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ABSTRACT  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with no clinical 

biomarker. Aims of this study were to characterize a metabolic signature of ASD, and to 

evaluate multi-platform analytical methodologies in order to develop predictive tools for 

diagnosis and disease follow up. 

Urines were analyzed using: 1H- and 1 H-13C-NMR-based approaches and LC-HRMS-based 

approaches (ESI+ and ESI- on a HILIC and C18 chromatography column). Data tables 

obtained from the six analytical modalities on a training set of 46 urines (22 autistic children 

and 24 controls) were processed by multivariate analysis (OPLS-DA). Prediction of each of 

these OPLS-DA models were then evaluated using a prediction set of 16 samples (8 autistic 

children and 8 controls) and ROC curves. Thereafter, a data fusion block-scaling OPLS-DA 

model was generated from the 6 best models obtained for each modality. This fused OPLS-

DA model showed an enhanced performance (R2Y(cum)=0.88, Q2(cum)=0.75)  compared to 

each analytical modality model, as well as a better predictive capacity (AUC=0.91, p-value 

0.006). Metabolites that are most significantly different between autistic and control children 

(p<0.05) are indoxyl sulfate, N-〈-Acetyl-L-arginine, methyl guanidine and 

phenylacetylglutamine. This multi-modality approach has the potential to contribute to find 

robust biomarkers and characterize a metabolic phenotype of the ASD population. 

 

Keywords: metabolomics, Autism Spectrum Disorders, ASD, NMR, LC-HRMS, data fusion  
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Introduction 

Autism spectrum disorder (ASD) refers to a group of complex neurodevelopmental disorders 

present since early childhood and persisting lifelong.1 The prevalence of ASD was recently 

estimated in France to 36.5/10 000 children with a sex ratio of 4.1 boys for 1 girl.2  

Autism is typically diagnosed before three years of age3 and ASD children are characterized 

by deficits in social communication and social interaction, as well as restricted and repetitive 

behaviors and interests as listed in the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-V).4 Diagnosis is made clinically by using different scale tests that evaluate the 

behavior of the patient5 and to date, there is no reliable biochemical marker of this disorder. 

Although etiologies of autism remain unknown, studies have found implication of genetic, 

environmental and metabolic factors.6 ASD has several suspected causes, including 

dysfunctions of the neurologic, immunologic and/or gastrointestinal systems with some 

markers showing ubiquitous distribution. Due to the social and communication impairments 

of patients with ASD, identifying gastrointestinal problems remains difficult. However, some 

studies have linked an imbalance of the gut microbiota with ASD.7 

Some metabolic disorders have been found to be more frequent in the autistic population 

compared to the general population. These abnormalities include phenylketonuria, creatine 

deficiency syndromes, adenylosuccinate lyase deficiency, 5-nucleotidase and metabolism of 

purine pyrimidine disorders. The part of metabolic abnormalities that contribute to the 

etiology of autism is still unknown, but these findings suggest that ASD phenotypes may be 

associated to metabolic pathways imbalance. In order to explore this hypothesis, 

metabolomics studies which have already shown their potential in biomarker research in 

central nervous system disorders have been performed.8 

Metabolomics is the study of the metabolome, which represents the whole content of low-

molecular weight compounds present in biological fluids, cells, or tissues.9 Analytical 
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platforms most commonly used to identify and quantify metabolites10–12 are Mass 

Spectrometry coupled to separation techniques such as gas chromatography (GC-MS) or 

liquid chromatography (LC-MS)13 and Nuclear Magnetic Resonance spectroscopy (NMR). 

To date, few metabolomics studies have been described for biomarkers exploration in ASD.14–

17 These studies have been primarily based on urine screenings, since urine can be obtained in 

large quantities by non-invasive sampling. Moreover, repeated sampling is easy to achieve, a 

major consideration in the case of ASD children. These studies have been performed using a 

single analytical platform, based on either NMR or MS technologies. Although they have 

made the proof of concept that exploration of the metabolome allows to classify ASD children 

compared to control, each analytical platform cannot cover the whole diversity of metabolites 

in body fluids (molecular diversity and expression levels). Using a single platform also results 

in partial information and difficulties to confirm identified metabolites as reliable biomarkers. 

In this study, we would like to take the full advantage of NMR and MS complementarity to 

explore the urine metabolome, using the combination of 1H-NMR, 1H-13C-HSQC 

(Heteronuclear single quantum coherence)-NMR and LC-HRMS (Liquid Chromatography 

coupled to High Resolution Mass Spectrometry). One of the challenges of this approach is to 

associate data from different analytical platforms in order to generate a statistical model that 

better represents urinary metabolic differences between children with or without ASD. In 

order to achieve this, we first built independent supervised multivariate models for each 

analytical modality in order to select the most discriminant metabolites, which were then 

concatenated in a new single matrix for a block-scaling model analysis. This multi-platform 

approach, combined with data fusion, gave us the opportunity to better classify children with 

or without ASD compared to a unique analytical platform approach. 
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Experimental section   

Patients and Controls 

Patients who met ASD diagnostic criteria according to the International Classification of 

Diseases 10th Edition18 and the DSM-IV-TR Edition 4th 19 were included in the study after 

medical consultations at the Regional Center for Autism (CRA) in Tours, between 2011 and 

2012. All parents of participants and participants provided informed consent. Urine samples 

were collected from 30 children with ASD and 32 control children living in France.  

