
HAL Id: hal-02104488
https://hal.science/hal-02104488

Submitted on 19 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting and Integrating Expected Answer Types into
a Simple Recurrent Neural Network Model for Answer

Sentence Selection
Sanjay Kamath, Brigitte Grau, Yue Ma

To cite this version:
Sanjay Kamath, Brigitte Grau, Yue Ma. Predicting and Integrating Expected Answer Types into a
Simple Recurrent Neural Network Model for Answer Sentence Selection. 20th International Conference
on Computational Linguistics and Intelligent Text Processing, Apr 2019, La Rochelle, France. �hal-
02104488�

https://hal.science/hal-02104488
https://hal.archives-ouvertes.fr

Predicting and Integrating Expected Answer
Types into a Simple Recurrent Neural Network

Model for Answer Sentence Selection

Sanjay Kamath1,3, Brigitte Grau1,2, and Yue Ma3

1 LIMSI, CNRS, Université Paris-Saclay, Orsay, France
2 ENSIIE, Université Paris-Saclay, Évry, France

3 LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
{sanjay, ma}@lri.fr, bg@limsi.fr

Abstract. Since end-to-end deep learning models have started to re-
place traditional pipeline architectures of question answering systems,
features such as expected answer types which are based on the ques-
tion semantics are seldom used explicitly in the models. In this paper,
we propose a convolution neural network model to predict these answer
types based on question words and a recurrent neural network model to
find sentence similarity scores between question and answer sentences.
The proposed model outperforms the current state of the art results on
an answer sentence selection task in open domain question answering by
1.88% on MAP and 2.96% on MRR scores.

Keywords: Question answering · Deep learning · Answer sentence se-
lection · Expected answer types · Sentence similarity

1 Introduction

Question answering systems in recent times have mainly been dominated by
neural network approaches that fetch state of the art results across different NLP
tasks. Open domain question answering tasks include answer sentence selection,
reading comprehension, multi-hop reasoning and reading etc. An example of a
question answer pair from a dataset:
Q: How a water pump works?
A: pumps operate by some mechanism (typically reciprocating or rotary), and
consume energy to perform mechanical work by moving the fluid.
An answer sentence selection model would retrieve the entire sentence from a
paragraph as an answer. A common goal of the neural network models is to build
end to end approaches which do not rely on intermediate tools or data provided
by other systems. Some recent works such as BERT [3] and ELMO [11] use pre-
trained language models trained with large neural network architectures and
use it to fine tune downstream NLP tasks. These methods outperform current
state of the art systems for reading comprehension as well as many other tasks.
However, training such models on large datasets and the requirement of large
scale computation power is sometimes not a feasible solution.

2 Kamath et al.

Other state of the art models such as QANet [19] on SQUAD and other
end to end approaches try to implicitly learn information such as entity types,
part of the speech tags, named entities, syntactic dependencies etc. and perform
downstream tasks. But the challenge still remains in understanding whether or
not they utilize such information implicitly or just overfit over the datasets and
their unintended bias. A feasible yet challenging approach would be to utilize
both the power of neural networks approaches and explicit information such as
entity types, dependencies, tags, together.

Expected Answer Types (referred to as EAT hereafter) is one such vital in-
formation which is important for question answering systems to detect which
type of answers do the questions require. Some examples of EAT with questions
are listed below:

Question: Which NFL team represented the AFC at Super Bowl 50?
Expected Answer Type: HUM.

Question: Where was franz kafka born ?
Expected Answer Type: LOC.

[15] refer to this information as Question Classes in their work and show a
significant improvement over a previous state of the art DNN model on TrecQA
dataset which uses only word level information.

Our contributions in this article are as follows. We introduce two different
ways of using Question Classes which is further referred as EAT or Expected
Answer Types and experiment with several datasets along with TrecQA to de-
termine if this would work better for a wider range of large scale datasets by
using a simple model of a recurrent neural network which uses a pre-attention
mechanism. To annotate other datasets apart from TrecQA, with EAT informa-
tion, we propose a multiclass classifier model which is trained on a dataset built
by using an existing rule-based system which predicts EAT for questions.

We report our findings on WikiQA, SQUAD-Sent and TrecQA dataset perfor-
mance and show that we outperform state of the art results on TrecQA dataset4

by the two different ways of highlighting Expected Answer Types in the data.

