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Abstract. We present the symbolic model-checking toolset ITS-tools. The model-
checking back-end engine is based on hierarchical set decision diagrams (SDD)
and supports reachability, CTL and LTL model-checking, using both classical and
original algorithms. As front-end input language, we promote a Guarded Action
Language (GAL), a simple yet expressive language for concurrency. Transforma-
tions from popular formalisms into GAL are provided enabling fully symbolic
model-checking of third party (Uppaal, Spin, Divine...) specifications. The tool
design allows to easily build your own transformation, leveraging tools from the
meta-modeling community. The ITS-tools additionally come with a user friendly
GUI embedded in Eclipse.

1 Introduction

ITS-tools is a symbolic model-checker relying on state of the art decision diagram (DD)
technology. It offers model-checking (CTL, LTL) of large concurrent specifications ex-
pressed in a variety of formalisms : communicating process (Promela, DVE), timed
specifications (Uppaal timed automata, time Petri nets) and high-level Petri nets. We
are focused on verification of (large) globally asynchronous locally synchronous spec-
ifications, an area where DD naturally excel due to independent variations of (small)
parts of the state signature.

We leverage model transformation technology and tools to support model-checking
of domain specific languages (DSL). Input models are first transformed to the Guarded
Action Language (GAL), a simple yet expressive language with finite Kripke structure
semantics.

2 Tool Features

Most of this section is a discussion of the elements visible in figure 1. The bottom of
the figure corresponds to the back end (sections 2.1, 2.2) while the top of the figure
corresponds to the front-end (sections 2.3, 2.4), and is embedded in Eclipse.

2.1 Symbolic Kernel

ITS tools use symbolic representations of sets of states using decision diagrams to face
the combinatorial state space explosion of finite concurrent systems. Its kernel is lib-
DDD, a C++ decision diagram library supporting Data Decision Diagrams (DDD [16])
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Fig. 1. Architecture of ITS-tools. Square boxes are files, rounded boxes are tools.

and hierarchical Set Decision Diagrams (SDD [17]). Operations on these decision di-
agrams are encoded using homomorphisms [16], giving a user great flexibility and ex-
pressive power. The library can automatically and dynamically rewrite these operations
to produce saturation effects in least fixpoint computations [21]. The Split-equiv algo-
rithm introduced in [14] enables efficient evaluation of complex expressions including
array subscripts and arithmetic, a feature heavily used to symbolically encode the se-
mantics of GAL.

libITS is a C++ library built on top of libDDD, offering a simple and uniform API
to write symbolic model checking algorithms for any system that can be described as
an Instantiable Transition System (ITS). An ITS is essentially a labeled transition sys-
tem with successor and predecessor functions described as operating on sets of states,
and a boolean predicate function enabling state based logic reasoning. The tool sup-
ports compositions of labeled transition systems by directly using hierarchy in the state
representation reflecting the composition [29]. libITS has native adapters for several
formalisms (not represented on the figure), we focus in this paper on GAL.

ETF support A native ETF to ITS adapter is provided with libITS, supporting this
output format of LTSmin. ETF files [11] represent the semantics of a finite Kripke struc-
ture in a format adapted to symbolic manipulation. This allows to analyze (CTL, LTL)



models expressed in the many formalisms that LTSmin supports, provided generation
of ETF succeeds (essentially if LTSmin can compute all reachable states).

2.2 Model-checking

Using the ITS API we have built several model-checking tools. The tool its-reach can
compute reachable states, and shortest witness paths (one or more if so desired) to target
states designated by a boolean predicate. In a discrete time setting, this can be used to
compute best or worst case time bounds on runs. It can also perform bounded depth
exploration of a state space (a.k.a. bounded model-checking). It implements several
heuristics to compute a static variable order for the input model.

The tool its-ctl performs verification of CTL properties (though fairness constraints
are currently not supported). It reuses a component of VIS [12] to transform input for-
mulae into forward CTL form [23]. Forward CTL often allows (but not always) to use
the forward transition relation alone, which is easier to compute than the backward
(predecessor) transition relation. Hence forward CTL verification is more efficient in
general, and furthermore many subproblems can be solved using least fixpoints (e.g.
Forward Until) that benefit from automatic saturation at DD level.