The 62 patients urine samples (30 ASD and 32 controls) were split into two sets : (i) a training 

set of 46 samples (22 ASD and 24 controls), and (ii) an independent validation set of 16 

samples (8 ASD and 8 controls). Informations including sex, diagnosis, gastrointestinal 

disturbances and age at sampling were collected for each participant. Urinary samples were 

collected in sterile polypropylene tubes untreated with preservatives. After centrifugation at 

high speed, each urine sample was aliquoted in 1.5 mL sterile Eppendorf tubes and stored at  

-80°C immediately after collection until analysis.  

NMR study 

Sample preparation   

Urine samples were thawed out at room temperature, and centrifuged at 3000 g for 10 min as 

described previously. 14,15 The supernatant (500 µL) was then added with 100µL of phosphate 

buffer (pH = 7.4 ± 0.5) and 100 µL of D2O solution for 1D analysis or 100 µL of D2O with 

internal reference [3-trimethylsilylpropionic acid (TSP), 0.05 wt% in D2O] for 2D analysis. 

Samples were then transferred into conventional 5-mm NMR tubes for NMR analysis. 

 

NMR spectroscopy experiments 
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1H-NMR spectra were obtained as previously described using a Bruker DRX-500 

spectrometer (Bruker SADIS, Wissembourg, France) operating at 500 MHz, using a “cpmg” 

pulse program. 

All sensitivity-enhanced 1H-13C-HSQC spectra were adapted from a previously described 

method on a Bruker DPX Avance spectrometer operating at 300 MHz, using an “hsqcgpphpr” 

pulse program in the Bruker library.  

Data preprocessing for NMR analysis 

Spectra were processed using TopSpin version 2.1 software (Bruker Daltonik, Karlsruhe, 

Germany), then aligned using the work package “speaq”20 in the R program. The aligned 

spectra were then displayed in R, and zones with no peaks were removed from file. Finally, 

intensities of points corresponding to the same peak or nearby peaks were added. These 

buckets corresponded to either single metabolites or a range of overlapped metabolites. The 

signal intensity in each bucket was normalized by the total sum of peak intensities, and 

gathered in the 1H-NMR matrix for further statistical analysis.  

2D spectra were processed using MestReNova version 7.1.0 software (Mestrelab Research, 

S.L., Santiago De Compostela, Spain) as previously described. Each urine spectra was 

normalized with an external reference TSP that served as a chemical shift reference set at 0 

ppm and as a quantitative reference signal. The final 2D matrix contained 677 different 1H-

13C cross-peaks between 10 and 150 ppm. 

Peaks with low variability (relative standard deviation [RSD] lower than 15 %) were excluded 

from all data tables since they would not be good predictive biomarkers.21 

LC-HRMS	study 

Sample preparation   

Samples were prepared from 20 µL of urine, diluted at 1/10 in water or acetonitrile depending 

on the type of analytical column used (for HILIC or C-18, respectively). After vortexing for 
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10 min and a centrifugation of 10 min at 10 000g, 150 µL of the supernatant was transferred 

into a 96 well plate. Quality controls samples (QCs) were obtained from a pooled mixture of 

equal volumes of all urine samples. QCs followed the same pre-analytic and analytical steps 

described above. Fifteen QC samples were injected to equilibrate the chromatographic system 

before each analytic batch. The running order of samples was randomized, and QCs were 

analyzed every 10 samples. 

Liquid Chromatography-High Resolution Mass Spectrometry Analysis 

MS1 analysis 

LC-HRMS analysis was performed on a UPLC Ultimate 3000 system (Dionex), coupled to a 

Q-Exactive mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) and operated in 

positive (ESI+) and negative (ESI-) electrospray ionization modes (one run for each mode). 

The system was controlled by Xcalibur 2.2 (Thermo Fisher Scientific). Four untargeted LC-

HRMS methods were conducted for better metabolome coverage, including C18 and HILIC 

chromatography coupled to electrospray ionization in both positive and negative ion 

polarities. Each sample analysis resulted in four separate data acquisitions. Chromatography 

was carried out with a Phenomenex Kinetex 1.7µm XB – C18 (150 mm×2.10 mm) column 

with a Waters Cortecs 1.6 µm HILIC (150 mm×2.10 mm) column kept at 40°C. For C18 

chromatography, a multi-step gradient (followed by a 2 min equilibration time) had a mobile 

phase A of 0.1% formic acid in water, and a mobile phase B of acetonitrile (ACN) acidified 

with 0.1% formic acid; the gradient operated at a flow rate of 0.2 mL/min over a run time of 

30 min for both negative and positive modes. 

