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Unbiased truncated quadratic variation for volatility estimation

in jump diffusion processes.

Chiara Amorino∗, Arnaud Gloter∗

March 26, 2020

Abstract

The problem of integrated volatility estimation for an Ito semimartingale is considered under
discrete high-frequency observations in short time horizon. We provide an asymptotic expansion for
the integrated volatility that gives us, in detail, the contribution deriving from the jump part. The
knowledge of such a contribution allows us to build an unbiased version of the truncated quadratic
variation, in which the bias is visibly reduced. In earlier results to have the original truncated realized
volatility well-performed the condition β > 1

2(2−α) on β (that is such that ( 1
n

)β is the threshold of

the truncated quadratic variation) and on the degree of jump activity α was needed (see [21], [13]).
In this paper we theoretically relax this condition and we show that our unbiased estimator achieves
excellent numerical results for any couple (α, β).

Lévy-driven SDE, integrated variance, threshold estimator, convergence speed, high frequency data.

1 Introduction

In this paper, we consider the problem of estimating the integrated volatility of a discretely-observed
one-dimensional Itô semimartingale over a finite interval. The class of Itô semimartingales has many
applications in various area such as neuroscience, physics and finance. Indeed, it includes the stochastic
Morris-Lecar neuron model [10] as well as important examples taken from finance such as the Barndorff-
Nielsen-Shephard model [4], the Kou model [18] and the Merton model [23]; to name just a few.
In this work we aim at estimating the integrated volatility based on discrete observations Xt0 , ..., Xtn of
the process X, with ti = iTn . Let X be a solution of

Xt = X0 +

∫ t

0

bsds+

∫ t

0

asdWs +

∫ t

0

∫
R\{0}

γ(Xs−) z µ̃(ds, dz), t ∈ R+,

with W = (Wt)t≥0 a one dimensional Brownian motion and µ̃ a compensated Poisson random measure.
We also require the volatility at to be an Itô semimartingale.

We consider here the setting of high frequency observations, i.e. ∆n := T
n → 0 as n → ∞. We

want to estimate IV := 1
T

∫ T
0
a2
sf(Xs)ds, where f is a polynomial growth function. Such a quantity has

already been widely studied in the literature because of its great importance in finance. Indeed, taking
f ≡ 1, IV turns out being the so called integrated volatility that has particular relevance in measuring
and forecasting the asset risks; its estimation on the basis of discrete observations of X is one of the
long-standing problems.
In the sequel we will present some known results denoting by IV the classical integrated volatility, that
is we are assuming f equals to 1.

When X is continuous, the canonical way for estimating the integrated volatility is to use the realized
volatility or approximate quadratic variation at time T:

[X,X]nT :=

n−1∑
i=0

(∆Xi)
2, where ∆Xi = Xti+1

−Xti .

Under very weak assumptions on b and a (namely when
∫ T

0
b2sds and

∫ T
0
a4
sds are finite for all t ∈ (0, T ]),

we have a central limit theorem (CLT) with rate
√
n: the processes

√
n([X,X]nT − IV ) converge in the

sense of stable convergence in law for processes, to a limit Z which is defined on an extension of the
space and which conditionally is a centered Gaussian variable whose conditional law is characterized by

its (conditional) variance VT := 2
∫ T

0
a4
sds.
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When X has jumps, the variable [X,X]nT no longer converges to IV . However, there are other known
methods to estimate the integrated volatility.
The first type of jump-robust volatility estimators are the Multipower variations (cf [5], [6], [14]), which
we do not explicitly recall here. These estimators satisfy a CLT with rate

√
n but with a conditional

variance bigger than VT (so they are rate-efficient but not variance-efficient).
The second type of volatility estimators, introduced by Jacod and Todorov in [16], is based on estimating
locally the volatility from the empirical characteristic function of the increments of the process over blocks
of decreasing length but containing an increasing number of observations, and then summing the local
volatility estimates.
Another method to estimate the integrated volatility in jump diffusion processes, introduced by Mancini
in [20], is the use of the truncated realized volatility or truncated quadratic variance (see [14], [21]):

ˆIV
n

T :=

n−1∑
i=0

(∆Xi)
21{|∆Xi|≤vn},

where vn is a sequence of positive truncation levels, typically of the form ( 1
n )β for some β ∈ (0, 1

2 ).
Below we focus on the estimation of IV through the implementation of the truncated quadratic variation,
that is based on the idea of summing only the squared increments of X whose absolute value is smaller
than some threshold vn.
It is shown in [13] that ˆIV

n

T has exactly the same limiting properties as [X,X]nT does for some α ∈ [0, 1)
and β ∈ [ 1

2(2−α) ,
1
2 ). The index α is the degree of jump activity or Blumenthal-Getoor index

α := inf

{
r ∈ [0, 2] :

∫
|x|≤1

|x|rF (dx) <∞

}
,

where F is a Lévy measure which accounts for the jumps of the process and it is such that the compensator
µ̄ has the form µ̄(dt, dz) = F (z)dzdt.
Mancini has proved in [21] that, when the jumps of X are those of a stable process with index α ≥ 1,
the truncated quadratic variation is such that

( ˆIV
n

T − IV )
P∼ (

1

n
)β(2−α). (1)

This rate is less than
√
n and no proper CLT is available in this case.

In this paper, in order to estimate IV := 1
T

∫ T
0
a2
sf(Xs)ds, we consider in particular the truncated

quadratic variation defined in the following way:

Qn :=

n−1∑
i=0

f(Xti)(Xti+1
−Xti)

2ϕ∆β
n
(Xti+1

−Xti),

where ϕ is a C∞ function that vanishes when the increments of the data are too large compared to the
typical increments of a continuous diffusion process, and thus can be used to filter the contribution of
the jumps.
We aim to extend the results proved in short time in [21] characterising precisely the noise introduced by
the presence of jumps and finding consequently some corrections to reduce such a noise.
The main result of our paper is the asymptotic expansion for the integrated volatility. Compared to earlier
results, our asymptotic expansion provides us precisely the limit to which nβ(2−α)(Qn − IV ) converges
when ( 1

n )β(2−α) >
√
n, which matches with the condition β < 1

2(2−α) .

Our work extends equation (1) (obtained in [21]). Indeed, we find

Qn − IV =
Zn√
n

+ (
1

n
)β(2−α)cα

∫
R
ϕ(u)|u|1−αdu

∫ T

0

|γ|α(Xs)f(Xs)ds+ oP((
1

n
)β(2−α)),

where Zn
L−→ N(0, 2

∫ T
0
a4
sf

2(Xs)ds) stably with respect to X. The asymptotic expansion here above
allows us to deduce the behaviour of the truncated quadratic variation for each couple (α, β), that is a
plus compared to (1).
Furthermore, providing we know α (and if we do not it is enough to estimate it previously, see for example
[28] or [24]), we can improve the performance of the truncated quadratic variation subtracting the bias
due to the presence of jumps to the original estimator or taking particular functions ϕ that make the bias
derived from the jump part equal to zero. Using the asymptotic expansion of the integrated volatility we
also provide the rate of the error left after having applied the corrections. It derives from the Brownian
increments mistakenly truncated away, when the truncation is tight.
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Moreover, in the case where the volatility is constant, we show numerically that the corrections gained
by the knowledge of the asymptotic expansion for the integrated volatility allows us to reduce visibly
the noise for any β ∈ (0, 1

2 ) and α ∈ (0, 2). It is a clear improvement because, if the original truncated
quadratic variation was a well-performed estimator only if β > 1

2(2−α) (condition that never holds for

α ≥ 1), the unbiased truncated quadratic variation achieves excellent results for any couple (α, β).
The outline of the paper is the following. In Section 2 we present the assumptions on the process X.

In Section 3.1 we define the truncated quadratic variation, while Section 3.2 contains the main results
of the paper. In Section 4 we show the numerical performance of the unbiased estimator. The Section
5 is devoted to the statement of propositions useful for the proof of the main results, that is given in
Section 6. In Section 7 we give some technical tools about Malliavin calculus, required for the proof of
some propositions, while other proofs and some technical results are presented in the Appendix.

2 Model, assumptions

The underlying process X is a one dimensionale Itô semimartingale on the space (Ω,F , (Ft)t≥0,P), where
(Ft)t≥0 is a filtration, and observed at times ti = i

n , for i = 0, 1, . . . , n.
Let X be a solution to

Xt = X0 +

∫ t

0

bsds+

∫ t

0

asdWs +

∫ t

0

∫
R\{0}

γ(Xs−) z µ̃(ds, dz), t ∈ R+, (2)

where W = (Wt)t≥0 is a one dimensional Brownian motion and µ̃ a compensated Poisson random measure
on which conditions will be given later.
We will also require the volatility at to be an Itô semimartingale and it thus can be represented as

at = a0 +

∫ t

0

b̃sds+

∫ t

0

ãsdWs +

∫ t

0

âsdŴs +

∫ t

0

∫
R\{0}

γ̃s z µ̃(ds, dz) +

∫ t

0

∫
R\{0}

γ̂s z µ̃2(ds, dz). (3)

The jumps of at are driven by the same Poisson compensated random measure µ̃ as X plus another
Poisson compensated measure µ̃2. We need also a second Brownian motion Ŵ : in the case of ”pure
leverage” we would have â ≡ 0 and Ŵ is not needed; in the case of ”no leverage” we rather have ã ≡ 0.
In the mixed case both W and Ŵ are needed.

2.1 Assumptions

The first assumption is a structural assumption describing the driving terms W, Ŵ , µ̃ and µ̃2; the sec-
ond one being a set of conditions on the coefficients implying in particular the existence of the various
stochastic integrals involved above.

A1: The processes W and Ŵ are two independent Brownian motion, µ and µ2 are Poisson random
measures on [0,∞) × R associated to the Lévy processes L = (Lt)t≥0 and L2 = (L2

t )t≥0 respectively,

with Lt :=
∫ t

0

∫
R zµ̃(ds, dz) and L2

t :=
∫ t

0

∫
R zµ̃2(ds, dz). The compensated measures are µ̃ = µ − µ̄

and µ̃2 = µ2 − µ̄2; we suppose that the compensator has the following form: µ̄(dt, dz) := F (dz)dt,
µ̄2(dt, dz) := F2(dz)dt. Conditions on the Levy measures F and F2 will be given in A3 and A4. The
initial condition X0, a0, W , Ŵ , L and L2 are independent. The Brownian motions and the Lévy processes
are adapted with respect to the filtration (Ft)t≥0. We suppose moreover that there exists X, solution of
(2).

A2: The processes b, b̃, ã, â, γ̃, γ̂ are bounded, γ is Lipschitz. The processes b, ã are cádlág adapted,
γ, γ̃ and γ̂ are predictable, b̃ and â are progressively measurable. Moreover it exists an Ft -measurable
random variable Kt such that

E[|bt+h − bt|2|Ft] ≤ Kt |h|; ∀p ≥ 1, E[|Kt|p] <∞.

We observe that the last condition on b holds true regardless if, for example, bt = b(Xt); b : R → R
Lipschitz.
The next assumption ensures the existence of the moments:

A3: For all q > 0,
∫
|z|>1

|z|qF (dz) < ∞ and
∫
|z|>1

|z|qF2(dz) < ∞. Moreover, E[|X0|q] < ∞ and

E[|a0|q] <∞.

A4 (Jumps):
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1. The jump coefficient γ is bounded from below, that is infx∈R |γ(x)| := γmin > 0.

2. The Lévy measures F and F2 are absolutely continuous with respect to the Lebesgue measure and

we denote F (z) = F (dz)
dz , F2(z) = F2(dz)

dz .

3. The Lévy measure F satisfies F (dz) = ḡ(z)
|z|1+α dz, where α ∈ (0, 2) and ḡ : R → R is a continuous

symmetric nonnegative bounded function with ḡ(0) = 1.

4. The function ḡ is differentiable on {0 < |z| ≤ η} for some η > 0 with continuous derivative such

that sup0<|z|≤η |
ḡ′

ḡ | <∞.

5. The jump coefficient γ is upper bounded, i.e. supx∈R |γ(x)| := γmax <∞.

6. The Levy measure F2 satisfies
∫
R |z|

2F2(z)dz <∞.

The first and the fifth points of the assumptions here above are useful to compare size of jumps of X and
L. The fourth point is required to use Malliavin calculus and it is satisfied by a large class of processes:
α- stable process (ḡ = 1), truncated α-stable processes (ḡ = τ , a truncation function), tempered stable
process (ḡ(z) = e−λ|z|, λ > 0).
In the following, we will use repeatedly some moment inequalities for jump diffusion, which are gathered
in Lemma 1 below and showed in the Appendix.

Lemma 1. Suppose that A1 - A4 hold. Then, for all t > s,
1)for all p ≥ 2, E[|at − as|p] ≤ c|t− s|; for all q > 0 supt∈[0,T ] E[|at|q] <∞.
2) for all p ≥ 2, p ∈ N, E[|at − as|p|Fs] ≤ c|t− s|.
3) for all p ≥ 2, E[|Xt −Xs|p]

1
p ≤ c|t− s|

1
p ; for all q > 0 supt∈[0,T ] E[|Xt|q] <∞,

4) for all p ≥ 2, p ∈ N, E[|Xt −Xs|p|Fs] ≤ c|t− s|(1 + |Xs|p).
5) for all p ≥ 2, p ∈ N, suph∈[0,1] E[|Xs+h|p|Fs] ≤ c(1 + |Xs|p).