2 Related Work

Answer sentence selection task has been extensively studied with different ap-
proaches ranging from n-gram models to neural network models. In former fea-
ture based QA systems, the Expected Answer Type (EAT) has been shown as
a very important feature [7]. The EAT corresponds to an entity type organized
in answer type taxonomies, as in [8] for the open domain or semantic types in
biomedical domain as in [5].

Recent works on this task focus mainly on convolutional neural network ap-
proaches. [14] propose a CNN model using learning to rank approach, which

4 https://aclweb.org/aclwiki/Question Answering (State of the art)

Expected Answer Types in Answer Selection 3

computes a representation of both entries, candidate passage and question, and
a similarity between these two representations using a pooling layer followed by
similarity matrix computation. In [18], the similarity of the two entries is evalu-
ated by computing interactions between words of the two texts by an attention
layer. [4] propose a Multi-Perspective CNN for this task which was further used
by [13] with a triplet ranking loss function to learn pairwise ranking from both
positive and negative samples. [15] use the same model but use Question Classes
to enhance the dataset with highlighting entities in it. Highlighting entities were
done by mainly two ways called Bracketing (appending a special token before
and after the entity occurrence) and Replacement (replacing the entity word
with a special token) methods. Our work uses a similar technique by replacing
the entity word with special tokens but allows to learn them according to the
expected types. The leaderboard of TrecQA evaluation4 reports the state of the
art scores from different methods reported by several articles.

3 Answer Sentence Selection

Answer sentence selection is a question answering task which is also referred
sometimes as sentence reranking task. The task involves reranking a set of sen-
tences S = {S1,, Sm} for a question Q, so that the correct sentences are
ranked first. Sentence set S can contain the mixture of both negative and posi-
tive sentences relevant to the question, often more than one positive sentence.

We model this task as a pairwise similarity scoring task. For each sentence
related to a question, we compute a similarity score against the question sentence
and answer sentence. i.e., (Qi − Si,j , Qi − Si,j+1, Qi − Si,j+2,Qi − Si,j+n).

3.1 RNN-Similarity

Recurrent neural networks such as LSTMs and GRUs are widely used in several
NLP tasks like machine translation, sequence tagging, and question answering
tasks such as reading comprehension and answer sentence selection. We propose
a simple model with recurrent neural networks and an attention mechanism to
capture sequential semantic information of words in both questions and sentences
and predict similarity scores between them. We refer to this model further in this
article as RNN-Similarity model. Figure 1 shows the architecture of the model.

Question words Q = {q1,, qm} and Sentence words S = {s1,, sn} are
sequences which are encoded using an embedding layer of dimension D.

E(Q) = {E(q1), .., E(qm)} (1)

E(S) = {E(s1), .., E(sn)} (2)

A pre-attention mechanism captures the similarity between sentence words
and questions words in the same layer. For this purpose, a feature Falign shown
in Equation 3 is added as a feature to the LSTM layer.

4 Kamath et al.

Fig. 1. Proposed RNN-Similarity model

Falign(pi) = Σjai,jE(qj) (3)

Where ai,j is,

ai,j =
exp (α(E(si)) · α(E(qj))

Σj′ exp(α(E(si)) · α(E(qj′))
(4)

which computes the dot products between nonlinear mappings of word em-
beddings of question and sentence.

The above process is similar to [1] who use LSTMs to model Question and
Paragraph to encode the words for reading comprehension task. We use 3-layer
Bidirectional LSTM layers for both question and sentence encodings.

{E(q1), .., E(qn)} = Bi-LSTM({Ẽ(q1), .., Ẽ(qn}) (5)

{E(s1), .., E(sn)} = Bi-LSTM({Ẽ(s1), .., Ẽ(sn}) (6)

The LSTM output states are further connected to a linear layer and a sigmoid
non-linear activation function is applied on the output of the linear layer which
outputs the score ranging between 0-1, which signifies the similarity between the
question and the answer sentence.

Expected Answer Types in Answer Selection 5

For the Expected Answer Types (EAT) version of question and sentences, we
create special tokens for the entity type that are used for encoding the question
Q and each sentence S.

