapt the 

quantization intervals. This way, there is no need of 

sending side information. The computational complexity 

is low and similar at the encoder and decoder side. These 

features allow for real-time signal recovery and facilitate 

hardware implementation. As proof-of-concept, we 

developed an open-source Neural Recording Device 

called NeRD. The NeRD prototype was mounted on rats’ 

head and validated in recording LFPs at low bitrates (2 

bits per sample).  

2. MATERIAL AND METHODS 

2.1 Theory  

 

Asymptotically optimum quantizer. A 𝑛-bit non-uniform 

quantizer is defined by an ordered set of boundary points 

{𝑥𝑖} , 𝑖 = 1 … 𝑁 − 1, delimiting 𝑁 = 2𝑛 disjoint 

quantization intervals 𝑅𝑖 = [𝑥𝑖−1, 𝑥𝑖), 𝑖 = 1 … 𝑁, with 

quantization range 𝑥0 ≡ 𝑎 and 𝑥𝑁 ≡ 𝑏. A minimum 

average error (MAE) quantizer is optimum if it minimizes 

r-th power distortion  

𝐷𝑟 = ∑ ∫ |𝑥 − 𝑦𝑖|𝑟𝑝(𝑥)𝑑𝑥
𝑥𝑖

𝑥𝑖−1𝑖

 
(1) 

where the 𝑦𝑖’s are the reconstruction levels associated to 

the quantization intervals. The most commonly used 

powers are 𝑟 = 1 (mean absolute error) [16] and 𝑟 = 2 

(mean squared error) [17]. In high resolution quantization 

(large 𝑁), the pdf is roughly constant over individual 

quantization cells and the reconstruction levels are the 

midpoints of the quantization intervals, that is, in cell i, 

𝑝(𝑥) ≈ 𝑃(𝑥 ∈ 𝑅𝑖)/𝛿𝑖 with 𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and 𝑦𝑖 =
 (𝑥𝑖−1 + 𝑥𝑖)/2. Thus, we can approximate the distortion 

(1) by  

𝐷𝑟 =
1

2𝑟(𝑟 + 1)
∑ 𝑃(𝑥 ∈ 𝑅𝑖) × 𝛿𝑖

𝑟

𝑖

 
(2) 

A necessary condition for minimizing (2) is that every 

quantization cell has an identical distortion contribution 

[18-19], that is, the so-called equidistortion principle 

written as 

 

𝑃(𝑥 ∈ 𝑅𝑖) × 𝛿𝑖
𝑟 = 𝑃(𝑥 ∈ 𝑅𝑖+1) × 𝛿𝑖+1

𝑟 , ∀𝑖 (3) 

 

Note that in the case 𝑟 = 0, the quantizer has maximum 

output entropy (MOE)  

 

𝑃(𝑥 ∈ 𝑅𝑖) = 1/𝑁, ∀𝑖  

U 
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It has been shown that MOE and MAE quantizers are 

approximately equivalent for a class of signal pdfs that 

includes the Gaussian distribution [20]. 

 

Backward adaptive quantizer. A way to handle 

nonstationary inputs is to adapt the quantization cells over 

time in such a way as to satisfy equation (3) or (4) 

depending on the design criterion, that is, MAE or MOE 

quantizer. The boundary points are updated at each 

sample according to 𝑥𝑖 ← 𝑥𝑖 + ∆𝑥𝑖, 𝑖 = 1 … 𝑁 − 1. In 

forward adaptation (Fig. 1A), the boundary points change 

as a function of the input signal so that ∆𝑥𝑖 = 𝜂 𝑓(𝑥) with 

𝜂 > 0 the adaptation factor. This scheme suffers that an 

excessive amount of side information is required to 

transmit the updates to the decoder. On the contrary, 

backward adaptation does not require transmitting 

additional bits as the quantization intervals change with 

the quantized output (Fig. 1B). The transmitted codeword 

{1𝑥∈𝑅𝑖
} (1𝑥∈𝑅𝑖

= 1 if 𝑥 ∈ 𝑅𝑖 and 0 otherwise) is now used 

instead of the input to update the encoder/decoder pair. 