6) for all p > 1, E[|Xc
t −Xc

s |p]
1
p ≤ |t− s| 12 and E[|Xc

t −Xc
s |p|Fs]

1
p ≤ c|t− s| 12 (1 + |Xs|p),

where we have denoted by Xc the continuous part of the process X, which is such that

Xc
t −Xc

s :=

∫ t

s

audWu +

∫ t

s

budu.

3 Setting and main results

The process X is observed at regularly spaced times ti = i∆n = i T
n for i = 0, 1, ..., n, within a finite time

interval [0, T ]. We can assume, WLOG, that T = 1.

Our goal is to estimate the integrated volatility IV := 1
T

∫ T
0
a2
sf(Xs)ds, where f is a polynomial growth

function. To do it, we propose the estimator Qn, based on the truncated quadratic variation introduced
by Mancini in [20]. Given that the quadratic variation was a good estimator for the integrated volatility in
the continuous framework, the idea is to filter the contribution of the jumps and to keep only the intervals
in which we judge no jumps happened. We use the size of the increment of the process Xti+1

− Xti in
order to judge if a jump occurred or not in the interval [ti, ti+1): as it is hard for the increment of X
with continuous transition to overcome the threshold ∆β

n = ( 1
n )β for β ≤ 1

2 , we can assert the presence
of a jump in [ti, ti+1) if |Xti+1 −Xti | > ∆β

n.
We set

Qn :=

n−1∑
i=0

f(Xti)(Xti+1
−Xti)

2ϕ∆β
n
(Xti+1

−Xti), (4)

where

ϕ∆β
n
(Xti+1

−Xti) = ϕ(
Xti+1

−Xti

∆β
n

),

with ϕ a smooth version of the indicator function, such that ϕ(ζ) = 0 for each ζ, with |ζ| ≥ 2 and
ϕ(ζ) = 1 for each ζ, with |ζ| ≤ 1.
It is worth noting that, if we consider an additional constant k in ϕ (that becomes ϕk∆β

n
(Xti+1

−Xti) =

ϕ(
Xti+1

−Xti
k∆β

n
)), the only difference is the interval on which the function is 1 or 0: it will be 1 for |Xti+1 −

Xti | ≤ k∆β
n; 0 for |Xti+1 − Xti | ≥ 2k∆β

n. Hence, for shortness in notations, we restrict the theoretical
analysis to the situation where k = 1 while, for applications, we may take the threshold level as k∆β

n

with k 6= 1.
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3.1 Main results

The main result of this paper is the asymptotic expansion for the truncated integrated volatility.
We show first of all it is possible to decompose the truncated quadratic variation, separating the con-
tinuous part from the contribution of the jumps. We consider right after the difference between the
truncated quadratic variation and the discretized volatility, showing it consists on the statistical error
(which derives from the continuous part), on a noise term due to the jumps and on a third term which is
negligible compared to the other two. From such an expansion it appears clearly the condition on (α, β)
which specifies whether or not the truncated quadratic variation performs well for the estimation of the
integrated volatility. It is also possible to build some unbiased estimators. Indeed, through Malliavin
calculus, we identify the main bias term which arises from the presence of the jumps. We study then
its asymptotic behavior and, by making it equal to zero or by removing it from the original truncated
quadratic variation, we construct some corrected estimators.
We define as Q̃Jn the jumps contribution present in the original estimator Qn:

Q̃Jn := nβ(2−α)
n−1∑
i=0

(

∫ ti+1

ti

∫
R\{0}

γ(Xs−) z µ̃(ds, dz))2f(Xti)ϕ∆β
n
(Xti+1

−Xti). (5)

Denoting as oP(( 1
n )k) a quantity such that

oP(( 1
n )k)

( 1
n )k

P→ 0, the following decomposition holds true:

Theorem 1. Suppose that A1 - A4 hold and that β ∈ (0, 1
2 ) and α ∈ (0, 2) are given in definition (4)

and in the third point of A4, respectively. Then, as n→∞,

Qn =
n−1∑
i=0

f(Xti)(X
c
ti+1
−Xc

ti)
2 + (

1

n
)β(2−α)Q̃Jn + En = (6)

=

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

asdWs)
2 + (

1

n
)β(2−α)Q̃Jn + En, (7)

where En is both oP(( 1
n )β(2−α)) and, for each ε̃ > 0, oP(( 1

n )(1−αβ−ε̃)∧( 1
2−ε̃)).

To show Theorem 1 here above, the following lemma will be useful. It illustrates the error we commit
when the truncation is tight and therefore the Brownian increments are mistakenly truncated away.

Lemma 2. Suppose that A1 - A4 hold. Then, ∀ε > 0,

n−1∑
i=0

f(Xti)(X
c
ti+1
−Xc

ti)
2(ϕ∆β

n
(Xti+1

−Xti)− 1) = oP((
1

n
)1−αβ−ε).

Theorem 1 anticipates that the size of the jumps part is ( 1
n )β(2−α) (see Theorem 3) while the size of

the Brownian increments wrongly removed is upper bounded by ( 1
n )1−αβ−ε (see Lemma 2). As β ∈ (0, 1

2 ),
we can always find an ε > 0 such that 1− αβ − ε > β(2− α) and therefore the bias derived from a tight
truncation is always smaller compared to those derived from a loose truncation. However, as we will see,
after having removed the contribution of the jumps such a small downward bias will represent the main
error term if αβ > 1

2 .

In order to eliminate the bias arising from the jumps, we want to identify the term Q̃Jn in details. For
that purpose we introduce

Q̂n := (
1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)γ
2(Xti)d(γ(Xti)n

β− 1
α ), (8)

where d(ζ) := E[(Sα1 )2ϕ(Sα1 ζ)]; (Sαt )t≥0 is an α-stable process.

We want to move from Q̃Jn to Q̂n. The idea is to move from our process, that in small time behaves like
a conditional rescaled Lévy process, to an α stable distribution.

Proposition 1. Suppose that A1 - A4 hold. Let (Sαt )t≥0 be an α-stable process. Let g be a measurable

bounded function such that ‖g‖pol := supx∈R( |g(x)|
1+|x|p ) <∞, for some p ≥ 1, p ≥ α hence

|g(x)| ≤ ‖g‖pol (|x|
p + 1). (9)

Moreover we denote ‖g‖∞ := supx∈R |g(x)|. Then, for any ε > 0, 0 < h < 1
2 ,

|E[g(h−
1
αLh)]− E[g(Sα1 )]| ≤ Cεh | log(h)| ‖g‖∞ + Cεh

1
α ‖g‖1−

α
p−ε

∞ ‖g‖
α
p+ε

pol | log(h)|+ (10)
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+Cεh
1
α ‖g‖1+ 1

p−
α
p+ε

∞ ‖g‖−
1
p+α

p−ε
pol | log(h)|1{α>1},

where Cε is a constant independent of h.

Proposition 1 requires some Malliavin calculus. The proof of Proposition 1 as well as some technical
tools will be found in Section 7.
The previous proposition is an extension of Theorem 4.2 in [9] and it is useful when ‖g‖∞ is large, com-
pared to ‖g‖pol. For instance, it is the case if consider the function g(x) := |x|21|x|≤M for M large.

We need Proposition 1 to prove the following theorem, in which we consider the difference between
the truncated quadratic variation and the discretized volatility. We make explicit its decomposition into
the statistical error and the noise term due to the jumps, identified as Q̂n.

Theorem 2. Suppose that A1- A4 hold and that β ∈ (0, 1
2 ) and α ∈ (0, 2) are given in Definition 4 and

in the third point of A4, respectively. Then, as n→∞,

Qn −
1

n

n−1∑
i=0

f(Xti)a
2
ti =

Zn√
n

+ (
1

n
)β(2−α)Q̂n + En, (11)

where En is always oP(( 1
n )β(2−α)) and, adding the condition β > 1

4−α , it is also oP(( 1
n )(1−αβ−ε̃)∧( 1

2−ε̃)).

Moreover Zn
L−→ N(0, 2

∫ T
0
a4
sf

2(Xs)ds) stably with respect to X.

We recognize in the expansion (11) the statistical error of model without jumps given by Zn, whose
variance is equal to the so called quadricity. As said above, the term Q̂n is a bias term arising from the
presence of jumps and given by (8). From this explicit expression it is possible to remove the bias term
(see Section 4).
The term En is an additional error term that is always negligible compared to the bias deriving from the
jump part ( 1

n )β(2−α)Q̂n (that is of order ( 1
n )β(2−α) by Theorem 3 below).

The bias term admits a first order expansion that does not require the knowledge of the density of Sα.

Proposition 2. Suppose that A1 - A4 hold and that β ∈ (0, 1
2 ) and α ∈ (0, 2) are given in Definition 4

and in the third point of Assumption 4, respectively. Then

Q̂n =
1

n
cα

n−1∑
i=0

f(Xti)|γ(Xti)|α(

∫
R
ϕ(u)|u|1−αdu) + Ẽn, (12)

with

cα =

{
α(1−α)

4Γ(2−α) cos(απ2 ) if α 6= 1, α < 2
1

2π if α = 1.
(13)

Ẽn = oP(1) and, if α < 4
3 , it is also nβ(2−α)oP(( 1

n )(1−αβ−ε̃)∧( 1
2−ε̃)) = oP(( 1

n )( 1
2−2β+αβ−ε̃)∧(1−2β−ε̃)).

We have not replaced directly the right hand side of (12) in (11), observing that ( 1
n )β(2−α)Ẽn = En,

because ( 1
n )β(2−α)Ẽn is always oP(( 1

n )β(2−α)) but to get it is also oP(( 1
n )(1−αβ−ε̃)∧( 1

2−ε̃)) the additional
condition α < 4

3 is required.
Proposition 2 provides the contribution of the jumps in detail, identifying a main term. Recalling we are
dealing with some bias, it comes naturally to look for some conditions to make it equal to zero and to
study its asymptotic behaviour in order to remove its limit.

Corollary 1. Suppose that A1 - A4 hold and that α ∈ (0, 4
3 ), β ∈ ( 1

4−α , ( 1
2α ∧

1
2 )). If ϕ is such that∫

R |u|
1−αϕ(u)du = 0 then, ∀ε̃ > 0,

Qn −
1

n

n−1∑
i=0

f(Xti)a
2
ti =

Zn√
n

+ oP((
1

n
)

1
2−ε̃), (14)

with Zn defined as in Theorem 2 here above.

It is always possible to build a function ϕ for which the condition here above is respected (see Section
4).
We have supposed α < 4

3 in order to say that the error we commit identifying the contribution of the
jumps as the first term in the right hand side of (12) is always negligible compared to the statistical error.
Moreover, taking β < 1

2α we get 1 − αβ > 1
2 and therefore also the bias studied in Lemma 2 becomes

upper bounded by a quantity which is roughly oP( 1√
n

).

Equation (14) gives us the behaviour of the unbiased estimator, that is the truncated quadratic variation

6



after having removed the noise derived from the presence of jumps. Taking α and β as discussed above
we have, in other words, reduced the error term En to be oP(( 1

n )
1
2−ε̃), which is roughly the same size as

the statistical error.
We observe that, if α ≥ 4

3 but γ = k ∈ R, the result still holds if we choose ϕ such that∫
R
u2ϕ(u) fα(

1

k
u(

1

n
)β−

1
α )du = 0,

where fα is the density of the α-stable process. Indeed, following (8), the jump bias Q̂n is now defined as

(
1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)k
2d(k nβ−

1
α ) = (

1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)k
2

∫
R
z2ϕ(zk(

1

n
)

1
α−β)fα(z)dz =

= (
1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)k
2(

1

n
)3(β− 1

α ) 1

k3

∫
R
u2ϕ(u) fα(

1

k
u(

1

n
)β−

1
α )du = 0,

where we have used a change of variable.

Another way to construct an unbiased estimator is to study how the main bias detailed in (12) asymp-
totically behaves and to remove it from the original estimator.

Theorem 3. Suppose that A1 - A4 hold. Then, as n→∞,

Q̂n
P→ cα

∫
R
ϕ(u)|u|1−αdu

∫ T

0

|γ(Xs)|αf(Xs)ds. (15)

Moreover

Qn − IV =
Zn√
n

+ (
1

n
)β(2−α)cα

∫
R
ϕ(u)|u|1−αdu

∫ T

0

|γ(Xs)|αf(Xs)ds+ oP((
1

n
)β(2−α)), (16)

where Zn
L−→ N(0, 2

∫ T
0
a4
sf

2(Xs)ds) stably with respect to X.

It is worth noting that, in both [15] and [21], the integrated volatility estimation in short time is dealt
and they show that the truncated quadratic variation has rate

√
n if β > 1

2(2−α) .

We remark that the jump part is negligible compared to the statistic error if n−1 < n−
1

2β(2−α) and so
β > 1

2(2−α) , that is the same condition given in the literature.

However, if we take (α, β) for which such a condition doesn’t hold, we can still use that we know in
detail the noise deriving from jumps to implement corrections that still make the unbiased estimator
well-performed (see Section 4).