3.2 Highlighting Single Entity and Multiple Entity Types

- Method Question Sentence

1 Original text

Who is the author of
the book, The Iron Lady:
a biography of Margaret
Thatcher

in The Iron Lady, Young
traces the greatest
woman political leader
since Catherine the Great.

2
Replacement - [15]
(EAT Single type)

Who is the author of the
book, The Iron Lady: a
biography of Margaret
Thatcher max entity left
entity left

in The Iron Lady,
max entity left traces
...... the greatest woman
political leader since
entity left.

3
EAT
(Different types)

Who is the author of the
book, The Iron Lady: a
biography of Margaret
Thatcher max entity left
entity hum

in The Iron Lady,
max entity left traces
...... the greatest woman
political leader since
entity hum.

4
EAT
(MAX + Different
types)

Who is the author of
the book, The Iron Lady:
a biography of Margaret
Thatcher max entity hum
entity hum

in The Iron Lady,
max entity hum traces
...... the greatest woman
political leader since
entity hum.

Table 1. Three methods for replacing entities along with an example from TrecQA
dataset

The authors of [15] propose a method of replacing words by special token
embeddings for highlighting entities that catch the EAT entity in sentences. In
our work, this method is referred to as “EAT (single type)” in the following ex-
periments. The entities belong to (HUM, LOC, ABBR, DESC, NUM or ENTY).
HUM refers to a description, group, individual, title. LOC refers to city, coun-
try, mountain, state. ABBR refers to abbreviation, expansion. DESC refers to a
definition, description, manner, reason. NUM refers to numerical values such as
code, count, date, distance, money, order etc. ENTY refers to a numerous entity
types such as animal, body, color, creation, currency, disease etc. More details
regarding the taxonomy can be found in [9].

The entities, irrespective of which class they belong to, are treated simi-
larly by replacing them by two special tokens entity left for entity occurrences
and max entity left for maximum occurring entity that corresponds to an entity
that is at least twice the number of occurrences when compared to the second

6 Kamath et al.

maximum occurring entity. Entity types are recognized using the named entity
recognition tool. When an entity type in a sentence matches the EAT from the
question, entity left token is used to replace the entity mentions in the sentences;
same applies for the maximum occurring entity token max entity left as well.

Our proposition is to replace an entity according to the type it belongs to
instead of replacing all kinds of entity by just one word i.e. entity left. We do it
based on the different types of EAT it belongs to based on the taxonomy used
in the original work. The intuition behind this method is that the model would
learn to better map the relations between question words and specific entity type
tokens when used in a model with attention mechanisms, rather than learning
the relation between question words and the same generic entity type token for
all entities. This way, we can learn a different behaviour with an entity about
location and with an entity about a person for example.

The example in Table 1 line 3 refers to an example that has an EAT as
“HUM” from the taxonomy, so we replace it as entity hum. We do the same
for other expected answer types such as entity loc for “ LOC” type, entity enty
for “ ENTY” type, entity num for “NUM” type, entity desc for “DESC” type,
entity abbr for “ABBR” type. We replace the entity mentions in the text whose
types are matching the EAT from questions.

We also experiment with a variant where the max entity left is replaced with
the entity type along with other entities. If the maximum entity is of type
“HUM”, we replace it as max entity hum. This method is referred to as “EAT
(MAX + different types)” in the following experiments. We create a random
word embedding ranging between (-0.5 - 0.5) with dimension D for each of the
EAT words and encode the word with this embedding when it appears in all our
experiments.

4 Experiments

We perform experiments on three datasets namely 1) TrecQA, 2) WikiQA, 3)
SQUAD-Sent with and without EAT annotations. Thus we had to develop our
own annotation tools.

4.1 Annotation of the EAT

Since SQUAD-EAT (see section 4.3) is the result of a rule-based method with
a high accuracy score (97.2% as reported in [9]), we use it to train a multiclass
classifier based on a CNN model for text classification5 by [6], by modifying the
outputs into a multi-class setting. We further refer to this as EAT Classifier. We
use 300 dimensions GloVe embeddings by [10].

The output classes of the classifier refer to a type based on the taxonomy
such as ABBR, DESC, ENTY, HUM, LOC, NUM and a ”NO EAT” class to
signify an EAT which is not in the above list of classes. We do not use the fine

5 https://github.com/cmasch/cnn-text-classification

Expected Answer Types in Answer Selection 7

level taxonomy in this work because of a resulting large number of classes with
sparse distribution of samples in the dataset.