Backward adaptation writes  

 

∆𝑥𝑖 = 𝜂 𝑓({1𝑥∈𝑅𝑖
}) (4) 

 

An adaptation function for MAE quantizers aiming at 

minimizing r-th power distortion is given in [19] as 

 

𝑓({1𝑥∈𝑅𝑖
}) = ∑ 𝛿𝑗

𝑟
𝑁

𝑗=𝑖+1

1𝑥∈𝑅𝑗

𝑁 − 𝑖
− ∑ 𝛿𝑗

𝑟
𝑖

𝑗=1

1𝑥∈𝑅𝑗

𝑖
 

(5) 

 

At convergence, we have on average that 𝐸[𝑓({1𝑥∈𝑅𝑖
})] =

0 with 𝐸 the expected value. As 𝐸[1𝑥∈𝑅𝑗
] ≡ 𝑃(𝑥 ∈ 𝑅𝑗), 

equation (5) satisfy the equidistortion principle (3). A 

simplest formulation is obtained for MOE quantizers [21-

22]. With 𝑟 = 0, equation (5) simplifies to  

   

𝑓({1𝑥∈𝑅𝑖
}) =

1𝑥≥𝑥𝑖

𝑁 − 𝑖
−

1𝑥<𝑥𝑖

𝑖
 

(6) 

 

with 1𝑥<𝑥𝑖
≡ ∑ 1𝑥∈𝑅𝑗

𝑖
𝑗=1  and 1𝑥≥𝑥𝑖

≡ ∑ 1𝑥∈𝑅𝑗

𝑁
𝑗=𝑖+1 . At 

convergence of Eq. (6), we have on average that 

𝐸 [1𝑅𝑗
] ≡ 𝑃(𝑥 ∈ 𝑅𝑗) =

1

𝑁
 ∀𝑗. The boundary adaptation 

rules (5) and (6) were thoroughly analyzed in [19] and 

[21,22]. Details are not reported here to lighten the 

description of the adaptive quantizer. Backward 

adaptation for MOE quantizers is primarily of interest for 

real-time implementation because the complexity of 

equation (6) is low and similar at the encoder and decoder 

side. Nevertheless, the decoder may not adapt 

appropriately if the transmitted codeword is corrupted by 

channel noise. To avoid the resulting encoder/decoder 

mismatch to remain in the system we introduce a leakage 

or forgetting parameter β in Eq. (4) as  

 

∆𝑥𝑖 = 𝜂 𝑓({1𝑥∈𝑅𝑖
}) − 𝛽𝑥𝑖 (7) 

 

From (7), it is shown in [23] that an initial difference 

𝑑0(𝑥𝑖) between encoder and decoder vanishes in time as 

(1 − 𝛽)𝑡𝑑0(𝑥𝑖) → 0 when 0 < 𝛽 < 1  and 𝑡 → ∞.  
 

 

Fig. 1. Forward vs backward adaptation. The 

encoder/decoder pair is an adaptive non-uniform 𝑛-

bit quantizer with a set of boundary points {𝑥𝑖}. (A) 

Forward adaptation. The boundary points change as 

a function of the input. Side information is thus 

require to transmit the updates to the decoder. (B) 

Backward adaptation. The boundary points in the 

encoder/decoder pair change as a function of the 

transmitted codeword {1𝑥∈𝑅𝑖
}.  

 
 

2.2 Open-source Neural Recording Device (NeRD)  

 

We developed an open-source Neural Recording Device 

(NeRD) for real-time encoding/decoding of LFP signals. 