The multi-steps gradient was programmed as follows: 0- 3min: 0 % B; 3-8min: 0-15% B, 8-

15min: 15-50 % B; 15-20min: 50-100 % B; 20-25min: 100 % B; 25-28 min: 100-0 % B. For 

HILIC chromatography, a multi-step gradient (followed by a 2 min equilibration time) had a 

mobile phase A of ammonium formate in water (10 mM) and a mobile phase B with ACN 

containing ammonium formate (10 mM); the flow rate was 0.4 mL/min over a run of 22 min 
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for both positive and negative modes. The multi-steps gradient was programmed as follows:  

0- 5min; 0% A, 5-12min; 0-20% A, 12-18.5min; 20-60% A, 18.5-19.5min; 60% A, 19.5-

20min; 60-0% A. The autosampler temperature (Ultimate WPS-3000 UHPLC system, 

Dionex, Germany) was set at 4°C and the injection volume for each sample was 5µL for C18 

and 10µL for HILIC. 

HESI (heated electrospray ionization) source parameters were, for both modes, a spray 

voltage of 3 kV, capillary temperature of 380°C or 325°C, heater temperature of 350°C or 

325°C, sheath gas flow of 40 arbitrary units (AU) or 35 AU, auxiliary gas flow of 20 AU or 

10 AU, spare gas flow of 2 AU or 1 AU, and tube lens voltage of 50 V or 60 V for C18 or 

HILIC, respectively. During the full-scan acquisition, which ranged from 66.7 to 1000 m/z, 

the instrument operated at 70 000 resolution (m/z= 200), with an automatic gain control 

(AGC) target of 1×106 charges and a maximum injection time (IT) of 250 ms.  

MS2 analysis of VIPs  

Firstly, a pool sample was injected for molecular ion mass determination at a resolution of 

140 000. The most discriminant metabolites (VIPs) obtained from mass spectrometry were 

then further investigated for their identification. Targeted MS2 experiments were conducted 

with an inclusion list of ion mass selected from HILIC and C18 analysis using an isolation 

window for the quadrupole of 0.5 m/z and a resolution of 35 000 (m/z=200) for the 

fragmentation spectrum with an automatic gain control (AGC) target of 2×104 charges, a 

maximum injection time (IT) of 100 ms and a normalized energy collision (Figure S-3). 

Data preprocessing for LC-HRMS analysis 

XCMS software22 implanted in the galaxy platform 

(http://galaxy.workflow4metabolomics.org/) was used to process raw data for peaks alignment 

and framing. This step produced a table of detected features, characterized by sample 

retention time, m/z ratio, and intensity (i.e. peak area). We normalized each peak area to the 

total peak area of each chromatogram. For chromatograms obtained with HILIC column in 
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negative ionization mode, intensities of signals were corrected with Loess23 after we observed 

an analytical deviation of signals before normalization to total peak area. 

CAMERA package24 was used to group isotopes and adducts in order to annotate and to 

identify features. 

The stability of signals intensities across batches was evaluated. Extracted ions 

chromatograms (EICs) were checked in order to review consistency of integration across 

samples, peak shapes, and to exclude background noise. Variability of features passing this 

EIC quality review process was then evaluated. QCs variability given by RSD of each feature 

was assessed. Features with RSD in QCs higher than in samples were excluded. We only kept 

features with RSD in QCs below 30 % for further multivariate analysis. Features greater than 

30 % variance in QC samples were not considered, except if significant variance was 

observed between groups, meaning that biological variability may exceed analytical 

variability.25 Similarly to NMR experiments, we excluded peaks with RSD in samples lower 

than 15 %. 

Data	processing	

Multivariate data analysis 

Quality Control Analysis for LC-HRMS  

Clustering of QC samples was assessed by principal component analysis (PCA) according to 

total peak area data in order to compare analytical variability with biological variability.  

 

Samples batch data analysis 

The 62 patients samples (30 ASD and 32 controls) were split into two sets: (i) a training set of 

46 samples (22 ASD and 24 controls) for the identification of the most discriminants 

metabolites between ASD and control urine samples, and (ii) an independent validation set of 

16 samples (8 ASD and 8 Controls) to evaluate the performance of the classification models. 
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This was accomplished by randomizing samples. The training and independent validation sets 

were matched by age and sex. 

The general workflow for the training set is shown in Figure 1. 

Please insert figure 1 

Each analytical method generated a data table with detected features presented in columns, 

and urine samples presented in lines. The preprocessed data sets were used as input for Simca 

P+ version 13.0 (Umetrics, Umeå, Sweden) and data analysis was preceded by log 

transformation and Unit variance (UV) scaling. The training set of these six data sets were 

tested individually in order to find the best orthogonal partial least square discriminant 

analysis (OPLS-DA) model. Model development was performed in order to: (i) select a 

minimum set of predictive metabolites (VIP, value > 1.0) that are the most implicated in the 

difference between ASD and control urine samples and (ii) test performance of the optimal 

model with Receiver Operating Characteristic (ROC) curve analysis and the validation set 

data. The SIMCA prediction score (Ypred) on the independent validation set was used to build 

the ROC curves. The main benefit of OPLS-DA compared to PLS-DA is its ability to separate 

the systemic variation in variables X into two parts: variation related to class membership to 

variation unrelated to class membership (orthogonal). This partitioning of the X-data will 

facilitate model interpretation and prediction of new samples.26 OPLS-DA models performed 

on training set were then evaluated by cross-validation by withholding 1/7 of the samples in 

seven successive simulations, so that each sample was omitted once in order to prevent 

against overfitting. The set of multiple models resulting from cross-validation was used to 

calculate Jackknife uncertainty measures.27 We set a maximum number of iterations at 200 in 

order to ensure convergence of the OPLS algorithm.28 A Pearson correlation test was 

performed between discriminant variables for each analytical method to remove the 

redundancy of information due to VIPs that correspond to the same metabolites. Each of the 
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six OPLS-DA models performances were assessed using a validation set data and ROC curves 

analysis. 