We require the activity α to be known, for conducting bias correction. If it is unknown, we need to
estimate it previously (see for example the methods proposed by Todorov in [28] and by Mies in [24]).
Then, a question could be how the estimation error in α would affect the rate of the bias-corrected estima-
tor. We therefore assume that α̂n = α+OP(an), for some rate sequence an. Replacing α̂n in (16) it turns

out that the error derived from the estimation of α does not affect the correction if an( 1
n )β(2−α) < ( 1

n )
1
2 ,

which means that an has to be smaller than ( 1
n )

1
2−β(2−α). We recall that β ∈ (0, 1

2 ) and α ∈ (0, 2).
Hence, such a condition is not a strong requirement and it becomes less and less restrictive when α gets
smaller or β gets bigger.

4 Unbiased estimation in the case of constant volatility

In this section we consider a concrete application of the unbiased volatility estimator in a jump diffusion
model and we investigate its numerical performance.
We consider our model (2) in which we assume, in addition, that the functions a and γ are both constants.
Suppose that we are given a discrete sample Xt0 , ..., Xtn with ti = i∆n = i

n for i = 0, ..., n.
We now want to analyze the estimation improvement; to do it we compare the classical error committed
using the truncated quadratic variation with the unbiased estimation derived by our main results.
We define the estimator we are going to use, in which we have clearly taken f ≡ 1 and we have introduced
a threshold k in the function ϕ, so it is

Qn =

n−1∑
i=0

(Xti+1 −Xti)
2ϕk∆β

n
(Xti+1 −Xti). (17)
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If normalized, the error committed estimating the volatility is E1 := (Qn − σ2)
√
n.

We start from (12) that in our case, taking into account the presence of k, is

Q̂n = cαγ
αk2−α(

∫
R
ϕ(u)|u|1−αdu) + Ẽn. (18)

We now get different methods to make the error smaller.
First of all we can replace (18) in (11) and so we can reduce the error by subtracting a correction term,
building the new estimator Qcn := Qn − ( 1

n )β(2−α)cαγ
αk2−α(

∫
R ϕ(u)|u|1−αdu). The error committed

estimating the volatility with such a corrected estimator is E2 := (Qcn − σ2)
√
n.

Another approach consists of taking a particular function ϕ̃ that makes the main contribution of Q̂n
equal to 0. We define ϕ̃(ζ) = ϕ(ζ) + cψ(ζ), with ψ a C∞ function such that ψ(ζ) = 0 for each ζ, |ζ| ≥ 2
or |ζ| ≤ 1. In this way, for any c ∈ R \ {0}, ϕ̃ is still a smooth version of the indicator function such that
ϕ̃(ζ) = 0 for each ζ, |ζ| ≥ 2 and ϕ̃(ζ) = 1 for each ζ, |ζ| ≤ 1. We can therefore leverage the arbitrariness

in c to make the main contribution of Q̂n equal to zero, choosing c̃ := −
∫
R ϕ(u)|u|1−αdu∫
R ψ(u)|u|1−αdu , which is such that∫

R(ϕ+ c̃ψ(u))|u|1−αdu = 0.
Hence, it is possible to achieve an improved estimation of the volatility by used the truncated quadratic

variation Qn,c :=
∑n−1
i=0 (Xti+1 −Xti)

2(ϕ+ c̃ψ)(
Xti+1

−Xti
k∆β

n
). To make it clear we will analyze the quantity

E3 := (Qn,c − σ2)
√
n.

Another method widely used in numerical analysis to improve the rate of convergence of a sequence is
the so-called Richardson extrapolation. We observe that the first term on the right hand side of (18)
does not depend on n and so we can just write Q̂n = Q̂+ Ẽn. Replacing it in (11) we get

Qn = σ2 +
Zn√
n

+
1

nβ(2−α)
Q̂+ En and

Q2n = σ2 +
Z2n√

2n
+

1

2β(2−α)

1

nβ(2−α)
Q̂+ E2n,

where we have also used that ( 1
n )β(2−α)Ẽn = En. We can therefore use Qn−2β(2−α)Q2n

1−2β(2−α) as improved

estimator of σ2.
We give simulation results for E1, E2 and E3 in the situation where σ = 1. The given mean and the
deviation standard are each based on 500 Monte Carlo samples. We choose to simulate a tempered stable

process (that is F satisfies F (dz) = e−|z|

|z|1+α ) in the case α < 1 while, in the interest of computational

efficiency, we will exhibit results gained from the simulation of a stable Lévy process in the case α ≥ 1
(F (dz) = 1

|z|1+α ).

We have taken the smooth functions ϕ and ψ as below:

ϕ(x) =


1 if |x| < 1

e
1
3 + 1
|x|2−4 if 1 ≤ |x| < 2

0 if |x| ≥ 2

(19)

ψM (x) =


0 if |x| ≤ 1 or |x| ≥M
e

1
3 + 1
|3−x|2−4 if 1 < |x| ≤ 3

2

e
1

|x|2−M
− 5

21 + 4
4M2−9 if 3

2 < |x| < M ;

(20)

choosing opportunely the constant M in the definition of ψM we can make its decay slower or faster. We
observe that the theoretical results still hold even if the support of ϕ̃ changes as M changes and so it is
[−M,M ] instead of [-2, 2].
Concerning the constant k in the definition of ϕ, we fix it equal to 3 in the simulation of the tempered
stable process, while its value is 2 in the case α > 1, β = 0.2 and, in the case α > 1 and β = 0.49, it
increases as α and γ increase.
The results of the simulations are given in columns 3-6 of Table 1a for β = 0.2 and in columns 3-6 of
Table 1b for β = 0.49.

It appears that the estimation we get using the truncated quadratic variation performs worse as soon
as α and γ become bigger (see column 3 in both Tables 1a and 1b). However, after having applied
the corrections, the error seems visibly reduced. A proof of which lies, for example, in the comparison
between the error and the root mean square: before the adjustment in both Tables 1a and 1b the third
column dominates the fourth one, showing that the bias of the original estimator dominates the standard
deviation while, after the implementation of our main results, we get E2 and E3 for which the bias is
much smaller.
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α γ Mean Rms Mean Mean
E1 E1 E2 E3

0.1 1 3.820 3.177 0.831 0.189
3 5.289 3.388 1.953 -0.013

0.5 1 15.168 9.411 0.955 1.706
3 14.445 5.726 2.971 0.080

0.9 1 13.717 4.573 4.597 0.311
3 42.419 6.980 13.664 -0.711

1.2 1 32.507 11.573 0.069 2.137
3 112.648 21.279 -0.915 0.800

1.5 1 50.305 12.680 0.195 0.923
3 250.832 27.170 -5.749 3.557

1.9 1 261.066 20.729 -0.530 9.139
3 2311.521 155.950 -0.304 -35.177

(a) β = 0.2

α γ Mean Rms Mean Mean
E1 E1 E2 E3

0.1 1 1.092 1.535 0.307 -0.402
3 1.254 1.627 0.378 -0.372

0.5 1 2.503 1.690 0.754 -0.753
3 4.680 2.146 1.651 -0.824

0.9 1 2.909 1.548 0.217 0.416
3 8.042 1.767 0.620 -0.404

1.2 1 7.649 1.992 -0.944 -0.185
3 64.937 9.918 -1.692 -2.275

1.5 1 25.713 3.653 -1.697 3.653
3 218.591 21.871 -4.566 -13.027

1.9 1 238.379 14.860 -6.826 16.330
3 2357.553 189.231 3.827 -87.353

(b) β = 0.49

Table 1: Monte Carlo estimates of E1, E2 and E3 from 500 samples. We have here fixed n = 700; β = 0.2
in the first table and β = 0.49 in the second one.

We observe that for α < 1, in both cases β = 0.2 and β = 0.49, it is possible to choose opportunely
M (on which ψ’s decay depends) to make the error E3 smaller than E2. On the other hand, for α > 1,
the approach who consists of subtracting the jump part to the error results better than the other, since
E3 is in this case generally bigger than E2, but to use this method the knowledge of γ is required. It is
worth noting that both the approaches used, that lead us respectively to E2 and E3, work well for any
β ∈ (0, 1

2 ).
We recall that, in [15], the condition found on β to get a well-performed estimator was

β >
1

2(2− α)
, (21)

that is not respected in the case β = 0.2. Our results match the ones in [15], since the third column
in Table 1b (where β = 0.49) is generally smaller than the third one in Table 1a (where β = 0.2). We
emphasise nevertheless that, comparing columns 5 and 6 in the two tables, there is no evidence of a
dependence on β of E2 and E3.
The price you pay is that, to implement our corrections, the knowledge of α is request. Such corrections
turn out to be a clear improvement also because for α that is less than 1 the original estimator (17)
is well-performed only for those values of the couple (α, β) which respect the condition (21) while, for
α ≥ 1, there is no β ∈ (0, 1

2 ) for which such a condition can hold. That’s the reason why, in the lower
part of both Tables 1a and 1b, E1 is so big.
Using our main results, instead, we get E2 and E3 that are always small and so we obtain two corrections
which make the unbiased estimator always well-performed without adding any requirement on α or β.

5 Preliminary results

In the sequel, for δ ≥ 0, we will denote as Ri(∆
δ
n) any random variable which is Fti measurable and such

that, for any q ≥ 1,

∃c > 0 :

∥∥∥∥Ri(∆δ
n)

∆δ
n

∥∥∥∥
Lq
≤ c <∞, (22)

with c independent of i, n.
Ri represent the term of rest and have the following useful property, consequence of the just given
definition:

Ri(∆
δ
n) = ∆δ

nRi(∆
0
n). (23)

We point out that it does not involve the linearity of Ri, since the random variables Ri on the left and
on the right side are not necessarily the same but only two on which the control (22) holds with ∆δ

n and
∆0
n, respectively.

In order to prove the main result, the following proposition will be useful.
We define, for i ∈ {0, ..., n− 1},

∆XJ
i :=

∫ ti+1

ti

∫
R\{0}

γ(Xs−) z µ̃(ds, dz) and ∆X̃J
i :=

∫ ti+1

ti

∫
R\{0}

γ(Xti) z µ̃(ds, dz). (24)
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We want to bound the error we commit moving from ∆XJ
i to ∆X̃J

i , denoting as oL1(∆k
n) a quantity such

that Ei[|oL1(∆k
n)|] = Ri(∆

k
n), with the notation Ei[.] = E[.|Fti ].

Proposition 3. Suppose that A1- A4 hold. Then

(∆XJ
i )2ϕ∆β

n
(∆Xi) = (∆X̃J

i )2ϕ∆β
n
(∆X̃J

i ) + oL1(∆β(2−α)+1)
n ), (25)

(

∫ ti+1

ti

asdWs)∆X
J
i ϕ∆β

n
(∆Xi) = (

∫ ti+1

ti

asdWs)∆X̃
J
i ϕ∆β

n
(∆X̃J

i ) + oL1(∆β(2−α)+1)
n ). (26)

Moreover, for each ε̃ > 0 and f the function introduced in the definition of Qn,

n−1∑
i=0

f(Xti)(∆X
J
i )2ϕ∆β

n
(∆Xi) =

n−1∑
i=0

f(Xti)(∆X̃
J
i )2ϕ∆β

n
(∆X̃J

i ) + oP(∆
(1−αβ−ε̃)∧( 1

2−ε̃)
n ), (27)

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

asdWs)∆X
J
i ϕ∆β

n
(∆Xi) =

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

asdWs)∆X̃
J
i ϕ∆β

n
(∆X̃J

i )+oP(∆
(1−αβ−ε̃)∧( 1

2−ε̃)
n ).

(28)

Proposition 3 will be showed in the Appendix.
In the proof of our main results, also the following lemma will be repeatedly used.

Lemma 3. Let us consider ∆XJ
i and ∆X̃J

i as defined in (24). Then

1. For each q ≥ 2 ∃ε > 0 such that

E[|∆XJ
i 1{|∆XJi |≤4∆β

n}|
q|Fti ] = Ri(∆

1+β(q−α)
n ) = Ri(∆

1+ε
n ). (29)

E[|∆X̃J
i 1{|∆X̃Ji |≤4∆β

n}|
q|Fti ] = Ri(∆

1+β(q−α)
n ) = Ri(∆

1+ε
n ). (30)

2. For each q ≥ 1 we have

E[|∆XJ
i 1{

∆
β
n
4 ≤|∆X

J
i |≤4∆β

n

}|q|Fti ] = Ri(∆
1+β(q−α)
n ). (31)

Proof. Reasoning as in Lemma 10 in [2] we easily get (29). Observing that ∆X̃J
i is a particular case of

∆XJ
i where γ is fixed, evaluated in Xti , it follows that (30) can be obtained in the same way of (29).

Using the bound on ∆XJ
i obtained from the indicator function we get that the left hand side of (31) is

upper bounded by
c∆βq

n E[1{
∆
β
n
4 ≤|∆X

J
i |≤4∆β

n

}|Fti ] ≤ ∆βq
n Ri(∆

1−αβ
n ),

where in the last inequality we have used Lemma 11 in [2] on the interval [ti, ti+1] instead of on [0, h].
From property (23) of Ri we get (31).

6 Proof of main results

We show Lemma 2, required for the proof of Theorem 1.

6.1 Proof of Lemma 2.

Proof. By the definition of Xc we have

|
n−1∑
i=0

f(Xti)(X
c
ti+1
−Xc

ti)
2(ϕ∆β

n
(∆Xi)− 1)| ≤

≤ c
n−1∑
i=0

|f(Xti)|
(
|
∫ ti+1

ti

asdWs|2 + |
∫ ti+1

ti

bsds|2
)
|ϕ∆β

n
(∆Xi)− 1| =: |In2,1|+ |In2,2|.