In NeRD, the quantizer operates on the difference 

between the LFP signal and a prediction (Fig. 2). The 

predictor is first-order (prediction coefficient ℎ = 1 −
2−4) and the quantizer is an adaptive MOE quantizer 

given by Eqs. (6) and (7) with adaptation factor 𝜂 = 200 

and leakage factor 𝛽 = 2−3. The use of parameters as 

negative powers of 2 greatly facilitates microcontroller 

implementation which can be done simply with shift 

operations. NeRD consists in two sub-systems: head-

mounted emitter and base-station receiver (Fig. 3). The 

emitter is connected to eight electrode implants in the rat’s 

brain (see section 2.3). For wireless transmission, the LFP 
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signal is quantized in a 2-bit format. The base-station 

receiver then decodes the received data stream to 

reconstruct the LFP waveform. Emitter and receiver are 

built from commercially available components. The 

schematics and firmware developed for NeRD are freely 

available at https://github.com/pseudoincorrect.  

 

Head mounted emitter.  The emitter is mounted on the 

rat’s head and plugged to eight electrode implants via the 

nano-strip connector NSD-36-DD-GS from Omnetics. It 

occupies a volume of 2 x 2 x 2 cm3 and weighs 4.5 grams 

(8 grams including a small battery LiPO 3.7 V 100 mAh). 

The battery life is approximately 2 hours 40 mins. The 

emitter consists of three stacked custom PCBs. The first 

stage is based on the electrophysiology chip RHD 2132 

from Intantech Technologies. It performs signal 

acquisition and preprocessing; that is, ×192 amplification 

and programmable filtering via a serial peripheral 

interface (SPI). In NeRD, the RHD was configured to 

record LFPs over 8 channels with 10 KHz sampling 

frequency, 0.1 Hz high-pass filter and 5 KHz low-pass 

filter. The second stage is based on the low-power 

microcontroller STM32F051C8T7 (32-bit ARM 

processor running at 48 MHz) from STMicroelectronics. 

It communicates with the RHD chip via the SPI port and 

runs an adaptive differential MOE quantizer. The LFP 

data are stored in a circular buffer before being quantized 

to 𝑛 = 2 bits. Quantized data are then sent to the third 

stage which performs wireless transmission based on the 

low-power NRF24L01+ transceiver from Nordic 

Semiconductors. It offers a practical bandwidth of 1.34 

Mbps, with selectable frequencies in the 2.4 GHz ISM 

band, for a power consumption of 11.3 mA at 3.0 V. The 

LFP waveforms are transmitted wireless as a stream of 

packets, each one containing the data (4 samples per 

channel over 8 channels) plus an overhead inherent to the 

Nordic transmission protocol (preamble, receiver address 

and cyclic redundancy check CRC).  

 

Base station receiver. The receiver decodes the incoming 

packets by adapting the inverse quantizer and reformats 

the reconstructed signal as standard audio stream to 

facilitate interfacing with a PC via the USB port [5]. The 

USB audio protocol allows us to record and display the 

signals with existing audio editor software like Audacity. 

Without any power consumption restrictions at the 

decoder side, we selected a more powerful 

microcontroller with USB communication; that is, the 

STM32F411VET6U (32-bit ARM processor running at 

100 MHz) from STMicroelectronics. Having a clock 

speed at the receiver higher than the one at the emitter 

allows us to control more peripherals. Hence, two 

amplified transceiver modules are used in parallel to 

increase robustness against channel noise and packet loss, 

as in [5]. Whenever a failure is detected by CRC in one 

transceiver, the packet can still be recovered by 

redundancy at the other transceiver.  The base station 

receiver also contains a digital-to-analog converter (DAC 

8568 from Texas Instruments) to provide 8 analog output 

channels allowing electrophysiologists to use their own 

recording equipment by interfacing with a DB37 

connector.  

 

 

 

Fig. 2. Adaptive differential quantization in NeRD. 

The difference between the signal amplitude and a 

predicted value is quantized. In NeRD, the predictor is 

first-order (prediction coefficient ℎ = 1 − 2−4) and the 

encoder/decoder pair is a 2-bit adaptive MOE quantizer 

(Eqs. 6 and 7 with 𝜂 = 200 and 𝛽 = 2−3).  