A data fusion block-scaling model was then generated by combining data tables coming from 

the previous six OPLS-DA models. Block scaling, in the context of data fusion provides a 

way to balance influence of blocks of variables in relation to their size.29 Block scaling allows 

each group of variables to be considered independently as an entity with a specific variance.30 

This final data fusion block-scaling OPLS-DA model was also evaluated using a ROC curve 

analysis.  

 

ROC curves were performed using GraphPad Prism version 6.00 for Windows, La Jolla 

California USA, www.graphpad.com.  

 

Univariate Data Analysis 

Univariate analysis focused on the Variable Importance in Projection (VIP>1) obtained from 

the data fusion block-scaling model using Wilcoxon test. A statistical correction for multiple 

tests was applied in order to adjust the p-value for significance by accounting for the number 

of metabolites evaluated (Bonferonni adjustment). So differences were deemed significant 

when p<0.05/n (n= number of VIP). Statistical analyses were performed with JMP statistical 

software version 7.0.2 (SAS Institute, Cary, NC).  

 

Variable Importance Parameter Annotation 

Most discriminant VIPs in multivariate analyses were investigated to be annotated or 

identified. The VIP assignments for molecular formula elucidation were made with the help of 

seven golden rules in mass spectrometry.31 From molecular formula, free access databases 

queries: Chemspider (http:/www.chemspider.com/), Human Metabolome Database 
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(http:/www.hmdb.ca/), and MassBank (http:/www.massbank.jp/), were used to annotate 

compounds. Finally, each VIP was analyzed at high resolution and by MS2. From HRMS (ion 

mass and isotopic abundances) one or several parent’s structures are generated. To determine 

the structure of these compounds, Mass Frontier software’s fragment comparator gives the 

opportunity to compare fragments derived from different compounds. Firstly, Mass Frontier 

software predicted comprehensive pathways based on a set of general ionization, 

fragmentation and rearrangement rules. Fragmentation spectra were then compared to ab 

initio fragmentation spectra of potential identified metabolites using Mass Frontier.32 

Experimental MS2 mass spectra with fragment structure annotations are given in the 

supplementary data (Figure S-3) which illustrates this compound annotation workflow.  

For VIPs obtained from 2D-NMR (1H-13C-HSQC), chemical shifts were submitted to 

Metabominer database (http://wishart.biology.ualberta.ca/metabominer/). In MetaboMiner, a 

compound is considered to be present if the requirements of minimal signatures are met. A 

minimal signature is defined as the minimum peak set of that can uniquely identify a 

compound from all others in a given spectral library33. A compound is considered potentially 

identified when a minimal signature is highlighted. 

For VIPs obtained from 1H-NMR, we used the Chenomx database (http:/ 

http://www.chenomx.com/) . These queries resulted in metabolites propositions that were 

considered for identification if all chemical shifts of theoretical spectra matched our 

experimental spectra. Chemical shifts of NMR VIPs are given in supplementary information 

(Table S-1). 
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RESULTS AND DISCUSSION 

The 62 patient urine samples (30 ASD and 32 controls) were split into two sets: (i) a training 

set of 46 samples (22 ASD [mean 8.64 years] and 24 controls [mean 8.08 years]) and an 

independent validation set of 16 samples (8 ASD [mean 9.24 years] and 8 controls [mean 9.37 

years]). Informations collected for each participant, including age, sex, age at diagnosis, 

medication and age at sampling, are shown in table 1. Differences of age and sex between 

groups of training sets are not significant (p-value=0.52 for age and p-value=1 for sex) 

likewise for validation set (p-value=0.73 for age and p-value=1 for sex). 

Please insert Table 1 

NMR Experiments 

1H-NMR 

 

1H-NMR spectroscopy, a rapid, robust and reliable analytical tool with high reproducibility, 

has shown its potential to explore the urine metabolome in ASD patients.34,35 

1H-NMR spectra (0 to 9.5 ppm) were divided in 147 buckets. After removing buckets with 

low variability in patients (RSD <15 %), the data table of the training set (138 buckets) was 

analyzed by OPLS-DA. Performances of OPLS-DA internal cross-validated model obtained 

with 8 discriminant variables, were R2Y(cum)=0.52, Q2 =0.37 (Table 2). The sensitivity 

(percentage of ASD children correctly identified) obtained from the OPLS-DA model using 

the training set was 81.8% and specificity (percentage of healthy children correctly identified) 

was 91.7%. OPLS-DA model p-value was significant (p-value= 6.10-4). This OPLS-DA 

model was then externally evaluated using the independent validation set and ROC curve 

analysis. Area under curve (AUC) was 0.83 and p-value was 0.03 (Supplementary material S-

2). The sensitivity and specificity obtained from the ROC curve analysis using the 

independent validation set were lower, with respective values of 62.5% and 87.5% (table 2). 
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This result shows that the internal validation during OPLS-DA model construction overvalued 

prediction’s capacity due to overfitting of data. Assessing classification performances of each 

model by an independent set appears to be necessary in order to minimize this overvaluation. 