In the sequel the constant c may change value from line to line.
Concerning In2,1, using Holder inequality we have

E[|In2,1|] ≤ c
n−1∑
i=0

E[|f(Xti)|Ei[|
∫ ti+1

ti

asdWs|2p]
1
pEi[|ϕ∆β

n
(∆Xi)− 1|q]

1
q ], (32)
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where Ei is the conditional expectation wit respect to Fti .
We now use Burkholder-Davis-Gundy inequality to get, for p1 ≥ 2,

Ei[|
∫ ti+1

ti

asdWs|p1 ]
1
p1 ≤ Ei[|

∫ ti+1

ti

a2
sds|

p1
2 ]

1
p1 ≤ Ri(∆

p1
2
n )

1
p1 = Ri(∆

1
2
n ), (33)

where in the last inequality we have used that a2
s has bounded moments as a consequence of Lemma

1. We now observe that, from the definition of ϕ we know that ϕ∆β
n
(∆Xi) − 1 is different from 0 only

if |∆Xi| > ∆β
n. We consider two different sets: |∆XJ

i | < 1
2∆β

n and |∆XJ
i | ≥ 1

2∆β
n. We recall that

∆Xi = ∆Xc
i + ∆XJ

i and so, if |∆Xi| > ∆β
n and |∆XJ

i | < 1
2∆β

n, then it means that |∆Xc
i | must be more

than 1
2∆β

n. Using a conditional version of Tchebychev inequality we have that, ∀r > 1,

Pi(|∆Xc
i | ≥

1

2
∆β
n) ≤ cEi[|∆X

c
i |r]

∆βr
n

≤ Ri(∆
( 1

2−β)r
n ), (34)

where Pi is the conditional probability with respect to Fti ; the last inequality follows from the sixth point

of Lemma 1. If otherwise |∆XJ
i | ≥ 1

2∆β
n, then we introduce the setNi,n :=

{
|∆Ls| ≤ 2∆β

n

γmin
;∀s ∈ (ti, ti+1]

}
.

We have Pi(
{
|∆XJ

i | ≥ 1
2∆β

n

}
∩ (Ni,n)c) ≤ Pi((Ni,n)c), with

Pi((Ni,n)c) = Pi(∃s ∈ (ti, ti+1] : |∆Ls| >
∆β
n

2γmin
) ≤ c

∫ ti+1

ti

∫ ∞
∆
β
n

2γmin

F (z)dzds ≤ c∆1−αβ
n , (35)

where we have used the third point of A4. Furthermore, using Markov inequality,

Pi(
{
|∆XJ

i | ≥
1

2
∆β
n

}
∩Ni,n) ≤ cEi[|∆XJ

i |r1Ni,n ]∆−βrn ≤ Ri(∆−βr+1+β(r−α)
n ) = Ri(∆

1−βα
n ), (36)

where we have used the first point of Lemma 3, observing that 1Ni,n acts like the indicator function in
(29) (see also (219) in [2]). Now using (34), (35), (36) and the arbitrariness of r we have

Pi(|∆Xi| > ∆β
n) = Pi(|∆Xi| > ∆β

n, |∆XJ
i | <

1

2
∆β
n) + Pi(|∆Xi| > ∆β

n, |∆XJ
i | ≥

1

2
∆β
n) ≤ Ri(∆1−αβ

n ).

(37)
Taking p big and q next to 1 in (32) and replacing there (33) with p1 = 2p and (37) we get, ∀ε > 0,

n1−αβ−ε̃E[|In2,1|] ≤ n1−αβ−ε̃c

n−1∑
i=1

E[|f(Xti)|Ri(∆n)Ri(∆
1−αβ−ε
n )] ≤ (

1

n
)ε̃−ε

c

n

n−1∑
i=1

E[|f(Xti)|Ri(1)].

Now, for each ε̃ > 0, we can always find an ε smaller than it, that is enough to get that
In2,1

( 1
n )1−αβ−ε̃ goes

to zero in L1 and so in probability. Let us now consider In2,2. We recall that b is uniformly bounded by a
constant, therefore

(

∫ ti+1

ti

bsds)
2 ≤ c∆2

n. (38)

Acting moreover on |ϕ∆β
n,i

(∆Xi)− 1| as we did here above it follows

n1−αβ−ε̃E[|In2,2|] ≤ n1−αβ−ε̃c

n−1∑
i=1

E[|f(Xti)|Ri(∆2
n)Ri(∆

1−αβ−ε
n )] ≤ (

1

n
)1+ε̃−ε c

n

n−1∑
i=1

E[|f(Xti)|Ri(1)]

and so In2,2 = oP(( 1
n )1−αβ−ε̃).

6.2 Proof of Theorem 1.

We observe that, using the dynamic (2) of X and the definition of the continuous part Xc, we have that

Xti+1
−Xti = (Xc

ti+1
−Xc

ti) +

∫ ti+1

ti

∫
R\{0}

γ(Xs−) z µ̃(ds, dz). (39)

Replacing (39) in definition (4) of Qn we have

Qn =

n−1∑
i=0

f(Xti)(X
c
ti+1
−Xc

ti)
2 +

n−1∑
i=0

f(Xti)(X
c
ti+1
−Xc

ti)
2(ϕ∆β

n
(∆Xi)− 1)+

11



+2

n−1∑
i=0

f(Xti)(X
c
ti+1
−Xc

ti)(∆X
J
i )ϕ∆β

n
(∆Xi) +

n−1∑
i=0

f(Xti)(∆X
J
i )2ϕ∆β

n
(∆Xi) =:

4∑
j=1

Inj . (40)

Comparing (40) with (6), using also definition (5) of Q̃n, it follows that our goal is to show that In2 +

In3 = En, that is both oP(∆
β(2−α)
n ) and oP(∆

(1−αβ−ε̃)∧( 1
2−ε̃)

n ). We have already shown in Lemma 2 that
In2 = oP(∆1−αβ−ε̃

n ). As (1− αβ − ε̃) ∧ ( 1
2 − ε̃) < 1− αβ − ε̃ and β(2− α) < 1− αβ − ε̃, we immediately

get In2 = En.
Let us now consider In3 . From the definition of the process (Xc

t ) it is

2

n−1∑
i=0

f(Xti)[

∫ ti+1

ti

bsds+

∫ ti+1

ti

asdWs]∆X
J
i ϕ∆β

n
(∆Xi) =: In3,1 + In3,2.

We use on In3,1 Cauchy-Schwartz inequality, (38) and Lemma 10 in [2], getting

E[|In3,1|] ≤ 2

n−1∑
i=0

E[|f(Xti)|Ri(∆1+β(2−α)
n )

1
2Ri(∆

2
n)

1
2 ] ≤ ∆

1
2 + β

2 (2−α)
n

1

n

n−1∑
i=0

E[|f(Xti)|Ri(1)],

where we have also used property (23) on R. We observe it is 1
2 +β− αβ

2 > 1
2 if and only if β(1− α

2 ) > 0,

that is always true. We can therefore say that In3,1 = oP(∆
1
2
n ) and so

In3,1 = oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (41)

Moreover,

E[|In3,1|]

∆
β(2−α)
n

≤ ∆
1
2−β+αβ

2
n

1

n

n−1∑
i=0

E[|f(Xti)|Ri(1)], (42)

that goes to zero using the polynomial growth of f , the definition of R, the fifth point of Lemma 1.
Moreover, we have observed that the exponent on ∆n is positive for β < 1

2
1

(1−α2 ) , that is always true.

Concerning In3,2, we start proving that In3,2 = oP(∆
β(2−α)
n ). From (26) in Proposition 3 we have

In3,2

∆
β(2−α)
n

=
2

∆
β(2−α)
n

n−1∑
i=0

f(Xti)∆X̃
J
i ϕ∆β

n
(∆X̃J

i )

∫ ti+1

ti

asdWs +
2

∆
β(2−α)
n

n−1∑
i=0

f(Xti)oL1(∆β(2−α)+1
n ).

(43)
By the definition of oL1 the last term here above goes to zero in norm 1 and so in probability. The first
term of (43) can be seen as

2

∆
β(2−α)
n

n−1∑
i=0

f(Xti)∆X̃
J
i ϕ∆β

n
(∆X̃J

i )[

∫ ti+1

ti

atidWs +

∫ ti+1

ti

(as − ati)dWs]. (44)

On the first term of (44) here above we want to use Lemma 9 of [11] in order to get that it converges to
zero in probability, so we have to show the following:

2

∆
β(2−α)
n

n−1∑
i=0

Ei[f(Xti)∆X̃
J
i ϕ∆β

n
(∆X̃J

i )

∫ ti+1

ti

atidWs]
P−→ 0, (45)

4

∆
2β(2−α)
n

n−1∑
i=0

Ei[f2(Xti)(∆X̃
J
i )2ϕ2

∆β
n
(∆X̃J

i )(

∫ ti+1

ti

atidWs)
2]

P−→ 0, (46)

where Ei[.] = E[.|Fti ].
Using the independence between W and L we have that the left hand side of (45) is

2

∆
β(2−α)
n

n−1∑
i=0

f(Xti)Ei[∆X̃J
i ϕ∆β

n
(∆X̃J

i )]Ei[
∫ ti+1

ti

atidWs] = 0. (47)

Now, in order to prove (46), we use Holder inequality with p big and q next to 1 on its left hand side,
getting it is upper bounded by

∆−2β(2−α)
n

n−1∑
i=0

f2(Xti)Ei[(
∫ ti+1

ti

atidWs)
2p]

1
pEi[|∆X̃J

i ϕ∆β
n
(∆X̃J

i )|2q]
1
q ≤

12



≤ ∆−2β(2−α)
n

n−1∑
i=0

f2(Xti)Ri(∆n)Ri(∆
1
q+ β

q (2q−α)
n ) ≤ ∆1−2β(2−α)+2β−αβ−ε

n

1

n

n−1∑
i=0

f2(Xti)Ri(1), (48)

where we have used (33), (30) and property (23) of R. We observe that the exponent on ∆n is positive
if β < 1

2−α − ε and we can always find an ε > 0 such that it is true. Hence (48) goes to zero in norm 1
and so in probability.
Concerning the second term of (44), using Cauchy-Schwartz inequality and (30) we have

Ei[|∆X̃J
i ϕ∆β

n
(∆X̃J

i )||
∫ ti+1

ti

[as − ati ]dWs|] ≤ Ei[|∆X̃J
i ϕ∆β

n
(∆X̃J

i )|2]
1
2Ei[|

∫ ti+1

ti

[as − ati ]dWs|2]
1
2 ≤

≤ Ri(∆
1
2 + β

2 (2−α)
n )Ei[

∫ ti+1

ti

|as − ati |2ds]
1
2 ≤ ∆

1
2 + β

2 (2−α)
n Ri(1)∆n ≤ ∆

3
2 + β

2 (2−α)
n,i Ri(1), (49)

where we have also used the second point of Lemma 1 and the property (23) of R. Replacing (49) in the
second term of (44) we get it is upper bounded in norm 1 by

∆
1
2−β+αβ

2
n

1

n

n−1∑
i=0

E[|f(Xti)|Ri(1)], (50)

that goes to zero since the exponent on ∆n is more than 0 for β < 1
2

1
(1−α2 ) , that is always true. Using

(43) - (46) and (50) we get
In3,2

∆
β(2−α)
n

P−→ 0. (51)

We now want to show that In3,2 is also oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ).

Using (28) in Proposition 3 we get it is enough to prove that

1

∆
1
2−ε̃
n

n−1∑
i=0

f(Xti)[∆X̃
J
i ϕ∆β

n
(∆X̃J

i )

∫ ti+1

ti

asdWs]
P−→ 0, (52)

where the left hand side here above can be seen as (44), with the only difference that now we have ∆
1
2−ε̃
n

instead of ∆
β(2−α)
n . We have again, acting like we did in (47) and (48),

2

∆
1
2−ε̃
n

n−1∑
i=0

f(Xti)Ei[∆X̃J
i ϕ∆β

n
(∆X̃J

i )

∫ ti+1

ti

atidWs]
P−→ 0 (53)

and

4

∆
2( 1

2−ε̃)
n

n−1∑
i=0

Ei[f2(Xti)(∆X̃
J
i )2ϕ2

∆β
n
(∆X̃J

i )(

∫ ti+1

ti

atidWs)
2] ≤ ∆2ε̃+2β−αβ−ε

n

1

n

n−1∑
i=0

f2(Xti)Ri(1), (54)

that goes to zero in norm 1 and so in probability. Using also (49) we have that

2

∆
1
2−ε̃
n

n−1∑
i=0

Ei[|f(Xti)∆X̃
J
i ϕ∆β

n
(∆X̃J

i )

∫ ti+1

ti

[as − ati ]dWs|] ≤ ∆
β
2 (2−α)+ε̃
n

1

n

n−1∑
i=0

|f(Xti)|Ri(1), (55)

that, again, goes to zero in norm 1 and so in probability since the exponent on ∆n is always positive.

Using (52) - (55) we get In3,2 = oP(∆
1
2−ε̃
n ) and so

In3,2 = oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (56)

From Lemma 2, (41), (42), (51) and (56) it follows (6).