 

https://github.com/pseudoincorrect
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2.3 Neural implant   

 

Animal preparation. Two male rats (300 g, Rat A 

Sprague-Dawley, Rat B Long-Evans, Janvier, Le Genest-

Saint-Isle, France) were anesthetized with equithesin (1 

ml/300g) and placed in a stereotaxic apparatus. 

Anesthesia was maintained by supplemental doses when 

necessary. LFP oscillations were used to monitor 

anesthesia depth. Animals were placed on a heating pad 

to maintain constant body temperature. All experiments 

were performed in accordance with European Union 

Parliament and Council Directive 2010/63/UE regarding 

the care and use of laboratory animals and 

recommendations of our institutional animal care and use 

committee (Agreement #: DR2014-41 and DR2015-46, 

CEEA-55 University Lyon 1).  

 

Electrode implantation. After a local anesthetic injection 

(lidocaine, s.c.), the scalp was incised, and small burr 

holes were made in the skull above different structures 

whose coordinates are indicated in Table 1. Recordings 

were performed using either 80µm stainless steel or 45µm 

tungsten electrodes (see Table I). The electrodes were 

fixed with dental cement. A reference electrode was 

positioned in the skull bone above the contralateral 

Fig. 3. NeRD hardware development. The system is open source and built from commercially available 

components. (A) Head mounted emitter. The emitter uses electrophysiology chip RHD2132 (Intantech), 

microcontroller STM32F0 (STMicroelectronics) and transceiver NRF24L01+ (Nordic Semiconductors). (B) Base 

station receiver. The receiver uses transceiver NRF24L01+ (Nordic Semiconductors), microcontroller STM32F4 

(STMicroelectronics) and digital-to-analog converter DAC8568 (Texas Instruments).  
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cortical hemisphere at 5 mm posterior to bregma (Rat A), 

or over the cerebellum (Rat B). All electrodes were 

connected to a nano-strip connector NSD-36-DD-GS 

(Omnetics) fixed onto the rat's head by dental cement. 

After a 2-week recovery period, the NeRD emitter was 

plugged on the rat’s implant for recordings. 
 

TABLE I 

ELECTRODE IMPLANTATION IN RATS A AND B. THE STEREOTACTIC 

COORDINATES AND TYPE OF ELECTRODES ARE GIVEN FOR EACH 

STRUCTURE.  

Rat Structure Coordinates 

from bregma 

(mm) 

electrode type 

A Olfactory bulb +7.56 AP, 1 ML, 

4 DV 

monopolar, 

stainless steel,  

A Anterior piriform 

cortex 

+2.76 AP, 3.5 

ML, 6.6 DV 

monopolar, 

stainless steel 

A Posterior piriform 

cortex 

-2.4 AP, 5.5 ML, 

8.0 DV 

monopolar, 

stainless steel 

A Olfactory tubercle +0.24 AP, 2.8 

ML, 8.4 DV 

monopolar, 

stainless steel 

A Striatum +1.08 AP, 3.5 

ML, 3.5 DV 

monopolar, 

stainless steel 

A Hippocampus (CA1) -3.8 AP, 2 ML, 2 

DV 

monopolar, 

stainless steel 

A Cerebellum -12.24 AP, 3 ML, 

2.5 DV 

monopolar, 

stainless steel 

B Hippocampus (CA1) -3.6 AP, 2.5ML, 

3.1DV 

2 x monopolar, 

tungsten,  

B Hippocampus (DG) -3.6 AP, 2.3ML, 

3.6DV 

monopolar, 

tungsten 

B Prelimbic cortex +2.8, 0.7ML, 

3.0DV 

monopolar, 

tungsten 

B Anterior cingulate 

cortex 

+2.8, 0.7ML, 

4.2DV 

monopolar, 

tungsten 

B Anterior piriform 

cortex 

4.2AP, 2.5ML, 5.2 

DV 

2 x monopolar, 

tungsten 

B Orbitofrontal cortex 4.2AP, 2.5ML, 4.2 

DV 

monopolar, 

tungsten 
 

 