 

Please insert Table 2 

 

1H-13C-NMR 
1H-NMR signals can be disturbed by spectral overlap, resulting in a potential lack in spectral 

resolution and making difficult the identification step. To improve the resolution of urine 

components, a two-dimensional NMR (1H-13C-HSQC-NMR) acquisition may be valuable. 

1H-13C-HSQC-based NMR avoids spectral overlap by dispatching the overall information in 

two dimensions. Comparatively to the data table of 138 buckets of 1H-NMR, 1H-13C-HSQC-

NMR a list contained 677 different 1H-13C cross-peaks between 10 and 150 ppm was 

established as previously described due to less overlap of the signals. 

The model obtained by 1H-13C-HSQC-NMR gave a better information on prediction with a 

Q2=0.51 (Table 2) obtained from 7 cross peaks in the optimized OPLS-DA model compared 

to 1H-NMR OPLS-DA model (Q2=0.37). The OPLS-DA model sensitivity for the training set 

was found higher compared to the 1H-NMR (86.36% vs 81.82%). However, specificity was 

found lower compared to the 1H-NMR (75% vs 91.7%). p-value of the 1H-13C-HSQC-NMR 

OPLS-DA model was significant (p-value= 2.10-7). 

Regarding the validation set, AUC ROC curve gives similar results compared to 1H-NMR 

(0.84 vs 0.83) and p-value of 1H-13C-HSQC-NMR ROC curve was 0.03.  

The sensitivity of ROC curve analysis for independent validation was found better compared 

to the 1H-NMR (75% vs 62.5%) with an equal specificity between them (87.5%). There again, 

these results show that overfitting of data in OPLS-DA models could be attenuated by the use 
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of a validation set and a better spectral separation results in a better sensitivity in discriminant 

analysis. 

 

LC-HRMS analysis 

Since only a few untargeted metabolomics studies by LC-MS have been realized with urines 

of ASD patients, and since they have been done using a single chromatographic column type 

(C18),36 we decided, in order to better cover the urine metabolome, to analyze each sample 

using LC-HRMS coupled to a HILIC or C18 column in both positive (ESI+) and negative 

(ESI-) ionization modes. Four independent models were built depending on column 

separation and ionization mode. 

 

Quality control 

Fifteen QC samples were injected to equilibrate the chromatographic system before each 

analytical batch.  

PCA scatter plot of QCs and samples were analyzed in order to compare analytical and 

biological variabilities for each batch. As shown in supplementary data, figure S-1, the 

clustering of QCs compared to samples clearly shows that biological variability exceeds the 

analytical one. This QCs step validates all batches series. 

 

HILIC analysis 

HILIC provides a good separation for polar metabolites that are of major abundance in urine. 

This is the first study performed with HILIC chromatography in order to explore ASD urine 

metabolome. After data preprocessing (see section II.3.3), data tables contained 1067 and 845 

features in ESI+ and ESI-. Multivariate analysis gave the similar ability to separate the two 
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populations of urine samples with slightly better statistical values (R2Y(cum)=0.51 and Q2 

=0.47) for ESI+ compared to ESI- (R2Y(cum)=0.4 and Q2 =0.34). 

OPLS-DA model’s sensitivities (built with 9 and 4 variables from ESI+ and ESI- respectively) 

were 86.4% and 77.3% for ESI+ and ESI- respectively. Likewise, OPLS-DA model’s 

specificity were 91.7% and 79.2% for of ESI+ and ESI- respectively. AUCs curves for the 

validation set (ESI+ and ESI- respectively) were 0.70 and 0.64 ((Supplementary material S-

2). Model’s curves were not found to be significant (p>0.05), unlike p-values of OPLS-DA 

models that were significant (table 2). Reasons for these discrepancies could be an OPLS-DA 

models overfitting and/or a too small number of samples for the validation set. 

C18 analysis 

Reverse-phase separations are ideal for relatively non-polar metabolites. 1555 and 1226 

features in ESI+ and ESI-, respectively, were selected as repeatable. From C18 ESI- data, an 

OPLS-DA model built with 11 discriminant variables, gave statistical parameters R2Y(cum)= 

0.48 and Q2= 0.39 (table 2). The sensitivity and specificity of this OPLS-DA model were 

86.36% and 75% respectively with a significant p-value of 2.10-5. Performances of this model 

were also evaluated using ROC curve and we found similar sensitivity and specificity 

compared to the OPLS-DA model (table 2). AUC was found to be 0.83 with a significant p-

value 0.03 (Supplementary material S-2). The significant p-value of ROC curve confirms here 

that the OPLS-DA model is able to classify ASD patients and controls with minimum 

overfitting. 