Now, in order to prove (7), we recall the definition of Xc
t :

Xc
ti+1
−Xc

ti =

∫ ti+1

ti

bsds+

∫ ti+1

ti

asdWs. (57)

Replacing (57) in (6) and comparing it with (7) it follows that our goal is to show that

An1 +An2 :=

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

bsds)
2 + 2

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

bsds)(

∫ ti+1

ti

asdWs) = En.
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Using (38) and property (23) of R we know that

E[|An1 |]
∆
β(2−α)
n

≤ 1

∆
β(2−α)
n

n−1∑
i=0

E[|f(Xti)|Ri(∆2
n)] ≤ ∆1−β(2−α)

n

1

n

n−1∑
i=0

E[|f(Xti)|Ri(1)] (58)

and
E[|An1 |]

∆
1
2−ε̃
n

≤ ∆
1
2 +ε̃
n

1

n

n−1∑
i=0

E[|f(Xti)|Ri(1)], (59)

that go to zero since the exponent on ∆n is always more than 0, f has both polynomial growth and the
moment are bounded.
Let us now consider An2 . By adding and subtracting bti in the first integral, as we have already done, we
get that

An2 =

n−1∑
i=0

ζn,i+A
n
2,2 := 2

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

btids)(

∫ ti+1

ti

asdWs)+2

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

[bs−bti ]ds)(
∫ ti+1

ti

asdWs).

Using Lemma 9 in [11], we want to show that

n−1∑
i=0

ζn,i = En (60)

and so that the following convergences hold:

1

∆
β(2−α)
n

n−1∑
i=0

Ei[ζn,i]
P−→ 0

1

∆
1
2−ε̃
n

n−1∑
i=0

Ei[ζn,i]
P−→ 0; (61)

1

∆
2β(2−α)
n

n−1∑
i=0

Ei[ζ2
n,i]

P−→ 0
1

∆
2( 1

2−ε̃)
n

n−1∑
i=0

Ei[ζ2
n,i]

P−→ 0. (62)

We have
n−1∑
i=0

Ei[ζn,i] =
2

∆
β(2−α)
n

n−1∑
i=0

f(Xti)∆nbtiEi[
∫ ti+1

ti

asdWs] = 0

and so the two convergences in (61) both hold. Concerning (62), using (33) we have

∆1−2β(2−α)
n

c

n

n−1∑
i=0

f2(Xti)b
2
tiEi[(

∫ ti+1

ti

asdWs)
2] ≤ ∆2−2β(2−α)

n

c

n

n−1∑
i=0

f2(Xti)b
2
tiRi(1)

and

∆
1−2( 1

2−ε̃)
n

c

n

n−1∑
i=0

f2(Xti)b
2
tiEi[(

∫ ti+1

ti

asdWs)
2] ≤ ∆1+2ε̃

n

c

n

n−1∑
i=0

f2(Xti)b
2
tiRi(1),

that go to zero in norm 1 and so in probability since ∆n is always positive. It follows (62) and so (60).
Concerning An2,2, using Holder inequality, (33), the assumption on b gathered in A2 and Jensen inequality
it is

E[|An2,2|] ≤ c
n−1∑
i=0

E[|f(Xti)|Ei[(
∫ ti+1

ti

|bs − bti |ds)q]
1
qRi(∆

1
2
n )] ≤

≤ c
n−1∑
i=0

E[|f(Xti)|(∆q−1
n

∫ ti+1

ti

Ei[|bs − bti |q]ds)
1
qRi(∆

1
2
n )] ≤ c

n−1∑
i=0

E[|f(Xti)|(∆q−1
n

∫ ti+1

ti

∆nds)
1
qRi(∆

1
2
n )].

So we get

E[|An2,2|]

∆
β(2−α)
n

≤ ∆
1
q+ 1

2−β(2−α)
n

c

n

n−1∑
i=0

E[|f(Xti)|Ri(1)] and (63)

E[|An2,2|]

∆
1
2−ε̃
n

≤ ∆
1
q+ε̃
n

c

n

n−1∑
i=0

E[|f(Xti)|Ri(1)]. (64)

Since it holds for q ≥ 2, the best choice is to take q = 2, in this way we get that (63) and (64) go to 0 in
norm 1, using the polynomial growth of f , the boundedness of the moments, the definition of Ri and the
fact that the exponent on ∆n is in both cases more than zero, because of β < 1

2−α .
From (58), (59), (61), (63) and (64) it follows (7).
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6.3 Proof of Theorem 2

Proof. From Theorem 1 it is enough to prove that

n−1∑
i=0

f(Xti)(

∫ ti+1

ti

asdWs)
2 − 1

n

n−1∑
i=0

f(Xti)a
2
ti =

Zn√
n

+ En, (65)

and

Q̃Jn = Q̂n +
1

∆
β(2−α)
n

En,

where En is always oP(∆
β(2−α)
n ) and, if β > 1

4−α , then it is also oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). We can rewrite the

last equation here above as
Q̃Jn = Q̂n + oP(1) (66)

and, for β > 1
4−α ,

Q̃Jn = Q̂n +
1

∆
β(2−α)
n

oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (67)

Indeed, using them and (7) it follows (11). Hence we are now left to prove (65) - (67).

Proof of (65).
We can see the left hand side of (65) as

n−1∑
i=0

f(Xti)[(

∫ ti+1

ti

asdWs)
2 −

∫ ti+1

ti

a2
sds] +

n−1∑
i=0

f(Xti)

∫ ti+1

ti

[a2
s − a2

ti ]ds =: MQ
n +Bn. (68)

We want to show that Bn = En, it means that it is both oP(∆
β(2−α)
n ) and oP(∆

( 1
2−ε̃)∧(1−αβ−ε̃)
n ). We write

a2
s − a2

ti = 2ati(as − ati) + (as − ati)2, (69)

replacing (69) in the definition of Bn it is Bn = Bn1 +Bn2 . We start by proving that Bn2 = oP(∆
β(2−α)
n ).

Indeed, from the second point of Lemma 1, it is

E[|Bn2 |] ≤ c
n−1∑
i=0

E[|f(Xti)|
∫ ti+1

ti

Ei[|as − ati |2]ds] ≤ c∆2
n

n−1∑
i=0

E[|f(Xti)|].

It follows

E[|Bn2 |]
∆
β(2−α)
n

≤ ∆1−β(2−α)
n

1

n

n−1∑
i=0

E[|f |(Xti)] and
E[|Bn2 |]

∆
1
2−ε̃
n

≤ ∆
1
2 +ε̃
n

1

n

n−1∑
i=0

E[|f |(Xti)], (70)

that go to zero using the polynomial growth of f and the fact that the moments are bounded. We have
also observed that the exponent on ∆n is always more than 0.
Concerning Bn1 , we recall that from (3) it follows

as − ati =

∫ s

ti

b̃udu+

∫ s

ti

ãudWu +

∫ s

ti

âudŴu +

∫ s

ti

∫
R\{0}

γ̃u z µ̃(du, dz) +

∫ s

ti

∫
R\{0}

γ̂u z µ̃2(du, dz)

and so, replacing it in the definition of Bn1 , we get Bn1 := In1 + In2 + In3 + In4 + In5 .
We start considering In1 on which we use that b̃ is bounded

E[|In1 |] ≤ 2

n−1∑
i=0

E[|f(Xti)||ati |
∫ ti+1

ti

(

∫ s

ti

cdu)ds] ≤ ∆n
1

n

n−1∑
i=0

E[|f(Xti)||ati |].

It follows
E[|In1 |]

∆
β(2−α)
n

≤ ∆1−β(2−α)
n

1

n

n−1∑
i=0

E[|f(Xti)||ati |] and (71)

E[|In1 |]

∆
1
2−ε̃
n

≤ ∆
1
2 +ε̃
n

1

n

n−1∑
i=0

E[|f(Xti)||ati |], (72)

that go to zero because of the polynomial growth of f , the boundedness of the moments and the fact
that 1− β(2− α) > 0.
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We now act on In2 and In3 in the same way. Considering In2 , we define ζn,i := 2f(Xti)ati
∫ ti+1

ti
(
∫ s
ti
ãudWu)ds.

We want to use Lemma 9 in [11] to get that

In2

∆
β(2−α)
n

P−→ 0 and
In2

∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n

P−→ 0 (73)

and so we have to show the following :

1

∆
β(2−α)
n

n−1∑
i=0

Ei[ζn,i]
P−→ 0,

1

∆
1
2−ε̃
n

n−1∑
i=0

Ei[ζn,i]
P−→ 0; (74)

1

∆
2β(2−α)
n

n−1∑
i=0

Ei[ζ2
n,i]

P−→ 0, (75)

1

∆
2( 1

2−ε̃)
n

n−1∑
i=0

Ei[ζ2
n,i]

P−→ 0. (76)

By the definition of ζn,i it is Ei[ζn,i] = 0 and so (74) is clearly true. The left hand side of (75) is

∆−2β(2−α)
n 4

n−1∑
i=0

f2(Xti)a
2
tiEi[(

∫ ti+1

ti

(

∫ s

ti

ãudWu)ds)2]. (77)

Using Fubini theorem and Ito isometry we have

Ei[(
∫ ti+1

ti

(

∫ s

ti

ãudWu)ds)2] = Ei[(
∫ ti+1

ti

(ti+1 − s)ãsdWs)
2] = Ei[

∫ ti+1

ti

(ti+1 − s2)ã2
sds] ≤ Ri(∆3

n). (78)

Because of (78), we get that (77) is upper bounded by

∆2−2β(2−α)
n

1

n

n−1∑
i=0

f2(Xti)a
2
tiRi(1),

that converges to zero in norm 1 and so (75) follows, since 2− 2β(2−α) > 0 for β < 1
2−α , that is always

true. Acting in the same way we get that the left hand side of (76) is upper bounded by

∆1+2ε̃
n

1

n

n−1∑
i=0

f2(Xti)a
2
tiRi(1),

that goes to zero in norm 1. The same holds clearly for In3 instead of In2 . In order to show also

In4

∆
β(2−α)
n

P−→ 0 and
In4

∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n

P−→ 0, (79)

we define ζ̃n,i := 2f(Xti)ati
∫ ti+1

ti
(
∫ s
ti

∫
R γ̃uzµ̃(du, dz))ds. We have again Ei[ζ̃n,i] = 0 and so (74) holds

with ζ̃n,i in place of ζn,i. We now act like we did in (78), using Fubini theorem and Ito isometry. It
follows

Ei[(
∫ ti+1

ti

(

∫ s

ti

∫
R
γ̃uzµ̃(du, dz)ds)2] = Ei[(

∫ ti+1

ti

∫
R

(ti+1 − s)γ̃szµ̃(ds, dz))2] =

= Ei[
∫ ti+1

ti

(ti+1 − s)2γ̃2
sds(

∫
R
z2F (z)dz)] ≤ Ri(∆3

n), (80)

having used in the last inequality the definition of µ̄(ds, dz), the fact that
∫
R z

2F (z)dz < ∞ and the

boundedness of γ̃. Replacing (80) in the left hand side of (75) and (76), with ζ̃n,i in place of ζn,i, we have

1

∆
2β(2−α)
n

n−1∑
i=0

Ei[ζ̃2
n,i] ≤ c∆−2β(2−α)

n

n−1∑
i=0

f2(Xti)a
2
tiRi(∆

3
n) ≤ ∆2−2β(2−α)

n

1

n

n−1∑
i=0

f2(Xti)a
2
tiRi(1)

and
1

∆1−2ε̃
n

n−1∑
i=0

Ei[ζ̃2
n,i] ≤ ∆1+2ε̃

n

1

n

n−1∑
i=0

f2(Xti)a
2
tiRi(1).

Again, they converge to zero in norm 1 and thus in probability since 2 − 2β(2 − α) > 0 always holds.
Therefore, we get (79). Clearly, (79) holds also with In5 replacing In4 ; the reasoning here above joint with
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the sixth point of A4 on F2 is proof of that.
From (70), (71), (72), (73) and (79) it follows that

Bn = En. (81)

Concerning MQ
n :=

∑n−1
i=0 ζ̂n,i, Genon - Catalot and Jacod have proved in [11] that, in the continuous

framework, the following conditions are enough to get
√
nMQ

n → N(0, 2
∫ T

0
f2(Xs)a

4
sds) stably with

respect to X:

• Ei[ζ̂n,i] = 0;

•
∑n−1
i=0 Ei[ζ̂2

n,i]
P−→ 2

∫ T
0
f2(Xs)a

4
sds ;

•
∑n−1
i=0 Ei[ζ̂4

n,i]
P−→ 0;

•
∑n−1
i=0 Ei[ζ̂n,i(Wti+1

−Wti)]
P−→ 0;

•
∑n−1
i=0 Ei[ζ̂n,i(Ŵti+1 − Ŵti)]

P−→ 0.

Theorem 2.2.15 in [14] adapts the previous theorem to our framework, in which there is the presence of
jumps.
We observe that the conditions here above are respected, hence

MQ
n =

Zn√
n
, where Zn

n−→ N(0, 2

∫ T

0

f2(Xs)a
4
sds), (82)

stably with respect to X. From (81) and (82), it follows (65).