3. RESULTS 

3.1 Simulations  

 

We first resort to computer simulations to assess how 

quantizer resolution and channel noise affect the signal-

to-noise ratio (SNR) specified in units of decibels (dB)  

 

𝑆𝑁𝑅 = 10 log10 𝜎𝑖𝑛
2 𝐷2⁄  

 

with 𝜎𝑖𝑛
2  the input variance and 𝐷2 the mean square error 

between original input and reconstructed output (Eq. 1 

with 𝑟 = 2). In numerical simulation, the original LFP 

signal is known exactly which makes possible to perform 

many reproducible trials with less constraint than with an 

implanted rat. Simulations were performed in Matlab 

based on six LFP signals previously recorded with NeRD 

in full resolution (16 bits) and rescaled in the unit interval. 

 

Direct LFP quantization. Here we consider waveform 

coding by direct quantization of the LFP amplitude (Fig. 

1B). An MOE quantizer is adapted on each sample 

according to Eqs. (4) and (6). Figure 4 shows the time 

course of a 2-bit quantizer (3 boundary points) during LFP 

encoding. We note that the MOE quantizer adapts to long-

term drifts in baseline as well as sample-to-sample local 

variations. Performance is given in Fig. 5A. Increasing 

the number of bits by 1 improves the SNR by ~3 dB. For 

comparison, each additional bit to a fixed uniform 

quantizer yields an increase of ~6 dB, a result in line with 

the theory [17]. At 8 bits per sample, performance of fixed 

and adaptive quantizers are similar. Yet, at lower bitrates, 

the adaptive quantizer outperforms the fixed quantizer. At 

2 bits per sample, the SNR of the adaptive quantizer is 20 

dB higher than the one of the fixed quantizer. We further 

observe in Fig. 5B that adaptive quantization does not 

affect the power spectrum. The power spectrum displays 

a 1/f frequency scaling that is ubiquitous in 

electrophysiological recordings, irrespective of whether 

adaptive quantization is used or not. This result is 

important as fundamental frequencies in LFPs underlie 

neural processes. In Fig. 5B, the bump in the gamma band 

range reflects putative neural synchronization in the 

piriform cortex (see electrode implantation for NeRD in 

Table 1).  

 

Differential LFP quantization. Quantization can also be 

part of a differential coding system (see Fig. 2). Here we 

consider quantizing the prediction error, that is, the 

difference between the LFP amplitude and a first-order 

prediction. An MOE quantizer is adapted on the 

prediction error according to Eqs. (4) and (6). Simulation 

results reveal that adaptive quantization outperforms 

fixed quantization at low bit rates (see Fig. 6A). When 

comparing Figs. 6A and 5A, we also note that differential 

quantization outperforms direct quantization. At 2 bit per 

sample, the prediction gain is ~10 dB, that is, SNR~42 dB 

vs 32 dB for differential and direct adaptive quantization, 

respectively. Figure 6A also indicates the performance of 

adaptive differential pulse code modulation (ADPCM). 

The ADPCM implementation is based on application note 

AN643 from Microchip Technology and matlab code 

from MathWorks. Standard ADPCM uses a 4-bit uniform 

quantizer with adaptive step-size. We note that our 

adaptive differential quantizer at 4 bit per sample 

outperforms ADPCM by ~4dB. This improvement is 

explained from the fact that, in our scheme, each 

boundary point is adapted independently whereas 

adaptation in ADPCM merely concerns the step size of a 

uniform quantizer. As a result, ADPCM can only cope 

with changes in the signal variance whereas our algorithm 
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can track any changes in signal pdf.   