The OPLS-DA model obtained with 9 discriminant variables from C18-ESI+ data gave better 

information on the class descriptor with a R2Y(cum)=0.64. Moreover, compared to other LC-

HRMS modalities, ESI+ model gave highest predictive ability with a Q2=0.53 and a p-value 

of 3.10-6. OPLS-DA model sensitivity and specificity were 90.9% and 91.7% respectively. 

Despite these models results, the ROC curve AUC value was not found to be significant (p-

value 0.06). 
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Multivariate Statistical Analysis of the combined 1H-NMR, 1H-13C-HSQC-NMR, 

ESI±C18 column and ESI±HILIC column 

The fusion and extraction of information from multiple data tables has become a decisive 

issue.37 Several strategies can be used to associate data from different analytical platforms. 

The simplest approach is to concatenate the different data sets in a low-level fusion approach 

where the data matrix results in a fused data table that is used for multivariate analysis.38 This 

approach is greatly affected by disparate signal intensities range and size of data matrix 

obtained from the different analytical platforms. In order to resolve this issue, the selection of 

the most relevant/predictive variables from each data tables may solve the problem of 

dimensionality. Such strategies are called intermediate or mid-level data fusion.39 The model 

responses are combined in order to produce a final ‘fused’ response that provides a 

meaningful synthesis. Following a mid-level data fusion strategy, the most discriminant 

variables of each analytical platform (1H-NMR, 1H-13C-HSQC, C18 ESI±, and HILIC ESI±) 

were selected and combined in order to build a data fusion block-scaling model. Since a 

subset of the most valuable variables can be selected from each data sources, the prediction 

performance can be increased when compared with individual analysis. While some signals 

are expected to be common to different blocks, the remaining would be specific and should 

bring complementary information. Since a data fusion model could be dominated by the 

largest matrices for numerical reasons, the fairness between blocks was ensured by UV 

scaling normalization. 

We first built six independent OPLS-DA models in order to select the most discriminant 

variable (VIP >1.0) for each analytical platforms: 8, 7, 7, 11, 9 and 4 variables from 1H-NMR, 

1H-13C-HSQC, C18 ESI+, C18 ESI- , HILIC ESI+ and HILIC ESI-, respectively. An equal 

weight was then assigned to each block corresponding to each analytical platform in the data 

table.  
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The data fusion block-scaling model was obtained from X=46 features giving performances 

parameters R2Y(cum)=0.88 Q2=0.75, p-value=9.10-12 and 100% of specificity and sensibility 

(table 2, figure 2). 

When we performed the ROC curve analysis, an AUC of 0.91 was obtained with a significant 

p-value 0.006 (table 2, figure 2). In addition, sensitivity was found to be improved when 

compared to each separate analytical platform. 

 

Please insert figure 2 

 

Besides its classification capacities, OPLS-DA model gives the opportunity to highlight 

metabolites that are the most involved with this classification. 

Table 3 shows the most discriminant metabolites (VIP>1), their variations in ASD group and 

univariate p-value associated.  

 

Please insert table 3 

 

Firstly, we found higher levels of N-acetylarginine in the ASD group compared to controls. 

Arginine has been described to be higher in plasma samples of ASD children.40 Excessive 

arginine is thought to induce oxidative stress via NO production.41 We also found 

perturbations of guanidinosuccinic acid and methylguanidine which are produced from 

oxidation of argininosuccinic acid and creatine respectively by free radicals.42,43 The exact 

relationship between arginine pathway and oxidative stress in neuropsychiatric disorders 

remains unclear; however, a common susceptibility gene for ASD and schizophrenia, NOS1, 

has been suggested to be involved in the arginine-NO pathway.44,45 This metabolic profile is 

consistent with impaired oxidative stress in children with autism.46 The exact relationship 

between guanidino compounds pathway and autism needs further investigation. 
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Dihyroxy-1H-indole glucuronide I and desaminotyrosine, which are related to tyrosine 

metabolism, were also found in the most discriminant metabolites. These results, associated to 

perturbations of level of valine47,48 and N-acetylasparagine, are in agreement with 

perturbations of amino acids levels published by Tu et al48 and may be interpreted as 

abnormal amino acids metabolism affecting neurotransmitters levels such as dopamine, 

noradrenaline and epinephrine as observed in ASD children.48 

Level of dihydrouracil, an intermediate breakdown product of uracil, was found altered in 

ASD children’s metabotypes. Purines and pyrimidines disorders such as dihydropyrimidine 

dehydrogenase or dihydropyrimidinase deficiencies, adenylosuccinate lyase or adenosine 

deaminase deficiencies, have been linked to autistic features. 

Deficiencies of dihydropyrimidine dehydrogenase, the enzyme which catalyzes the 

conversion of uracil to dihydrouracil have been linked to ASD. Indeed, symptoms of this 

pyrimidine disorder include psychomotor retardation, epileptic encephalopathy and autistic 

features. 