Proof of (66).
We use Proposition 3 replacing (25) in the definition (5) of Q̃Jn. Recalling that the convergence in norm
1 implies the convergence in probability it is clear that we have to prove the result on

nβ(2−α)
n−1∑
i=0

f(Xti)(∆X̃
J
i )2ϕ∆β

n
(∆X̃J

i ) =

= nβ(2−α)
n−1∑
i=0

f(Xti)γ
2(Xti)∆

2
α
n (

∆X̃J
i

γ(Xti)∆
1
α
n

)2ϕ∆β
n
(

∆X̃J
i

γ(Xti)∆
1
α
n

γ(Xti)∆
1
α
n ), (83)

where we have also rescaled the process in order to apply Proposition 1. We now define

gi,n(y) := y2ϕ∆β
n
(yγ(Xti)∆

1
α
n ), (84)

hence we can rewrite (83) as

(
1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)γ
2(Xti)[gi,n(

∆X̃J
i

γ(Xti)∆
1
α
n

)− E[gi,n(Sα1 )]]+

+(
1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)γ
2(Xti)E[gi,n(Sα1 )] =:

n−1∑
i=0

An1,i + Q̂n, (85)

where Sα1 is the α-stable process at time t = 1. We want to show that
∑n−1
i=0 A

n
1,i converges to zero

in probability. With this purpose in mind, we take the conditional expectation of An1,i and we apply
Proposition 1 on the interval [ti, ti+1] instead of on [0, h], observing that property (9) holds on gi,n for

p = 2. By the definition (84) of gi,n, we have ‖gi,n‖∞ = Ri(∆
2(β− 1

α )
n ) and ‖gi,n‖pol = Ri(1). Replacing

them in (10) we have that

|Ei[gi,n(
∆X̃J

i

γ(Xti)∆
1
α
n

)]− E[gi,n(Sα1 )]| ≤ cε,α∆n| log(∆n)|Ri(∆
2(β− 1

α )
n )+

+cε,α∆
1
α
n | log(∆n)|Ri(∆

2(β− 1
α )(1−α2−ε)

n ) + cε,α∆
1
α
n | log(∆n)|Ri(∆

2(β− 1
α )( 3

2−
α
2−ε)

n )1α>1.
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To get
∑n−1
i=0 A

n
1,i := oP(1), we want to use Lemma 9 of [11]. We have

n−1∑
i=0

|Ei[An1,i]| ≤ (
1

n
)

2
α−β(2−α)

n−1∑
i=0

|f(Xti)||γ2(Xti)|| log(∆n)|[∆1+2(β− 1
α )

n + ∆
1
α+(2−α−ε)(β− 1

α )
n +

+∆
1
α+(3−α−ε)(β− 1

α )
n 1α>1]Ri(1) ≤ (∆αβ

n + ∆
1
α−ε
n + ∆β−ε

n 1α>1)
| log(∆n)|

n

n−1∑
i=0

|f(Xti)||γ2(Xti)|Ri(1), (86)

where we have used property (23). Using the polynomial growth of f , the boundedness of the moments
and the fifth point of Assumption 4 in order to bound γ, (86) converges to 0 in norm 1 and so in probability

since ∆αβ
n log(∆n)→ 0 for n→∞ and we can always find an ε > 0 such that ∆

1
α−ε
n does the same.

To use Lemma 9 of [11] we have also to show that

(
1

n
)

4
α−2β(2−α)

n−1∑
i=0

f2(Xti)γ
4(Xti)Ei[(gi,n(

∆X̃J
i

γ(Xti)∆
1
α
n

)− E[gi,n(Sα1 )])2]
P−→ 0. (87)

We observe that Ei[(gi,n(
∆X̃Ji

γ(Xti )∆
1
α
n

)−E[gi,n(Sα1 )])2] ≤ cEi[g2
i,n(

∆X̃Ji

γ(Xti )∆
1
α
n

)]+cEi[E[gi,n(Sα1 )]2]. Now, using

equation (30) of Lemma 3, we observe it is

Ei[g2
i,n(

∆X̃J
i

γ(Xti)∆
1
α
n

)] =
∆
− 4
α

n

γ4(Xti)
Ei[(∆X̃J

i )4ϕ2
∆β
n
(∆X̃J

i )] =
∆
− 4
α

n

γ4(Xti)
Ri(∆

1+β(4−α)
n ), (88)

where ϕ acts as the indicator function. Moreover we observe that

E[gi,n(Sα1 )] =

∫
R
z2ϕ(∆

1
α−β
n γ(Xti)z)fα(z)dz = d(γ(Xti)∆

1
α−β
n ), (89)

with fα(z) the density of the stable process. We now introduce the following lemma, that will be shown
in the Appendix:

Lemma 4. Suppose that Assumptions 1-4 hold. Then, for each ζn such that ζn → 0 and for each ε̂ > 0,

d(ζn) = |ζn|α−2cα

∫
R
|u|1−αϕ(u)du+ o(|ζn|−ε̂ + |ζn|2α−2−ε̂), (90)

where cα has been defined in (13).

Since 1
α − β > 0, γ(Xti)∆

1
α−β
n goes to zero for n→∞ and so we can take ζn as γ(Xti)∆

1
α−β
n , getting

that
E[gi,n(Sα1 )] = d(γ(Xti)∆

1
α−β
n ) = Ri(∆

( 1
α−β)(α−2)
n ). (91)

Replacing (88) and (91) in the left hand side of (87) we get it is upper bounded by

n−1∑
i=0

Ei[(An1,i)2] = (
1

n
)

4
α−2β(2−α)

n−1∑
i=0

f2(Xti)γ
4(Xti)(Ri(∆

1+β(4−α)
n ) +Ri(∆

4β− 4
α+2−2αβ

n )) ≤

≤ ∆αβ∧1
n

1

n

n−1∑
i=0

f2(Xti)γ
4(Xti)Ri(1), (92)

that converges to zero in norm 1 and so in probability, as a consequence of the polynomial growth of f
and the fact that the exponent on ∆n is always positive. From (86) and (92) it follows

n−1∑
i=0

An1,i = oP(1). (93)

and so (66).

Proof of (67).
We use Proposition 3 replacing (27) in definition (5) of Q̃Jn. Our goal is to prove that

nβ(2−α)
n−1∑
i=0

f(Xti)(∆X̃
J
i )2ϕ∆β

n
(∆X̃J

i ) = Q̂n + oP(∆
( 1

2−2β+αβ−ε̃)∧(1−2β−ε̃)
n ).
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On the left hand side of the equation here above we can act like we did in (83) - (85). To get (67) we are

therefore left to show that , if β > 1
4−α , then

∑n−1
i=0 A

n
1,i is also oP(∆

( 1
2−2β+αβ−ε̃)∧(1−2β−ε̃)
n ). To prove it,

we want to use Lemma 9 of [11], hence we want to prove the following:

1

∆
1
2−2β+αβ−ε̃
n

n−1∑
i=0

Ei[An1,i]
P−→ 0 and (94)

1

∆
2( 1

2−2β+αβ−ε̃)
n

n−1∑
i=0

Ei[(An1,i)2]
P−→ 0. (95)

Using (86) we have that, if α > 1, then the left hand side of (94) is in module upper bounded by

∆β−ε
n | log(∆n)|

∆
1
2−2β+αβ−ε̃
n

1

n

n−1∑
i=0

|f(Xti)||γ2(Xti)|Ri(1) = ∆
3β−αβ− 1

2 +ε̃−ε
n | log(∆n)| 1

n

n−1∑
i=0

|f(Xti)||γ2(Xti)|Ri(1),

that goes to zero since we have chosen β > 1
4−α > 1

2(3−α) . Otherwise, if α ≤ 1, then (86) gives us that

the left hand side of (94) is in module upper bounded by

∆αβ
n | log(∆n)|

∆
1
2−2β+αβ−ε̃
n

1

n

n−1∑
i=0

|f(Xti)||γ2(Xti)|Ri(1) = ∆
2β− 1

2 +ε̃
n | log(∆n)| 1

n

n−1∑
i=0

|f(Xti)||γ2(Xti)|Ri(1),

that goes to zero because β > 1
4−α >

1
4 .

Using also (92), the left hand side of (95) turns out to be upper bounded by

∆−1+4β−2αβ+2ε̃
n ∆αβ∧1

n
1
n

∑n−1
i=0 f

2(Xti)γ
4(Xti)Ri(1), that goes to zero in norm 1 and so in probability

since we have chosen β > 1
4−α . It follows (95) and so (11).

6.4 Proof of Proposition 2

Proof. To prove the proposition we replace (90) in the definition of Q̂n. It follows that our goal is to
show that

In1 + In2 := (
1

n
)

2
α−β(2−α)

n−1∑
i=0

f(Xti)γ
2(Xti)(o(|∆

1
α−β
n γ(Xti)|−ε̂ + |∆

1
α−β
n γ(Xti)|2α−2−ε̂)) = Ẽn,

where Ẽn is always oP(1) and, if α < 4
3 , it is also 1

∆
β(2−α)
n

oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ).

We have that In1 = oP(1) since it is upper bounded by

∆
2
α−1−2β+αβ−ε̂( 1

α−β)
n

1

n

n−1∑
i=0

Ri(1) o(1),

that goes to zero in norm 1 and so in probability since we can always find an ε̂ > 0 such that the exponent
on ∆n is positive.
Also In2 is oP(1). Indeed it is upper bounded by

∆
2
α−1−2β+αβ−2( 1

α−β)+2(1−αβ)−ε̂( 1
α−β)

n
1

n

n−1∑
i=0

Ri(1) o(1). (96)

We observe that the exponent on ∆n is 1− αβ − ε̂( 1
α − β) and we can always find ε̂ such that it is more

than zero, hence (96) converges in norm 1 and so in probability.

In order to show that In1 = 1

∆
β(2−α)
n

oP(∆
1
2−ε̃
n ) = oP(∆

1
2−ε̃−β(2−α)
n ) we observe that

In1

∆
1
2−ε̃−β(2−α)
n

≤ ∆
2
α−1− 1

2 +ε̃−ε̂( 1
α−β)

n
1

n

n−1∑
i=0

Ri(1) o(1).

If α < 4
3 we can always find ε̃ and ε̂ such that the exponent on ∆n is more than zero, getting the

convergence wanted. It follows In1 = 1

∆
β(2−α)
n

oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ).

To conclude, In2 = 1

∆
β(2−α)
n

oP(∆1−αβ−ε̃
n ) = oP(∆1−2β−ε̃

n ). Indeed,

In2

∆1−2β−ε̃
n

≤ ∆
2
α−1−1+αβ+ε̃−2( 1

α−β)+2(1−αβ)−ε̂( 1
α−β)

n
1

n

n−1∑
i=0

Ri(1) o(1). (97)

The exponent on ∆n is 2β−αβ+ ε̃− ε̂( 1
α −β) and so we can always find ε̃ and ε̂ such that it is positive. It

follows the convergence in norm 1 and so in probability of (97). The proposition is therefore proved.

19



6.5 Proof of Corollary 1

Proof. We observe that (14) is a consequence of (12) in the case where Q̂n = 0. Moreover, β < 1
2α implies

that ∆1−αβ−ε̃
n is negligible compared to ∆

1
2−ε̃
n . It follows (14).

6.6 Proof of Theorem 3.

Proof. The convergence (15) clearly follows from (12).
Concerning the proof of (16), we can see its left hand side as

Qn −
1

n

n−1∑
i=0

f(Xti)a
2
ti +

1

n

n−1∑
i=0

f(Xti)a
2
ti − IV1

and so, using (11) and the definition of IV1, it turns out that our goal is to show that

1

n

n−1∑
i=0

f(Xti)a
2
ti −

∫ 1

0

f(Xs) a
2
sds = oP(∆β(2−α)

n ). (98)

The left hand side of (98) is

n−1∑
i=0

f(Xti)

∫ ti+1

ti

(a2
ti − a

2
s)ds+

n−1∑
i=0

∫ ti+1

ti

a2
s(f(Xti)− f(Xs))ds =: Bn +Rn.

Bn in the equation here above is exactly the same term we have already dealt with in the proof of

Theorem 2 (see (68)). As showed in (81) it is En and so, in particular, it is also oP(∆
β(2−α)
n ).

On Rn we act like we did on Bn,considering this time the development up to second order of the function
f , getting

f(Xs) = f(Xti) + f ′(Xti)(Xs −Xti) +
f ′′(X̃ti)

2
(Xs −Xti)

2, (99)

where X̃ti ∈ [Xti , Xs]. Replacing (99) in Rn we get two terms that we denote R1
n and R2

n. On them we
can act like we did on (69). The estimations gathered in Lemma 1 about the increments of X and of a
have the same size (see points 2 and 4) and provide on Bn2 and R2

n the same upper bound:

E[|R2
n|] ≤ c

n−1∑
i=0

E[|f ′′(Xti)|
∫ ti+1

ti

Ei[|as||Xs −Xti |2]ds] ≤ c∆2
n

n−1∑
i=0

E[|f ′′(Xti)|Ri(1)],

where we have used Cauchy Schwartz inequality and the fourth point of Lemma 1. It yields R2
n =

oP(∆
β(2−α)
n ), which is the same result found in the first inequality of (70) for the increments of a.