 

Noisy channel. We further tested whether our scheme is 

robust to channel noise. In NeRD, the data are transmitted 

as packets, each one containing 4 samples per channel. In 

case of a missing packet, the decoder thus fails to adapt to 

4 consecutive samples. Figure 5B shows the SNR of a 2-

bit quantizer (Eqs. 6 and 7) simulated in such noisy 

conditions. Without leakage parameter, that is β = 0 in Eq. 

(7), the SNR drops to 0 dB indicating that the quantization 

noise has same power than the original signal. 

Fortunately, the use of a leakage factor β > 0 in (7) allows 

to maintain an SNR above 30 dB over a range of noisy 

channels (up to 1% of missing packets). 
 

 

 

 

 

Fig. 4. Typical example of adaptive quantization of LFP signals. The LFP samples are indicated 

by black dots. The adaptive 2-bit quantizer is represented by three boundary points (red, blue and 

green curves). They evolve in time according to Eqs. (4) and (6) so as to track changes in the LFP.  
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Fig. 5. Performance of direct LFP quantization. (A) 

SNR (in dB) as a function of quantizer resolution 

(bits/sample) for fixed and adaptive quantization. Data 

are presented as mean ± s.d. (B) Representative 

example of LFP power spectrum. Original and 

quantized spectra are in red and black, respectively. 

They exhibit 1/f frequency scaling with a bump in the 

Gamma band typical of recordings in the rat’s piriform 

cortex. 
 

 

 

Fig. 6. Performance of differential LFP 

quantization. Data are presented as mean ± s.d. (A) 

SNR (in dB) as a function of quantizer resolution 

(bits/sample) for 𝑛-bit fixed and adaptive 

quantization and 4-bit standard ADPCM. (B) SNR 

(in dB) obtained for a 2-bit adaptive quantizer with 

and without leakage factor 𝛽 as a function of channel 

noise (percentage of missing packets). 
 

3.2 Experiments with NeRD  

 

Ex vivo experiments. We performed ex vivo experiments 

with NeRD to assess some characteristics of the device, 

such as the autonomy, transmission delay, packet loss and 

communication range. The autonomy of NeRD depends 

directly on the capacity of the battery and therefore on its 

weight. In our tests, NeRD was powered by a 100 mAh 

battery weighting 3.5 grams and providing approximately 

2 hours and 40 mins of practical work within a 

communication range of 8 meters. The input-output delay 

in NeRD was found to be 4 ms. It is the same in all 

channels and does not depend on whether adaptive 

quantization is used or not. The rate of missing packets 

was evaluated as a function of the distance between the 

emitter and the receptor.  A data loss occurs when the 

preamble or address of a packet is corrupted or when its 

CRC is invalid. At each distance considered, fifty 

thousand packets containing a unique identifier were sent 

and losses were detected from the missing identifiers. To 

estimate the variability, this procedure was repeated ten 
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times. The amount of losses increased significantly after 

8 meters, thereby setting the maximal range of the system 

(Fig. 7A). From 1 to 8 meters the rate of missing packets 

was kept below 0.1%, partly because of the use of two 

transceiver modules in parallel. In order to evaluate the 

benefits of using two antennae, we estimated the error 

rates at a fixed distance of 3 m in the two configurations, 

with one and two transceivers. Fig. 7B indicates that the 

use of two transducers reduces the error rate more than 

twice on average. More important is the small variability 

obtained with two transducers so that the error rate can be 

kept small, i.e. below 0.1%, even in extreme trials where 

the communication channel is very noisy.  
 

 
Fig. 7. In vitro experiments. Data losses during 

wireless transmission. (A) Loss rate as a function of the 

distance between emitter and receiver. (B) Loss rate 

with one and two transceivers (distance between 

emitter and receiver = 3 m). 
 