Recent studies have shown that an antipurinergic therapy could reverse the behavioral and 

metabolic disturbances in the maternal immune activation mouse model49,50 and in the Fragile 

X (Fmr1 knockout) mouse model. From these two mechanically distinct examples of ASD 

mouse models, the purinergic pathway is a neurochemical hypothesis that triggers the 

evolutionarily conserved cell danger to stress that may be associated with ASD. 

Indoxyl and indoxyl sulfate, which are produced by tryptophan metabolism in gut bacteria, 

were found here as metabolite candidates (from different analytical modality: NMR 1D and 

2D and HILIC ESI+) and confirmed our previous results.14 Since indoxyl sulfate has been 

found as a VIP in more than one analytical platform, it may be assumed that this metabolite 

expression is modified between our two groups of children. 
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Desaminotyrosine, which can also be the result of deamination of tyrosine by intestinal 

microflora51,52, was found increased in the ASD group. Moreover, a recent study by Noto et al 

using GC/MS as an analytical platform points out a gut microbiota dysfunction, including 

tyrosine metabolism perturbation.53 Our study also points out perturbations of 

phenylacetylglutamine (PAG) and p-cresol sulfate concentrations, which are also produced by 

the microbiota respectively from tyrosine54 and phenylalanine.55 These results which 

confirmed those previously reported15,55 underline the importance of mammalian-microbial 

cometabolites in ASD 16,17,53, supporting emerging evidence for a gut-brain connection in 

autism, wherein gastrointestinal microbiota may contribute to the ASD symptoms.56 It has to 

be noticed that half of our autistic cohort is clinically diagnosed as suffering of 

gastrointestinal disturbances that include diarrhea, constipation and colitis. 

Whether it is the cause or the consequence of autism’s physiopathology, our results confirm 

that gut microbiome seems to be associated with this disorder. 

It has been recently shown that there are Gender differences in emotional and sociability in 

children with autism spectrum disorders57. This suggests that, in addition to phenotypic 

differences, there are metabotype differences linked to gender. One should keep in mind that 

the statistical power of our study is related to the small size of our groups of patients (training 

and control sets), emphasized by the small number of patients enrolled. Since only a few 

females have been included in this study, this tends to decrease the biological significance of 

our conclusions. However, significant metabolic differences found in this work between ASD 

and control children may underline a typical general metabolic signature of ASD. 

 

Conclusion: 

Discovery of biomarkers for an early diagnosis of ASD, as well as a follow up of its evolution 

for an improved patient care, is still a challenge to achieve. Because of its non-invasive 

accessibility and since it has already shown its potential for containing discriminative 

metabolites, we decided to explore the children’s urines metabolome as deep as possible, 
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using six complementary analytical platforms.: 1H-NMR, 1H-13C NMR, ESI+ ESI- LC-MS 

with C18 and HILIC chromatographic support.  

Firstly, our results highlighted and confirmed that several metabolic pathways belonging to 

amino acids including tyrosine, asparagine, phenylalanine, tryptophan and arginine— seem to 

be involved in ASD. In addition, as other studies have previously shown, a gut dysbiosys is 

likely to be associated with ASD. It has to be noticed that all these metabolism perturbations 

could be observed in a single study, thanks to the use of a multiplatform strategy that enabled 

a deep exploration of the metabolome. Secondly, our results show that OPLS-DA model 

construction based on data fusion and block scaling by combining the most discriminant 

variables from multiple analytical methods, results in a valuable model of prediction. Using 

the complementarity of analytical methods associated to the selection of the most relevant 

variables, our OPLS-DA model has a raised the predictive power with an AUC of 91 % in the 

validation set, which confirms the promise of combining multiple analytical methods by 

multivariates analyzes.  

Our results need to be validated within a larger cohort of patients, firstly in order to confirm 

this metabolites panel as a potential clinical tool, but also in order to explore the metabotype 

variability associated with ASD phenotype’s heterogeneity especially when considering the 

gender. 

 

Associated content 

Supporting information 

Two figures showing PCA of QC samples, and ROC curve analysis for each analytical 

platform. This material is available free of charge via the Internet at http://pubs.acs.org. 

Contents:  

Figure S-1: PCA scatter plot of quality controls (QCs) and controls injected during each batch 

analysis. ASD patients, controls and QCs are respectively colored in blue, green and grey.  
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a) scatter plot for HILIC ESI-,b) scatter plot for HILIC ESI+, c) scatter plot for C18 ESI- and 

d) scatter plot for C18 ESI+ 

Figure S-2: ROC curves for independent validation set for each analytical modality.  

a) 1H-NMR, b) 1H-13C-NMR, c) HILIC ESI+, d) HILIC ESI-, e) C18 ESI+ and f) C18 ESI- 

Figure S-3: MS2 spectra of most discriminant metabolites putatively annotated in multivariate 

analysis: a) dihydroxy-1H-indole glucuronide I, b) Dihydrouracil, c) N-α-Acetyl-L-arginine, 

d) N-acetylasparagine, e) Desaminotyrosine, f) Guanidinosuccinic acid, g) indoxyl, h) N-α- 