To deal with R1
n we replace the dynamic of X (as done with the dynamic of a for Bn1 ). Even if the

volatility coefficient in the dynamic of X is no longer bounded, the condition sups∈[ti,ti+1] Ei[|as|] < ∞
(which is true according with Lemma 1) is enough to say that (78) keep holding.
Following the method provided in the proof of Theorem 2 to show that Bn1 = En we obtain R1

n = En and

therefore R1
n = oP(∆

β(2−α)
n ). It yields (98) and so the theorem is proved.

7 Proof of Proposition 1.

This section is dedicate to the proof of Proposition 1. To do it, it is convenient to introduce an adequate
truncation function and to consider a rescaled process, as explained in the next subsections. Moreover,
the proof of Proposition 1 requires some Malliavin calculus; we recall in what follows all the technical
tools to make easier the understanding of the paper.

7.1 Localization and rescaling

We introduce a truncation function in order to suppress the big jumps of (Lt). Let τ : R → [0, 1] be a
symmetric function, continuous with continuous derivative, such that τ = 1 on

{
|z| ≤ 1

4η
}

and τ = 0 on{
|z| ≥ 1

2η
}

, with η defined in the fourth point of Assumption 4.
On the same probability space (Ω,F , (Ft),P) we consider the Lévy process (Lt) defined below (2) which

measure is F (dz) = ḡ(z)
|z|1+α 1R\{0}(z)dz, according with the third point of A4, and the truncated Lévy

process (Lτt ) with measure F τ (dz) given by F τ (dz) = ḡ(z)τ(z)
|z|1+α 1R\{0}(z)dz. This can be done by setting
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Lt :=
∫ t

0

∫
R zµ̃(ds, dz), as we have already done, and Lτt :=

∫ t
0

∫
R zµ̃

τ (ds, dz), where µ̃ and µ̃τ are the
compensated Poisson random measures associated respectively to

µ(A) :=

∫
[0,1]

∫
R

∫
[0,T ]

1A(t, z)µḡ(dt, dz, du), A ⊂ [0, T ]× R,

µτ (A) :=

∫
[0,1]

∫
R

∫
[0,T ]

1A(t, z)1u≤τ(z)µ
ḡ(dt, dz, du), A ⊂ [0, T ]× R,

for µḡ a Poisson random measure on [0, T ]×R×[0, 1] with compensator µ̄ḡ(dt, dz, du) = dt ḡ(z)
|z|1+α 1R\{0}(z)dzdu.

By construction, the restrictions of the measures µ and µτ to [0, h]× R coincide on the set
{(u, z) such that u ≤ τ(z)}, and thus coincide on the event

Ωh :=
{
ω ∈ Ω;µḡ([0, h]×

{
z ∈ R : |z| ≥ η

4

}
× [0, 1]) = 0

}
.

Since µḡ([0, h]×
{
z ∈ R : |z| ≥ η

4

}
× [0, 1]) has a Poisson distribution with parameter

λh :=

∫ h

0

∫
|z|≥ η4

∫ 1

0

ḡ(z)

|z|1+α
du dz dt ≤ ch;

we deduce that
P(Ωch) ≤ c h. (100)

Then we have
P((Lt)t≤h 6= (Lτt )t≤h) ≤ P(Ωch) ≤ c h. (101)

To prove Proposition 1 we have to rescale the process (Lt)t∈[0,1], we therefore introduce an auxiliary

Lévy process (Lht )t∈[0,1] defined possibly on another filtered space (Ω̃, F̃ , (F̃t), P̃) and admitting the de-

composition Lht :=
∫ t

0

∫
R zµ̃

h(dt, dz), with t ∈ [0, 1]; where µ̃h is a compensated Poisson random measure

µ̃h = µh − µ̄h, with compensator

µ̄h(dt, dz) = dt
ḡ(zh

1
α )

|z|1+α
τ(zh

1
α )1R\{0}(z)dz. (102)

By construction, the process (Lht )t∈[0,1] is equal in law to the rescaled truncated process (h−
1
αLτht)t∈[0,1]

that coincides with (h−
1
αLht)t∈[0,1] on Ωn.

7.2 Malliavin calculus

In this section, we recall some results on Malliavin calculus for jump processes. We refer to [8] for a
complete presentation and to [9] for the adaptation to our framework. We will work on the Poisson space
associated to the measure µh defining the process (Lht )t∈[0,1] of the previous section, assuming that h is

fixed. By construction, the support of µh is contained in [0, 1]× Eh, where Eh :=
{
z ∈ R : |z| < η

2
1

h
1
α

}
,

with η defined in the fourth point of A4. We recall that the measure µh has compensator

µ̄h(dt, dz) = dt
ḡ(zh

1
α )

|z|1+α
τ(zh

1
α )1R\{0}(z)dz := dtFh(z)dz. (103)

In this section we assume that the truncation function τ satisfies the additional assumption∫
R
|τ
′(z)

τ(z)
|pτ(z)dz <∞, ∀p ≥ 1.

We now define the Malliavin operators L and Γ (omitting their dependence in h) and their basic properties
(see [8] Chapter IV, sections 8-9-10). For a test function f : [0, 1]× R→ R measurable, C2 with respect
the second variable, with bounded derivative and such that f ∈ ∩p≥1L

p(µ̄h(dt, dz)), we set µh(f) =∫ 1

0

∫
R f(t, z)µh(dt, dz). As auxiliary function, we consider ρ : R → [0,∞) such that ρ is symmetric, two

times differentiable and such that ρ(z) = z4 if z ∈ [0, 1
2 ] and ρ(z) = z2 if z ≥ 1. Thanks to the truncation

τ , we do not need that ρ vanishes at infinity. Assuming the fourth point of Assumption 4, we check that

ρ, ρ′ and ρ
F ′h
Fh

belong to ∩p≥1L
p(Fh(z)dz). With these notations, we define the Malliavin operator L on

the functional µh(f) as follows:

L(µh(f)) :=
1

2
µh(ρ′f ′ + ρ

F ′h
Fh
f ′ + ρf ′′),
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where f ′ and f ′′ are derivative with respect to the second variable. This definition permits to construct
a linear operator on the space D ⊂ ∩p≥1L

p(Fh(z)dz) which is self-adjoint: ∀Φ,Ψ ∈ D, EΦLΨ = ELΦΨ
(see Section 8 in [8] for the details on the construction of D).
We associate to L the symmetric bilinear operator Γ:

Γ(Φ,Ψ) = L(Φ,Ψ)− ΦL(Ψ)−ΨL(Φ).

If f and g are two test functions, we have

Γ(µh(f), µh(g)) = µh(ρf ′g′). (104)

The operators L and Γ satisfy the chain rule property:

LF (Φ) = F ′(Φ)LΦ +
1

2
F ′′(Φ)Γ(Φ,Φ), Γ(F (Φ),Ψ) = F ′(Φ)Γ(Φ,Ψ).

These operators permit to establish the following integration by parts formula (see [8] Theorem 8-10
p.103).

Theorem 4. Let Φ and Ψ be random variable in D and f be a bounded function with bounded derivatives
up to order two. If Γ(Φ,Φ) is invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L

p, then we have

Ef ′(Φ)Ψ = Ef(Φ)HΦ(Ψ), (105)

with
HΦ(Ψ) = −2ΨΓ−1(Φ,Φ)LΦ− Γ(Φ,ΨΓ−1(Φ,Φ)). (106)

The random variable Lh1 belongs to the domain of the operators L and Γ. Computing L(Lh1 ), Γ(Lh1 , L
h
1 )

and HLh1 (1) it is possible to deduce the following useful inequalities, proved in Lemma 4.3 in [9].

Lemma 5. We have
sup
n

E|HLh1 (1)|p ≤ Cp ∀p ≥ 1,

sup
n

E|
∫ 1

0

∫
|z|>1

|z|µh(ds, dz)HLh1 (1)|p ≤ Cp ∀p ≥ 1.

With this background we can proceed to the proof of Proposition 1.

7.3 Proof of Proposition 1

Proof. The first step is to construct on the same probability space two random variables whose laws are
close to the laws of h−

1
αLh and Sα1 . We recall briefly the notation of Section 7.1: µh is a Poisson random

measure with compensator µ̄h(dt, dz) defined in (102) and the process Lht is defined by

Lht =

∫ t

0

∫
R
zµ̃h(ds, dz) =

∫ t

0

∫
|z|≤h−

1
α η

2

zµ̃h(ds, dz) (107)

with µ̃h = µh − µ̄h. Using triangle inequality we have

|E[g(h−
1
αLh)]− E[g(Sα1 )]| ≤ |E[g(h−

1
αLh)]− E[g(Lh1 )]|+ |E[g(Lh1 )− g(Sα1 )]|. (108)

By the definition of Lh1 it is

|E[g(h−
1
αLh)]− E[g(Lh1 )]| = |E[g(h−

1
αLh)− g(h−

1
αLτh)]| ≤ 2 ‖g‖∞ P(Ωcn) ≤ c ‖g‖∞ h, (109)

where in the last inequality we have used (101). In order to get an estimation to the second term of (108)
we now construct a variable approximating the law of Sα1 and based on the Poisson measure µh :

Lα,ht :=

∫ t

0

∫
|z|≤h−

1
α η

2

gh(z)µ̃h(ds, dz), (110)

where gh is an odd function built in the proof of Theorem 4.1 in [9] for which the following lemma holds:
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Lemma 6. 1. For each test function f , defined as in Section 7.2, we have∫ 1

0

∫
|z|≤ η2 h

− 1
α

f(t, gh(z))µ̄h(dt, dz) =

∫ 1

0

∫
|ω|≤ η2 h

− 1
α

f(t, ω)µ̄α,h(dt, dω), (111)

where µ̄h(dt, dz) is the compensator defined in (102) and

µ̄α,h(dt, dω) = dt
τ(ωh

1
α )

|ω|1+α
dω

is the compensator of a measure associated to an α- stable process whose jumps are truncated with
the function τ .

2. There exists ε0 > 0 such that, for |z| ≤ ε0h−
1
α ,

|gh(z)− z| ≤ cz2h
1
α + c|z|1+αh if α 6= 1,

|gh(z)− z| ≤ cz2h| log(|z|h)| if α = 1.

3. The function gh is C1 on (−ε0h−
1
α , ε0h

− 1
α ) and for |z| < ε0h

− 1
α ,

|g′h(z)− 1| ≤ c|z|h 1
α + c|z|αh if α 6= 1,

|g′h(z)− 1| ≤ c|z|h| log(|z|h)| if α = 1.

The second and the third point of the lemma here above are proved in Lemma 4.5 of [9], while the first
point is proved in Theorem 4.1 [9] and it shows us, using the exponential formula for Poisson measure,
that gh is the function that turns our measure µh into the measure associated to an α-stable process

truncated with the function τ . Thus (Lα,ht )t∈[0,1] is a Lévy process with jump intensity ω 7→ τ(ωh
1
α )

|ω|1+α and

we recognize the law of an α-stable truncated process. We deduce, similarly to (109),

|E[g(Lα,h1 )]− E[g(Sα1 )]| ≤ c ‖g‖∞ h. (112)

Proposition 1 is a consequence of (108), (109), (112) and the following lemma:

Lemma 7. Suppose that Assumptions 1 to 4 hold. Let g be as in Proposition 1. Then, for any ε > 0
and for p ≥ α,

|E[g(Lh1 )− g(Lα,h1 )]| ≤ Cεh| log(h)| ‖g‖∞ + Cεh
1
α ‖g‖1−

α
p+ε

∞ ‖g‖
α
p−ε
pol | log(h)|+

+Cεh
1
α ‖g‖1+ 1

p−
α
p+ε

∞ ‖g‖−
1
p+α

p−ε
pol | log(h)|1α>1.

Proof. The proof is based of the comparison of the representation of (107) and (110). Since in Lemma

6 the difference gh(z) − z is controlled for |z| ≤ ε0h
− 1
α , we need to introduce a localization procedure

consisting in regularizing 1{
µh([0,1]×

{
z∈R:|z|>ε0h−

1
α

}
)=0

}. Let I be a smooth function defined on R and

with values in [0, 1], such that I(x) = 1 for x ≤ 1
2 and I(x) = 0 for x ≥ 1. Moreover, we denote by ζ a

smooth function on R, with values in [0, 1] such that ζ(z) = 0 for |z| ≤ 1
2 and ζ(z) = 1 for |z| ≥ 1 and we

set

V h :=

∫ 1

0

∫
R
ζ(
zh

1
α

ε0
)µh(ds, dz) =

∫ 1

0

∫
{

1
2 ε0h

− 1
α≤|z|≤ε0h−

1
α

} ζ(
zh

1
α

ε0
)µh(ds, dz)+

∫ 1

0

∫
{
|z|≥ε0h−

1
α

} µh(ds, dz),

Wh := I(V h).