Below is an example from SQUAD-EAT with HUM:
Question: Which NFL team represented the AFC at Super Bowl 50?
Expected Answer Type: HUM.
We train the multi-class classifier model using the SQUAD-EAT dataset

which gets an accuracy score of 95.17% on the SQUAD-EAT dev in our ex-
periment, according to the annotation done by [15] as reference.

4.2 Annotation of the entities

EAT Spacy annotated tag

HUM PERSON, ORG, NORP

LOC LOC, GPE

ENTY PRODUCT, EVENT, LANGUAGE, WORK OF ART, LAW, FAC

NUM DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL

Table 2. Spacy named entity annotation scheme following OntoNotes 5 corpus mapped
with EAT types

We detect the entities in the sentences using Dbpedia Spotlight tool by [2].
The detected entities by spotlight are verified for their entity type match using
the Spacy NER tool which is mapped to EAT using the mapping shown in
table 2. Only the matching entities are highlighted and others are discarded. We
replace the special token by adding one for the maximum occurring entity, which
is described in Section 3.2.

4.3 The Data

TrecQA dataset is a standard dataset used to benchmark state of the art sys-
tems for answer sentence selection task. The authors of [9, 15] provide the EAT
annotations for the TrecQA dataset based on their rule-based approach.

We modify the QA dataset SQUAD by [12] designed for machine compre-
hension, into an answer sentence selection dataset to provide the answers in
their original context. We name it as SQUAD-Sent. We do this by processing
the dataset where each example is usually a triple of Question, Paragraph and
Answer span (Text and the answer start offset in the paragraph) into a dataset
where each triple is a Question, Sentence and Sentence label. The sentence label
is 1 if the answer is present inside the sentence, else it is 0. We perform sentence
tokenization using spacy toolkit6 on paragraphs of SQUAD and perform a check
for an exact match of answer strings in them. SQUAD-Sent is a special case

6 https://spacy.io

8 Kamath et al.

dataset where there is just one positive sentence per question and the other sen-
tences are negative examples. The motivation to do this is because of the large
scale property of this dataset, compared to the other datasets, with human-
generated questions. For the expected answer types of SQUAD questions, we
use SQUAD-EAT which is a dataset with EAT annotated questions on SQUAD
v1 dataset questions which is annotated by the authors of [9,15] on our request.

WikiQA dataset by [17] is another dataset used for answer sentence selection
task which was built using Bing search engine query logs. We use a preprocessed
version as used by [13] which has removed certain examples without any positive
answers and questions with more than 40 tokens to compare the scores. The
questions and answer sentences are annotated with EAT information as described
in section 4.1.

Table 3 shows the statistics of the datasets with EAT annotated questions
and plain word level questions (regular datasets) and the number of entities
annotated in each set. EAT version of TrecQA dataset is as reported in [15] and
available through this link7.

Dataset Split #Plain Q #EAT Q #Entities

Trec QA
Train 1229 649 9064
Dev 82 76 382
Test 100 82 597

SQUAD-Sent
Train 87,599 78,740 35087
Dev 10,570 9,606 4757
Test - - -

Wiki QA
Train 873 859 132
Dev 126 124 4
Test 243 236 38

Table 3. Statistics of datasets with plain and EAT annotated questions. ‘#’ refers to
“Number of.”

4.4 Implementation

We implement the RNN-Similarity model in Pytorch, and we use MSELoss
(Mean Squared Error loss) to minimize the error of predictions for relevance
scores. We use adamax optimizer and keep the missing word embeddings as zero
embeddings. We implement the EAT Classifier using the CNN model available
online8 and used Keras to implement the multiclass classifier which uses GloVe
embeddings as input. The code for both the models along with default hyperpa-
rameters is publicly available on Github 9.