Phenylacetyl-L-glutamine, i) p-cresol sulfate 

Table S-1: putatively annotated metabolites detected by NMR (VIP>1). 
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Table 1: ASD and controls groups characteristics  

a Data are expressed as mean 

 

 

 

 Training set Independent validation set 

 ASD (n=22)  Controls (n=24) ASD  (n=8) Controls (n=8) 

age, years  a   8.64 ± 3.62 8.08 ± 3.67 9.24±3.79 9.37±4.07 

no. of males (%)  a 19 (86.36%) 21 (87.50%) 7 (87.50%) 6 (75%) 

no. of females (%)  a 3 (13.64%) 3 (12.50%) 1 (12.50%) 2 (25%) 

Diagnostic     

Autism disorder 9 0 2 0 

Asperger Syndrome 2 0 0 0 

PDD-NOS 11 0 6 0 

Neurotypical 0 24 0 8 

Gastro-intestinal disturbance     

yes 9 NA 5 NA 

no 12 NA 3 NA 

NA 1 24 0 8 
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Table 2: Summary of statistical values of OPLS-DA models and ROC curve analysis of training set 

and independent validation set obtained with the different methodologies. The different cumulated 

modeled variations in Y (R2Y(cum)] matrices on spectral datasets and predictability of the model 

(Q²) are given [observations (N)=46]. 

Models Training set (OPLS-DA model) validation set (ROC curves) 

 
X 

variables 

R2Y 

(cum) 

Q2 

(cum) 
Sensitivitya Specificityb p-valuec AUC p-valuec Sensitivitya Specificityb 

1H-NMR 8 0.52 0.37 81.8% 91.7% 6.10-4 0.83 0.02 62.5% 87.5% 

1H-13C-NMR 7 0.59 0.51 86.4 % 75.0 % 2.10-7 0.84 0.03 75.0 % 87.5 % 

HILIC ESI+ 9 0.51 0.47 86.4 % 91.7% 1.10-6 0.70 0.17 100 % 62.5% 

HILIC ESI- 4 0.40 0.34 77.3 % 79.2 % 1.10-3 0.64 0.34 62.5 % 75.0 % 

C18 ESI+ 7 0.64 0.53 90.9 % 91.7% 3.10-6 0.78 0.06 62.5 % 87.5 % 

C18 ESI- 11 0.48 0.39 86.4 % 75.0 % 2.10-5 0.83 0.03 87.5 % 75.0 % 

 

 

 

a Sensitivity (Sn = the number of diseased subjects that are correctly identified as diseased). 

b Specificity (Sp =the number of healthy subjects that are correctly identified as healthy) on 

training set and validation set.  

c p-value of ROC curve analysis  

 Training set (OPLS-DA model) validation set ( ROC curve) 

 
X 

variables 

R2Y 

(cum) 

Q2 

(cum) 
Sensitivitya Specificityb p-valuec AUC p-valuec Sensitivitya Specificityb 

Block Model 46 0.88 0.75 100 % 100 % 9.10-12 0.91 0.006 100 % 75.0% 
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Table 3: putatively annotated metabolites of data fusion OPLS-DA model (VIP>1) 

Analytical platform Potential assignment p-valuea Differentiation for 
ASD samplesb 

C18 ESI- Dihyroxy-1H-indole glucuronide I 0.005 ↑ 

C18 ESI+ Dihydrouracil 0.03 ↓ 

C18 ESI+ N-a-Acetyl-L-arginine 0.009 ↑ 

C18 ESI+ Unknown 0.009 ↓ 

C18 ESI+ Unknown 0.006 ↑ 

C18 ESI+ N-Acetylasparagine 0.03 ↑ 

C18 ESI+ Desaminotyrosine 0.006 ↓ 

C18 ESI+ Guanidinosuccinic acid 0.007 ↓ 

HILIC ESI+ Indoxyl 0.01 ↑ 

HILIC ESI+ Unknown 0.003* ↓ 

HILIC ESI+ Valine, norvaline, 5-aminopentanoic acid 0.007 ↑ 

HILIC ESI- Unknown 0.0004* ↑ 

HILIC ESI- Alpha-N-Phenylacetyl-L-glutamine 0.004 ↑ 

HILIC ESI- p-cresol sulfate 0.02 ↑ 

RMN 1D Indoxyl sulfate 0.01 ↑ 

RMN 1D Methylguanidine 0.003* ↓ 

RMN 2D Valine 0.06 ↑ 

RMN 2D Indoxyl sulfate 0.003* ↑ 

RMN 2D Glucuronic acid 0.009 ↑ 

 

a p-value of univariate analysis (Wilcoxon test) 

b ↑ denotes higher level in ASD urines, ↓ denotes lower level in ASD urines 

* significant p-value after Bonferroni correction (p<0.003) 
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Figure 1: workflow of treatment of data tables from NMR and LC-HRMS analysis 

Figure 2: OPLS-DA model and ROC Curve analysis obtained from training set and 

independent validation set. a) data fusion block-scaling of OPLS-DA model on training set 

[R2Y(cum)=0.88 Q2=0.75, p =9.10-12], b) ROC curve analysis of independent validation set 

(8 ASD and 8 controls). 
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