The tool its-ltl performs hybrid (i.e. that build an explicit graph in which each node
stores a set of states as a decision diagram) or fully symbolic verification of LTL and
PSL properties. The transformation of the formula into a (variant of) Büchi automaton
and the emptiness checks of the product for hybrid approaches rely on Spot [25, 18].
Fully symbolic model-checking uses forward variants of Emerson-Lei [20] or One-Way
Catch Them Young [28]. The hybrid approaches efficiently exploit saturation and often
outperform fully symbolic ones [19]. When the property is stuttering invariant (e.g.
LT L \X) we also offer optimized hybrid [24] and fully symbolic [7] algorithms that
exploit saturation.

Other prototypes for solving games [31] and to exploit symmetries [15] on top of
decision diagrams have been built, showing the versatility of the ITS API, but these
tools are not part of the current release.

2.3 Guarded Action Language

We define GAL as a pivot language that essentially describes a generator for a labeled
finite Kripke structure using a C like syntax. This simple yet expressive language makes
no assumptions on the existence of high-level concepts such as processes or channels.
While direct modeling in GAL is possible (and a rich eclipse based editor is provided),
the language is mainly intended to be the target of a model transformation from a (high-
level) language closer to the end-users.

A GAL model contains a set of integer variables and fixed size integer arrays defin-
ing its state, and a set of guarded transitions bearing a label chosen from a finite set. We
use C 32 bit signed integer semantics, with overflow effects; this ensures all variables
have a finite (if large 232) domain. GAL offers a rich signature consisting of all C opera-
tors for manipulation of the int and boolean data type and of arrays (including nested
array expressions). There is no explicit support for pointers, though they can be simu-
lated with an array heap and indexes into it. In any state (i.e. an assignment of values



to the variables and array cells of the GAL) a transition whose boolean guard predicate
is true can fire executing the statements of its body in a single atomic step. The body
of the transition is a sequence of statements, assigning new values to variables using
an arithmetic expression on current variable values. A special call(λ) statement allows
to execute the body of any transition bearing label λ, modeling non-determinism as a
label based synchronization of behaviors. A special fixpoint instruction is provided al-
lowing to express modal µ-calculus least and greatest fixpoints thus giving the language
a potent expressive power.

Parametric GAL specifications may contain parameters, that are defined over a
finite range. These parameters can be used in transition definitions, compactly repre-
senting similar alternatives. They can also be used to define finite iterations (for loop),
and as symbolic constants where appropriate. Parameters do not increase expressive
power, the symbolic kernel does not know about them, as specifications are instantiated
before model-checking. The tool applies rewriting strategies on parametric transitions
before instantiation, in many cases avoiding the polynomial blowup in size resulting
from a naive parameter instantiation. Rewriting rules that perform static simplifications
(constant identification...) of a GAL benefit all input formalisms.

Model to model transformations Model-driven engineering (MDE) proposes to
define domain specific languages (DSL), which contain a limited set of domain con-
cepts [30]. This input is then transformed using model transformation technology to
produce executable artifacts, tests, documentation or to perform specific validations. In
this context GAL is designed as a convenient target formally expressing model seman-
tics. We thus provide an EMF [1] compliant meta-model of GAL that can be used to
leverage standard meta-modeling tools to write model to model transformations. This
reduces the adoption cost of using formal validation as a step of the software engineer-
ing process.

2.4 Third-party support

We have implemented translations to GAL for several popular formalisms used by third
party tools. We rely on the eclipse project XText for several of these : with this tool
we define the grammar and meta-model of an existing formalisms, and it generates a
rich code editor (context sensitive code completion, on the fly error detection,...) for
the target language. The editor obtained after some customization (template proposals,
type checking of expressions, scope...) is then often superior to that of the original tool.
We applied this approach for the DVE language of DiVinE [5], the Promela language
of Spin [3] and the Timed Automata of Uppaal [4] (in Uppaal’s native human readable
XTA syntax).

The translation for DVE (succinctly presented in [14]) is quite direct, since the lan-
guage has few syntactic constructs, and they are almost all covered by GAL. Channels
are modeled as arrays, process give rise to a variable that reflects the state they are in.
Similarly, the translation for Promela presents no real technical difficulty, although a
first analysis of Promela code is necessary to build the underlying control flow graph
(giving an automaton for each process). We currently do not support functions and the
C fragment of Promela.