7 www.harishmadabushi.com/research/answer-selection/
8 https://github.com/yoonkim/CNN sentence
9 https://github.com/rsanjaykamath

Expected Answer Types in Answer Selection 9

4.5 Results

Datasets Method Acc.@1 MAP MRR

TrecQA

Plain words - [13] - 78 83.4
EAT words - [15] - 83.6 86.2
Plain words - RNN-S 78.95 80.24 84.81
EAT words (single type) - RNN-S 85.26 85.28 89.16
EAT words (different types) - RNN-S 85.26 85.48 88.11
EAT words (MAX+different types) - RNN-S 86.32 85.42 88.86

WikiQA

Plain words - [13] - 70.9 72.3
Plain words - [16] - 75.59 77.00
Plain words - RNN-S 56.79 69.07 70.55
EAT words (single type) - RNN-S 56.38 68.63 70.59
EAT words (different types) - RNN-S 58.4 70.04 71.56
EAT words (MAX+different types) - RNN-S 57.20 69.17 70.89

SQUAD-Sent

Plain words - Implementation10 of model by [13] - - 58.08
Plain words - RNN-S 83.94 - 90.5
EAT words (single type) - RNN-S 84.21 - 90.65
EAT words (different types) - RNN-S 84.26 - 90.70
EAT words (MAX+different types) - RNN-S 84.24 - 90.69

Table 4. Results reported on TrecQA, WikiQA, and SQUAD-Sent datasets. SQUAD-
Sent dataset is a modified version for answer sentence selection task. RNN-S is RNN-
Similarity model.

Table 4 shows various results on different versions of datasets. Note that
the questions in the following experiments of Table 4 contain all the questions
from the datasets, which includes questions which are highlighted with EAT
and questions which are not highlighted with EAT as well. Note that we test
our systems on the Raw version of TrecQA test dataset.

TrecQA : The current state of the art system is by [15] that uses EAT on word
level model of [13]. Henceforth both results are presented. Our model RNN-
Similarity on plain word level data fetches better result than the model of [13] by
2.24 % on MAP and 1.41 % on MRR. Our EAT words (single type), EAT words
(different types) and EAT words (MAX + different types) models outperforms
the state of the art performance for both MAP (1.68%) and MRR (2.96%) scores
of the previous state of the art model by [15] where the MAP and MRR scores
are higher for correct sentences being ranked as top 1.

WikiQA : Although a recent model by [16] which uses kernel methods outper-
forms all the scores of our model, we note that the performance on our EAT level
models is higher than the ones on plain words. Only a few number of entities are

10 Kamath et al.

annotated by spotlight compared to other datasets which is shown in the table
3. To annotate entities better we experimented using Spacy NER types directly
which resulted in more annotated entities but reduced the performance lower
than the word level scores.

SQUAD-Sent : SQUAD official test set is hidden to the public users. Although
the difference between word level and EAT word level is little, the difference high-
lights the fact that the entity words replaced in the sentence would not worsen
the performance of the systems; instead it improves it subtly. We would like to
note that the MAP and MRR values were the same because of the existence
of just 1 positive sentence amongst other negative per question. Hence we only
report MRR on this dataset. Plain words - [13] performance is obtained using
the implementation available online11, which we experimented on SQUAD-Sent
dataset.

One aspect to be highlighted is that the implementation11 of word level
model by [13] originally made for TrecQA dataset performs poorly (58.05%)
SQUAD-Sent dataset (maybe because SQUAD-Sent has only one positive an-
swer sentence per question whereas other datasets have several ones) which mo-
tivated us to build a model (RNN-Similarity) which works robustly for all the
three datasets we have experimented with, without changing any specific hy-
perparameters of these models. Table 5 shows various results on TrecQA and
SQUAD-Sent datasets with only the questions which are annotated with EAT
information in the train and test sets.

Training datasets with questions which contain EAT information only; if the
question does not have a EAT value, it is discarded from the dataset below are
the set of experiments and results:

– TrecQA (EAT): Apart from EAT words (MAX + different types) version of
the dataset, the other two methods outperform word level models and EAT
word level by [15] where the dataset statistics of this method can also be
found.

– SQUAD-Sent(EAT): There is a difference of 8,800 questions from SQUAD-
Sent dataset, which is considerably a huge number of missing questions. Yet
the results from these experiments, do not decrease a lot, but rather perform
better than SQUAD-Sent’s plain word level model compare to EAT (different
types) data.

– WikiQA (EAT): We remove the questions with ‘NO-EAT’ class which were
23 questions overall. The results are better with EAT (single type) which
shows that the method works well in certain cases better than different
types of EAT.