In vivo experiments. NeRD was tested with freely moving 

rats (Fig. 8A). LFPs were recorded from stainless steel 

(Rat A) or tungsten (Rat B) electrodes. The results 

obtained are similar for the two preparations. The receiver 

was located at approximately one meter away and 

connected to a PC acquisition board via the DAC. Data 

were recorded and displayed online with the software 

OpenElectrophy [20]. Figure 8B (top panel) shows two 

LFPs simultaneously recorded in full resolution by two 

different electrodes in the anterior piriform cortex. The 

spectrograms (Fig. 8B, bottom panel) clearly indicate the 

presence of Gamma oscillations in the 50-80 Hz range 

(also revealed in the power spectrum of Fig. 5B). The 

second series of recordings was performed in the dorsal 

hippocampus. Fig. 8C (top panel) shows two signals 

corresponding to the same LFP recorded in full resolution 

(16-bit original) and compressed mode (2-bit 

quantization). The SNR between uncompressed and 

compressed LFPs is above 30 dB (33.2 ± 7.6 dB, mean ± 

s.d., n = 4 recordings). Moreover, the presence of theta 

oscillations (4-6 Hz) that is ubiquitous in hippocampal 

recordings is independent on whether quantization is used 

or not (Fig. 8C, bottom panel).  
 

 
Fig. 8. In vivo experiments. (A) Freely moving rats 

carrying the NeRD emitter.  (B) LFP recordings in the 

anterior piriform cortex. Top panel: two LFPs recorded 

in full resolution (16 bits) with two different electrodes. 

Bottom panel: the corresponding spectrograms reveal 

the presence of gamma oscillations. (C) LFP recordings 

in the dorsal hippocampus. Top panel: two LFPs 

recorded with the same electrode in both uncompressed 
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(16-bit full resolution) and compressed (2-bit 

quantization) modes. Bottom panel: the corresponding 

spectrograms reveal the presence of beta oscillations 

irrespective of the recording mode. 
 

4. CONCLUSION 

 

In recent years, the development of telemetry systems that 

record LFPs in moving animals and transmit them 

wirelessly to a remote computer have gained significant 

attention among the neuroscience community. 

Requirements for ecological recordings and animal 

welfare put strong constraints on device weight and power 

consumption. We argue that the use of adaptive non-

uniform quantization is beneficial to decrease 

transmission bandwidth and thereby power consumption 

and battery weight. We proposed in this paper a backward 

adaptive algorithm that adapts the quantization intervals 

to changing statistics in the LFP. Its low computational 

complexity makes it suitable for hardware 

implementation with commercial microcontrollers.  

 

As proof of concept, we developed NeRD, an open-source 

neural recording device whose schematics and firmware 

are available at https://github.com/pseudoincorrect. 

NeRD is a microcontroller-based telemetry system that 

consists of analog processing, adaptive non-uniform 

quantization and wireless transmission. With a weight of 

8 grams including the battery (autonomy of 2h40), the 

NeRD prototype is readily mounted on a rat’s head. The 

result of high SNR (above 30 dB) in recording LFPs (8 

channels at 10 kHz) indicates that NeRD is a viable 

technique for bandwidth reduction (i.e. in this work from 

1.28 Mb/sec in full resolution at 16 bits/sample to 160 

Kb/sec in quantized mode at 2 bit/sample).  

 

Future work will concentrate on increasing NeRD 

performance. One line of research that may prove 

beneficial in terms of SNR is to replace the fixed first-

order predictor used in this work by an adaptive one. We 

note that backward adaptive prediction using a signed 

version of the least mean square algorithm [17] is possible 

for implementation simplicity in NeRD. Another point 

ought to be considered as future work is to increase the 

number of recording channels, sampling frequency and 

quantizer resolution. The current limitation is the 

microcontroller computational power that is too low to 

ensure adaptive quantization at 𝑛>2 bits/sample over 

more than 8 channels. This problem could be solved by 

replacing or coupling the microcontroller with a logic 

programmable device. This way, adaptive quantization 

could be performed in parallel so that the performance 

could grow up to 64 channels over 𝑛>2 bits which 

corresponds to the transceiver bandwidth limit. 
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