Discrete time. The support for TA and TPN uses discrete time assumptions. Note
that analysis in the discrete setting has been shown to be equivalent to analysis in a
dense time setting provided all constraints in the automata are of the form x≤ k but not
x < k [22, 9]. For both of these formalisms, we build a transition that represents a one
time unit delay and updates clocks appropriately. This transition is in fact a sequence
of tests for each clock, checking if an urgent time constraint is reached (time cannot
elapse), if the clock is active (increment its counter) or if it is inactive either because it
will be reset before being read again, or because it has reached a value greater than any
it could be tested against before a reset (do nothing).

A transition is thus either a discrete change of automaton state or a delay of one
time unit. With this semantics a trace with a shortest path will allow to count how many
time steps are necessary to reach a certain goal. However, we also support a smaller
abstraction of the state graph, that preserves CTL properties provided atomic properties
of the formula do not refer to clocks. This abstraction called essential states was first
defined [27] for time Petri nets in a discrete time setting (and is implemented notably
by the tool Tina [8] see option −SD). It retains in the state graph only states that are
reached through a discrete transition. While it abstracts sequences of time steps, it pre-
serves location reachability and causality since all timings from a location are explored.
Because discrete transitions frequently reset clocks, many (abstracted) states adjacent
by a time step often lead to a single successor essential states, helping reduce the state
graph size. This abstraction is implemented as a second transformation from the source
TA or TPN that builds a GAL having essential state semantics. This second transfor-
mation highlights expressivity of GAL and the fine control it offers over atomicity of
transitions, since we have to compute a least fixpoint (all states reachable by waiting
will be abstracted) in each step of the transition relation.

A translation from high-level Petri nets (HLPN) conforming with the recent iso
standard (thus produced by a variety of tools) is also available. HLPN are roughly to
Place/Transition nets what parametric GAL are to GAL : they are not more expressive
(if all data types are finite) but they are much more compact and readable. Interestingly,
the instantiation of GAL parameters is often much less explosive than the translation
from HLPN to P/T nets : synchronizations of independent behaviors (e.g. interaction
between a server S and a client C) can be represented using a sequence of call(λ) in
GAL, where the P/T net must explicitly have a transition for each possible synchroniza-
tion choice.

3 Case Studies and Experiments

In [6] it was used to analyze compositions of time Petri nets produced from a DSL
VeriSensor dedicated to wireless sensor network modeling. The specification analyzed
contained around 50 clocks, many of which are concurrently enabled, preventing anal-
ysis by explicit tools such as Tina. With "its-reach" functional properties could be
checked as well as quantitative measures such as worst-case lifetime analysis. In the
Neoppod project [13] the CTL component was used to verify response and consistency
properties of a protocol for a distributed database. Inria’s Atsyra project [26] computes
attack defense trees from a DSL using a model-to-model transformation to GAL.



In terms raw benchmark power, ITS tools participated in several editions of the
model-checking contest at Petri nets conference, ranking first place in several categories
[2]. It is compared favorably to LTSmin and to SAT solver Superprove on the bench-
mark BEEM[14]. It outperformed the symbolic tool Smart using its own benchmark
models in [29]. On timed models, comparisons to Uppaal show that we tend to scale
better in number of clocks, but are more sensitive to large bounds on clocks, something
that was reported in previous similar experiments [10].

4 Conclusion

The symbolic model-checker ITS-tools, its Eclipse based front-end, binaries for major
platforms, source code as well as user documentation are freely available from the web-
page http://ddd.lip6.fr. It offers easy access to efficient symbolic model-checking
for a wide range of formalisms thanks to its support for the general purpose Guarded
Action Language.

Acknowledgements The ITS-tools is the result of many years of collaborative de-
velopment with both colleagues and students at LIP6, without whom this tool presenta-
tion would not be possible.
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Tool	Demonstration	:	ITS-tools	

All these demos can run on any platform. Before starting, you should download a recent Eclipse 

Luna, and point it at the update site http://coloane.lip6.fr/night-updates, then install the plugins of 

category “ITS Package”. The procedure is explained in more detail here: 

http://move.lip6.fr/software/DDD/itstools.php#sec:modinst 

These demos are focused on using the front-end and presenting GAL language. The actual command-

line model-checking tools are not very flashy, but they could be shown as well to an interested 

audience. Similarly, there is no track focused on exhibiting meta-models and transformations, since 

this is considered a more technical topic, but the material to present these is available. 

