
HAL Id: hal-02104397
https://hal.science/hal-02104397v1

Submitted on 19 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the Gap Between Formal Methods and
Software Engineering Using Model-based Technology

Yann Thierry-Mieg

To cite this version:
Yann Thierry-Mieg. Bridging the Gap Between Formal Methods and Software Engineering Using
Model-based Technology. Petri Nets and Software Engineering. International Workshop, PNSE’16,
2016, Torun, Poland. �hal-02104397�

https://hal.science/hal-02104397v1
https://hal.archives-ouvertes.fr


Bridging the Gap Between Formal Methods and
Software Engineering Using Model-based

Technology

Yann Thierry-Mieg

Sorbonne Universités UPMC Paris 6, CNRS UMR 7606, France
yann.thierry-mieg@lip6.fr

Abstract. Model-based technology has evolved rapidly in the last decade,
bringing immediate benefits to its users. Defining domain specific lan-
guages has never been easier, thanks to the infrastructure provided by
frameworks such as eclipse EMF and XText. Industrial adoption is easy,
you provide specialists with just the language they need.
But this is also an opportunity for formal methods and tools to find
a wider user base. A problem hindering adoption of formal methods is
the effort one needs to invest in learning a particular formalism and the
possible gap that exists between a handcrafted model and the reality.
Model translation provides an easy way to obtain formal models from
domain models that contain fine grain behavioral information, since a
DSL typically also has some runtime or code generation support.
This talk will present our experiences in building tools for model-checking
of various languages using models and transformations and thus lever-
aging the state of the art in model engineering technology.

Unified Modeling Language At the turn of the millenium, the first version
of the UML was proposed [10], a mostly graphical modeling language designed
to cover all artifacts of a software engineering cycle from requirements through
design and development all the way to maintenance and evolution of object-
oriented applications.

To achieve this goal, UML is a motley language of compromises, it aggregates
several popular notations, and each diagram can be used to build both very
abstract and concrete models, depending on the purpose of the diagram, the
phase in the process, and the target audience (role in the process) [6].

The development of the language is rapid, and its adoption is widespread,
it is pushed by the standardization work of the OMG consortium [8] including
the heavyweights of the computer industry. A huge task force is set to actually
defining the language in a way that allows interchange of models between tools.

The elegant and general solution adopted is to define the language through
it’s meta-model, a typed graph storing the syntactic information allowable in
concrete model instances. Pushing the reasoning further, and to enable devel-
opment of a concrete infra-structure supporting the UML [11] and its roughly
900 meta-classes, meta-meta modeling tools [7] are introduced then refined into
industrial strength solutions such as the EMF [2].



Domain Specific Models The UML comes with a specialization mechanism
called profiles to (further) enrich the language with new concepts. Popular UML
tools propose a profile to model databases with “class diagrams” for instance.
The initial idea was to leverage existing UML development environments to
offer graphical modeling to users, even if they were not strictly using UML. But
in practice, UML development environments are much too complex for most
modeling purposes, user experience is poor as the learning curve is steep and the
tools are cluttered with unused features.

The domain specific modeling language (DSL) approach clears these issues
by considering small languages, with a meta-model as simple as possible, and
directly linked to the concepts of the domain. DSL are not new, Makefile is
a dialect for specifying artifact dependencies and construction rules in a build
system, SQL is designed to query relational databases. The novelty comes from
the progress of meta-meta model driven tools, now giving us the infrastructure
to manipulate a meta-model so that defining such a language is easy.

Meta-Models Ameta-meta model is simply a graph, each vertex has a type and
carries named and typed properties, which can be primary data, or references to
other vertex. The references are further qualified as being either composition or
aggregation. A specific designated vertex is the root of a covering tree formed by
composition references such that every vertex of the graph is reachable through
a single path in this tree.