The results reported in table 5 shows that there is not a significant improve-
ment over different methods when trained only on questions with EAT informa-
tion. Henceforth it is better to train models with the entire dataset and highlight
EAT information only when the question contains the EAT information.

11 https://github.com/castorini/Castor

Expected Answer Types in Answer Selection 11

Datasets Method Acc.@1 MAP MRR

TrecQA EAT words (single type) 84.15 84.81 87.17
(EAT) EAT words (different types) 85.37 85.45 88.18

EAT words (MAX+different types) 85.37 85.06 89.20

WikiQA EAT words (single type) 58.02 68.91 70.99
(EAT) EAT words (different types) 55.14 67.70 69.52

EAT words (MAX+different types) 56.38 68.16 69.83

SQUAD-Sent EAT words (single type) 83.81 - 90.53
(EAT) EAT words (different types) 84.04 - 90.61

EAT words (MAX+different types) 84.16 - 90.73
Table 5. Results reported on TrecQA and SQUAD-Sent datasets using RNN-Similarity
model trained only on EAT annotated questions

5 Conclusion and Future work

The Expected Answer Types are a useful piece of information that used to
be extensively exploited in the traditional QA systems. Using them with the
current state of the art DNN systems improves the system performance. We
propose a simple model using recurrent neural networks which works robustly on
three different datasets without any hyperparameter tuning and annotate entities
belonging to the expected answer type of the question. Our model outperforms
the previous state of the art systems in answer sentence task. We also propose a
model to predict the expected answer type based on the question words using a
multiclass classifier trained on a rule based system’s output on a large scale QA
dataset.

Future work involves using the expected answer types information in other
downstream tasks such as in reading comprehension or multihop reading systems
for extracting a short answer span.

Acknowledgements

We would like to thank Harish Tayyar Madabushi from the University of Birm-
ingham for providing us with the annotated questions of SQUAD dataset. This
work is funded by the ANR project GoAsQ (ANR-15-CE23-0022).

References

1. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-
domain questions. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers) (2017)

2. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and ac-
curacy in multilingual entity extraction. In: Proceedings of the 9th International
Conference on Semantic Systems. ACM (2013)

12 Kamath et al.

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

4. He, H., Gimpel, K., Lin, J.: Multi-perspective sentence similarity modeling with
convolutional neural networks. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (2015)

5. Kamath, S., Grau, B., Ma, Y.: Verification of the expected answer type for biomed-
ical question answering. In: Companion Proceedings of the The Web Conference
2018. WWW ’18 (2018)

6. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (2014)

7. Kolomiyets, O., Moens, M.F.: A survey on question answering technology from an
information retrieval perspective. Information Sciences 181(24) (2011)

8. Li, X., Roth, D.: Learning question classifiers: the role of semantic information.
Natural Language Engineering 12(3) (2006)

9. Madabushi, H.T., Lee, M.: High accuracy rule-based question classification using
question syntax and semantics. In: Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics: Technical Papers (2016)

10. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (2014)

11. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). vol. 1 (2018)

12. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing (2016)

13. Rao, J., He, H., Lin, J.: Noise-contrastive estimation for answer selection with deep
neural networks. In: Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. CIKM ’16 (2016)

14. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional
deep neural networks. In: Proceedings of the 38th international ACM SIGIR con-
ference on research and development in information retrieval. ACM (2015)

15. Tayyar Madabushi, H., Lee, M., Barnden, J.: Integrating question classification
and deep learning for improved answer selection. In: Proceedings of the 27th Inter-
national Conference on Computational Linguistics. Association for Computational
Linguistics (2018)

16. Tymoshenko, K., Moschitti, A.: Cross-pair text representations for answer sentence
selection. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics (2018)

17. Yang, Y., Yih, W.t., Meek, C.: Wikiqa: A challenge dataset for open-domain ques-
tion answering. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (2015)

18. Yin, W., Schütze, H., Xiang, B., Zhou, B.: Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. Transactions of the Association for
Computational Linguistics 4 (2016)

19. Yu, A.W., Dohan, D., Le, Q., Luong, T., Zhao, R., Chen, K.: Fast and accurate
reading comprehension by combining self-attention and convolution. In: Interna-
tional Conference on Learning Representations (2018)

	Predicting and Integrating Expected Answer Types into a Simple Recurrent Neural Network Model for Answer Sentence Selection