These demo scenarios are indicative, they are meant for about 20 minutes if done completely, but 

can be shortened to about 5 by burning some steps. At some point in the presentation the webpage 

http://move.lip6.fr/software/DDD/gal.php discussing syntax and semantics of GAL is shown.  

Scenario 1: Verification of Uppaal specifications. 

Description : A user wants to try the ITS tools to check an existing Uppaal specification. This 

scenario covers a presentation of the tools main components, though some of these parts can be 

skipped depending on the audience’s focus of interest. We use the Bridge and Vikings example of 

Uppaal distribution as running example. 

Additional pre-requisite for step 1 : install Uppaal. 

Step 1 (optional): Start the tool Uppaal. In Uppaal show the Bridge model (included in the demo/ 

folder of the distribution), a classic optimization problem about crossing a bridge that can only hold 

two “Vikings” in a minimal amount of time with only one lamp. End this step by clicking “save as…” 

and creating a .xta file. Note Uppaal does not have a built-in editor for these files, but they are native 

to it (command line Uppaal can read them). 

 

Figure 1 : Step 1 (save as xta in Uppaal) (left) and Step 2  (new example menu) (right) . 

Step 2 : Start Eclipse. Highlight how a single click through the update site installs the tool : binaries 

for major platforms of the C++ components are embedded in the distribution.  Use the menu “File-
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>New->Example” and select “Timed automata examples”. Open the “Bridge.xta” by double clicking. 

It is the same file as that produced by Uppaal in step 1. Play around with the editor, show off on the 

fly error detection, code completion with “Ctrl-space” keyboard shortcut, syntax highlighting… 

 

 

Figure 2 : Showing off the XTA editor, built using Xtext. 

Step 3 : Transform to GAL. From the right-click context menu of the file bridge.xta, select action “TA 

to GAL->Transform to GAL (Time unit step). Variants of the translation can also be discussed 

depending on audience level of interest. 

 

Figure 3 : translation. 

Step 4 : Compare source and target model “bridge.one.gal”. We take some time here to introduce 

GAL syntax and explain its semantics. The translation makes heavy use of parameters, preserving 

much of the features of the Uppaal specification. Discuss the channel translation (calls in chantake 

and chanrelease), the transition “elapse”. Show a translation for a discrete transition of the TA. Show 

the two transitions “succ1” and “succ2” at end of file, that allow the system to progress through 

discrete transitions OR through a time step.  

Step 5 : Open model “bridge.one.flat.gal”, resulting from parameter instantiation. Explain parameter 

instantiation. Notice that static simplifications allowed to simplify constants away, and to compute 

variable domains. This is a non-parametric GAL model we can verify properties on. 
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Figure 4 : Steps 4 and 5 : Source XTA (left), parametric GAL (middle) and GAL (right). 

Step 6 : Use Menu “File->New->Other->Coloane->ITS Composition Model” to create an invocation 

file. Open this file with the dedicated editor (double-click). Drag and drop the “bridge.one.flat.gal” 

file into the left part of the window (“Types editor”). Select the model, then in the left part click 

“Analysis”. Select “ITS Reachability” then write 

“Soldier_state[0]==1&&Soldier_state[1]==1&&Soldier_state[2]==1&&Soldier_state[3]==1” in the 

“Reachable ?” field and click “Run Service”. Open the ITS reachability section to access the run 

results. In the “Check Results Description” zone examine the “Raw output” field, this is a trace of the 

background its-tools invocation. This output contains a shortest trace (length 78 steps) that solves 

the minimization problem for the bridge example : one can count the number of “elapse” steps in 

the solution.  

 

Figure 5 : Step 6 : invoking its-tools using the eclipse wrapper. 
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Scenario 2: Verification of Promela specifications. 

Description : A user wants to try the ITS tools to check an existing Promela specification. This 

scenario is similar to the scenario 1, but uses a Promela model as running example. 