A language is defined by its meta-model, i.e. an instance of a meta-meta-
model, defining the set of allowable types and references a model instance can
contain. Meta-models can be graphically modeled using UML class diagram, and
emerged from the same task force as the UML, leading to some confusion, but
they are in fact wholly independent from the UML. The key is that a tool defined
at the M2 level takes meta-models (languages) as input.

Given simply a meta-model as input, EMF [2] can generate support for serial-
izing and reading models, manipulating models through both a language specific
and language neutral rich and powerful API, tree-like model editors, support for
defining validation rules.

From Graphical to Textual Models Tools such as GMF [4] even promised to
offer support for building editors for graphical notations easily. But the complex-
ity of building an ergonomic and seamless user experience for graphical models
proved difficult (editing, simulation), the frameworks being so rich that delving
into their customization to obtain the desired effect is very difficult. Further-
more, graphical specifications suffer from scale issues and are not adapted to all
modeling tasks, for instance code is often more compact and readable than an
equivalent control flow graph, even for simple algorithms.

The advent of tools supporting the definition of a textual DSL from a an
annotated BNF grammar such as Xtext [12] suddenly opens adoption of model-
based technology for a host of information processing applications.

Y. Thierry-Mieg: Bridging the Gap Between Formal Methods and SWE 31



Leveraging Model-based Engineering for Verification For developers of
formal verification tools and algorithms this is a golden opportunity to leverage
man-decades of software development and build versatile tools that can be seam-
lessly integrated into existing software development practices. The requirement
is to align technology choices with the industry standards and follow mainstream
trends in languages and development environments, e.g. Java and Eclipse. The
benefits for a small team are huge however as the frameworks generate most of
the heavy duty code, and their ease of customization (e.g. through dependency
injection [5]) has made much progress.

Case Studies The talk is based and borrows examples from our experience in
developing both graphical and textual DSL. We built VeriSensor a semi graphical
notation for wireless sensor networks [1], VeriJ a DSL based on a fragment of Java
for control and synthesis [13], and more recently the Guarded Action Language
(GAL) a DSL to express concurrent semantics [3]. GAL serves as pivot language
in our verification approach, we built transformations from existing languages
(Promela, Uppaal) to GAL using model-based engineering. The language itself
is supported by a powerful symbolic model-checking engine ITS-tools [9]. By
building this language-based front-end we claim that we ease adoption of our
formal verification tools in the software development process.

References

1. Ben Maïssa, Y., Kordon, F., Mouline, S., Thierry-Mieg, Y.: Modeling and Analyz-
ing Wireless Sensor Networks with VeriSensor: an Integrated Workflow. Transac-
tions on Petri Nets and Other Models of Concurrency VIII, 24–47 (Jul 2013)

2. Eclipse modeling framework (EMF), http://www.eclipse.org/modeling/emf/
3. Guarded action language, http://ddd.lip6.fr/gal.php
4. Graphical modeling framework (GMF), http://www.eclipse.org/modeling/gmp/
5. Google guice, a lightweight dependency injection framework, https://github.

com/google/guice
6. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Pro-

fessional (2004)
7. Meta object facility (MOF) 2.5. OMG standard (2015)
8. Object management group (OMG), http://www.omg.org/
9. Thierry-Mieg, Y.: Symbolic model-checking using ITS-Tools. In: TACAS. Lecture

Notes in Computer Science, vol. 9035, pp. 231–237. Springer (2015)
10. Unified modeling language (UML) 1.1. OMG standard (1997)
11. Unified modeling language infrastructure (UML) 2.4.1. OMG standard (2011)
12. Xtext ’language engineering made easy’, http://eclipse.org/Xtext/
13. Zhang, Y., Bérard, B., Hillah, L.M., Kordon, F., Thierry-Mieg, Y.: Controllability

for Discrete Event Systems Modeled in VeriJ. International Journal of Critical
Computer-Based Systems 5(3/4), 218–240 (Sep 2014)

32 PNSE’16 – Petri Nets and Software Engineering