  Step 1 : Similarly to Step 2 of scenario 1, use menu “File->New->Example->Promela examples” to 

get started. Open the “hanoi.1.pml”. Highlight editor features; the Promela editor comes with above 

average type checking and template code completion, as well as a readable “Outline” view 

 Step 2 : Similarly to step 3 of Scenario 1, right-click the “.pml” file and select action “Promela to GAL-

>Transform to GAL”. Go through steps 4 and 5 of scenario 1, although the example is not as rich in 

terms of features of GAL used : this translation does not heavily use parameters.  Explain how the 

process counter “pcVar” represents the state of a Promela process. We can still discuss the 

differences between “hanoi.gal” and the instantiated “hanoi.flat.gal” albeit less effectively than in 

step 5 of scenario 1. 

Step 3 : Analysis, similarly to step 6 of scenario 1. We check for reachability property 

“b[1]==8&&b[2]==7&&b[3]==6&&b[4]==5&&b[5]==4&&b[6]==3&&b[7]==2&&b[8]==1”. This 

produces a trace solving the Hanoi towers problem.  

Alternatively, using the model derived from “phils.8.pml”, in the CTL check tool, make sure “produce 

witness trace” is checked, “Add a formula” and use “DEADLOCK;” in the formula field. This produces 

a trace to deadlocks in the dining philosophers problem.  

Scenario 3: Discussing  GAL semantics and features. 

Description : Our user is more interested in writing a transformation to GAL than using one of the 

existing ones. This demonstration focuses on features of GAL language. We use a Time Petri Net 

running example for its simplicity, or other small GAL examples from the web page. We suppose the 

audience knows the semantics of time Petri nets. 

Step 1 : Create a simple time Petri net. Use the menu “File->New->Project->General->empty project” 

to create a project then “File->New->Other->Coloane->Model->Time Petri Net”. Using the palette, 

add two places “a” (with initial marking 1) and “b”, a transition “t”, and arcs to carry a token from a 

to b. Set the transition’s earliest and latest firing times to 3 and 5 respectively. You may need to use 

“Window->show view->other->properties” to edit the names and values of annotations in the net. 

The graphical editor is pretty nice, building a simple model is just a few clicks. Alternatively, use 

“New->Example->Coloane->Train” and use “train.model” as running example.  

 



 "  

 

Figure 6 : Editing a TPN 

Step 2 :   Translate to GAL. Right-click the model then select “Export->Coloane->GAL file”. Examine 

the GAL model, since it is relatively simple the semantics of GAL are easy to understand. Now run the 

export again using the “Essential states” selection. Discuss the role of the fixpoint in this variant of a 

step of the transition relation : using the empty “identity” transition, and appropriate labels, the 

transition relation consists in a least fixpoint using “elapse” followed by firing of any discrete 

transition. We can run reachability analysis to compare state space sizes though this is more 

interesting in presence of more clocks or when increasing latest firing time significantly, where the 

reduction starts to shine. 

 

 

Figure 7 : Use of GAL fixpoint in discrete time semantics 

Step 3 : Parameter instantiation. Build a “File->New->File” and name it “param.gal”. Copy or type 

(nice editor) this simple program :  

gal test { 

 int x = 0; 

 int y = 0; 

 typedef range = 1..3; 

   

 transition t (range $x, range $y) [$x!=2]  { 

  x = $x; 

  y = $y; 

 }   

} 



 #  

 

Open right-click context menu on file param.gal , and run actions in category “GAL Transform” 

 

Figure 8 : GAL Transform menu 

We will use “Separate parameters” first to explain the algorithm for parameter separation. This intermediate 

version “param.sep.gal” preserves parameters but rewrites transitions in an attempt to reduce the number of 

parameters on transitions. It is an intermediate product there for explanation : “Flatten” is the preferred 

method, that chains “separate” and “instantiate” actions with structural simplifications to produce a GAL 

adapted to model-checking. Run “instantiate” on the original “param.gal” and compare size of 

“param.inst.gal” model with that obtained with “flatten”. The quadratic explosion is avoided.  We 

can play with variants on the model, for instance change the guard to “$x!=$y” and run the same 

experiments. 

 

Figure 9: Contrasting naïve instantiation (left) with parameter separation (right).  

Notice in all these examples that the GAL encoding is very close to the symbolic encoding, hence 

smaller GAL specifications really are easier to model-check with DD, besides removal of the barrier 

due to handling polynomially larger specifications at every step of the workflow. These 

transformations are possible because we know about fine grain semantics of GAL actions, this 

contrasts with the opacity of LTSmin PINS API, a project offering several similar feature to GAL. 