From the construction, Wh is a Malliavin differentiable random variable such that Wh 6= 0 implies

µh([0, 1] ×
{
z ∈ R : |z| > ε0h

− 1
α

}
) = 0. It is possible to show, acting as we did in (100), that P(Wh 6=

1) ≤ P(µh has a jump of size > 1
2ε0h

− 1
α ) = O(h). From the latter, it is clear that the proof of the lemma

reduces in proving the result on |E[g(Lh1 )Wh]− E[g(Lα,h1 )Wh]|. Considering a regularizing sequence (gp)
converging to g in L1 norm, such that ∀p gp is C1 with bounded derivative and ‖gp‖∞ ≤ ‖g‖∞, we
may assume that g is C1 with bounded derivative too. Using the integration by part formula (105) and
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denoting by G any primitive function of g we can write E[g(Lh1 )Wh] = E[G(Lh1 )HLh1 (Wh)] where the

Malliavin weight can be written, using (106) and the chain rule property of the operator Γ, as

HLh1 (Wh) = WhHLh1 (1)− Γ(Wh, Lh1 )

Γ(Lh1 , L
h
1 )
. (113)

Using the triangle inequality, we are now left to find upper bounds for the following two terms:

T̃1 := |E[g(Lα,h1 )Wh]− E[G(Lα,h1 )HLh1 (Wh)]|,

T̃2 := |E[G(Lα,h1 )HLh1 (Wh)]− E[G(Lh1 )HLh1 (Wh)]|.

Let us start considering T̃2. Using the Lipschitz property of the function G and (113) we have it is upper
bounded by

E[|g(L̂1)||Lα,h1 −Lh1 ||HLh1 (Wh)|] ≤ E[|g(L̂1)||Lα,h1 −Lh1 ||WhHLh1 (1)|]+E[|g(L̂1)||Lα,h1 −Lh1 ||
Γ(Wh, Lh1 )

Γ(Lh1 , L
h
1 )
|] =

=: T̃2,1 + T̃2,2,

where L̂1 is between Lα,h1 and Lh1 . We focus on T̃2,1. Using the definitions (107) and (110) of Lh1 and

Lα,h1 it is

T̃2,1 ≤ E[|g(L̂1)||
∫ 1

0

∫
R
(gh(z)−z)µ̃h(ds, dz)||HLh1 (1)Wh|] ≤ E[|g(L̂1)||

∫ 1

0

∫
|z|≤1

(gh(z)−z)µ̃h(ds, dz)||HLh1 (1)Wh|]+

+E[|g(L̂1)||
∫ 1

0

∫
1≤|z|≤ε0h−

1
α

(gh(z)− z)µh(ds, dz)||HLh1 (1)Wh|], (114)

where we have used that gh is an odd function with the symmetry of the compensator µ̄h and the fact

that on Wh 6= 0 we have µh([0, 1]×
{
z ∈ R : |z| > ε0h

− 1
α

}
) = 0. For the sake of shortness, we only give

the details of the proof in the case α 6= 1. In the case α = 1, one needs to modify this control with
an additional logarithmic term. For the small jumps term, from inequality 2.1.37 in [14] and the second

point of Lemma 6 we deduce E[|
∫ 1

0

∫
|z|≤1

(gh(z)− z)µ̃h(ds, dz)|q1 ] ≤ Cq1(h+h
1
α )q1 , ∀q1 ≥ 2. Using it and

Holder inequality with q1 big and q2 close to 1 we have

E[|g(L̂1)||
∫ 1

0

∫
|z|≤1

(gh(z)− z)µ̃h(ds, dz)||HLh1 (1)Wh|] ≤ Cq1(h+ h
1
α )E[|g(L̂1)|q2 |HLh1 (1)|q2Wh]

1
q2 ≤

≤ Cq1(h+ h
1
α )E[|g(L̂1)|p1 q2Wh]

1
q2p1 E[|HLh1 (1)|q2p2 ]

1
q2p2 , (115)

where in the last inequality we have used again Holder inequality, with p2 big and p1 close to 1. Using

the first point of Lemma 5, we know that E[|HLh1 (1)|q2p2 ]
1

q2p2 is bounded, hence (115) is upper bounded
by

Cq1q2p2
h ‖g‖∞ + Cq1q2p2

h
1
αE[|g(L̂1)Wh|p1 q2 ]

1
q2p1 , (116)

where we have bounded |g(L̂1)| with its infinity norm and used that 0 ≤Wh ≤ 1. We remind that we are
considering q2 and p1 next to 1, hence we can write q2p1 as 1 + ε. We now introduce r in the following
way:

E[|g(L̂1)|1+εWh]
1

1+ε = E[|g(L̂1)|(1+ε)r|g(L̂1)|(1+ε)(1−r)Wh]
1

1+ε ≤ ‖g‖r∞ E[|g(L̂1)|(1+ε)(1−r)Wh]
1

1+ε ≤

‖g‖r∞ ‖g‖
1−r
pol E[(1 + |L̂1|p)(1+ε)(1−r)Wh]

1
1+ε ≤ c ‖g‖r∞ ‖g‖

1−r
pol + c ‖g‖r∞ ‖g‖

1−r
pol E[|L̂1|p(1+ε)(1−r)Wh]

1
1+ε ;
(117)

where we have estimated g with its norm∞ and we have used the property (9) of g and that 0 ≤Wh ≤ 1.

We observe that L̂1 is between Lh1 and Lα,h1 hence |L̂1| ≤ |Lh1 |+ |L
α,h
1 |. Moreover we choose r such that

p(1 + ε)(1− r) = α; therefore r = 1− α
p(1+ε) . In this way we have that (117) is upper bounded by

c ‖g‖
1− α

p(1+ε)
∞ ‖g‖

α
p(1+ε)

pol log(h−
1
α ), (118)

where we have used that E[|L̂1|αWh] ≤ c log(h−
1
α ), that we justify now. Indeed, using Lemma 2.1.5 in

the appendix of [14] if α ∈ [1, 2] and Jensen inequality if α ∈ [0, 1), we have

E[|L̂1|αWh] ≤ cE[(|Lh1 |α + |Lα,h1 |α)Wh] ≤ cE[|
∫ 1

0

∫
|z|≤1

zµ̃h(ds, dz)|] + cE[|
∫ 1

0

∫
|z|≤1

gh(z)µ̃h(ds, dz)|]+
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+cE[

∫ 1

0

∫
1≤|z|≤ε0h−

1
α

|z|αµ̄h(ds, dz)] + cE[

∫ 1

0

∫
1≤|z|≤ε0h−

1
α

|gh(z)|αµ̄h(ds, dz)].

We observe that, using Kunita inequality, the first term here above is bounded in Lp and, as a consequence
of the second point of Lemma 6, the second term here above so does. Concerning the third term here
above (and so, again, we act on the fourth in the same way), we have

cE[

∫ 1

0

∫
1≤|z|≤ε0h−

1
α

|z|αµ̄h(ds, dz)] ≤ c
∫

1≤|z|≤ε0h−
1
α

|z|α−1−αdz ≤ c log(h−
1
α ) ≤ c| log(h)|, (119)

where we have also used definition (102) of µ̄h.
Replacing (118) in (116) we get

E[|g(L̂1)||
∫ 1

0

∫
|z|≤1

(gh(z)−z)µ̃h(ds, dz)||HLh1 (1)Wh|] ≤ Cq1q2p2
h ‖g‖∞+Cq1q2p2

h
1
α ‖g‖1−

α
p+ε

∞ ‖g‖
α
p−ε
pol log(h−

1
α ),

(120)
where we have taken another ε, using its arbitrariness. The constants depend also on it.
Let us now consider the large jumps term in (114). Using the second point of Lemma 6 and the following
basic inequality∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|δµh(ds, dz) ≤
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|δ−1µh(ds, dz)

∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)

for δ ≥ 1, we get it is upper bounded by

E[|g(L̂1)|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

(h
1
α |z|+ h|z|α)µh(ds, dz)

∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|HLh1 (1)|Wh]. (121)

We now use Holder inequality with p2 big and p1 next to 1 and we observe that, from the second point
of Lemma 5, it follows

E[|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)HLh1 (1)|p2 ]
1
p2 ≤ Cp2

.

Hence (121) is upper bounded by

Cp2E[|g(L̂1)|p1 |
∫ 1

0

∫
1<|z|≤ε0h−

1
α

(h
1
α |z|+ h|z|α)µh(ds, dz)|p1Wh]

1
p1 ≤ (122)

≤ Cp2 ‖g‖∞ hE[|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|αµh(ds, dz)|p1 ]
1
p1 +Cp2h

1
αE[|g(L̂1)|p1 |

∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|p1Wh]
1
p1 .

(123)
Concerning the first term of (123), we use Lemma 2.1.5 in the appendix of [14] with p1 = (1 + ε) ∈ [1, 2]
and the definition of Fh given in (103), getting

E[|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|αµh(ds, dz)|1+ε]
1

1+ε ≤ E[

∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|α(1+ε)µ̄h(ds, dz)]
1

1+ε ≤

≤ c(
∫

1<|z|≤ε0h−
1
α

|z|α(1+ε)−1−αdz)
1

1+ε ≤ ch−
ε

1+ε = ch−ε, (124)

where we have used the arbitrariness of ε in the last equality.
On the second term of (123) we act differently depending on whether or not α is more than 1. If it does,
we act as we did in (117), considering p1 = 1 + ε < α and introducing r, this time we set it such that the
following equality holds:

p(1 + ε)(1− r) + (1 + ε) = α. (125)

We also use the property (9) on g, hence it is upper bounded by

Cp2
h

1
α ‖g‖r∞ ‖g‖

1−r
pol E[(1 + |L̂1|p(1+ε)(1−r))|

∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|1+εWh]
1

1+ε . (126)

Now on the first term here above we use that 0 ≤ Wh ≤ 1 and Lemma 2.1.5 in the appendix of [14] as
we did in (124) in order to get

E[|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|1+ε]
1

1+ε ≤ c. (127)
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Moreover we observe, as we have already done, that |L̂1| ≤ |Lh1 |+ |L
α,h
1 | and that, from the second point

of Lemma 6, there exists c > 0 such that |gh(z)| ≤ c|z|; so we get

E[|L̂1|p(1+ε)(1−r)|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|1+εWh]
1

1+ε ≤

≤ c+ E[|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|p(1+ε)(1−r)+(1+ε)]
1

1+ε ≤

≤ c(
∫

1<|z|≤ε0h−
1
α

|z|α|z|−1−αdz)
1

1+ε ≤ c 1

1 + ε
log(h−

1
α ) ≤ c| log(h)|, (128)

having chosen a particular r just in order to have the exponent here above equal to α and so having found
out the same computation of (119). We have not considered the integral on |z| ≤ 1 because, as we have
already seen above (119), the integral is bounded in Lp and so we simply get (127) again. From (125) we
obtain r = 1 + 1

p −
α

p(1+ε) . Replacing it and using (127) and (128) we get (126) is upper bounded by

Cp2
h

1
α ‖g‖

1+ 1
p−

α
p(1+ε)

∞ ‖g‖
− 1
p+ α

p(1+ε)

pol (c+ | log(h)|) = Cp2
h

1
α ‖g‖

1+ 1
p−

α
p(1+ε)

∞ ‖g‖
− 1
p+ α

p(1+ε)

pol | log(h)|. (129)

If otherwise α is less than 1, then the second term of (123) is upper bounded by

Cp2
h

1
α ‖g‖∞ E[|

∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|p1Wh]
1
p1 ≤ Cp2

h
1
α ‖g‖∞ h

1
1+ε−

1
α = Cp2

h
1

1+ε ‖g‖∞ , (130)

where we have taken p1 = 1 + ε and we have used the fact that 0 ≤Wh ≤ 1 and that, for α < 1,

E[|
∫ 1

0

∫
1<|z|≤ε0h−

1
α

|z|µh(ds, dz)|1+ε]
1

1+ε ≤ ch
1

1+ε−
1
α .

Using (123), (124), (129) and (130) it follows

E[|g(L̂1)||
∫ 1

0

∫
1≤|z|≤ε0h−

1
α

(gh(z)− z)µh(ds, dz)||HLh1 (1)Wh|] ≤

≤ Cp2
h1−ε ‖g‖∞ + Cp2

h
1
α ‖g‖

1+ 1
p−

α
p(1+ε)

∞ ‖g‖
− 1
p+ α

p(1+ε)

pol | log(h)|1α>1. (131)

Now from (114), (120), and (131) it follows

T̃2,1 ≤ Cq1q2p2
h1−ε ‖g‖∞+Cq1q2p2

h
1
α ‖g‖1−

α
p+ε

∞ ‖g‖
α
p−ε
pol | log(h)|+Cq1q2p2

h
1
α ‖g‖1+ 1

p−
α
p+ε

∞ ‖g‖−
1
p+α

p−ε
pol | log(h)|1α>1.

(132)
Concerning T̃2,2, it is already proved in Theorem 4.2 in [9] that

T̃2,2 ≤ ch ‖g‖∞ . (133)

Let us now consider T̃1. Using (104) and (106) we can write

HLh1 (Wh) =
−Wh L(Lh1 )

Γ(Lh1 , L
h
1 )

+ L(
Wh

Γ(Lh1 , L
h
1 )

)Lh1 − L(
Lh1 W

h

Γ(Lh1 , L
h
1 )

).

With computations using that L is a self-adjoint operator we get

T̃1 = |E[g(Lα,h1 )Wh]− E[g(Lα,h1 )
Γ(Lα,h1 , Lh1 )

Γ(Lh1 , L
h
1 )

Wh]| ≤ E[|g(L̂1)||Γ(Lh1 − L
α,h
1 , Lh1 )

Γ(Lh1 , L
h
1 )

|Wh]. (134)

Using equation (104), we have

Γ(Lh1 − L
α,h
1 , Lh1 ) =

∫ 1

0

∫
|z|< η

2 h
− 1
α

ρ(z)(1− g′h(z))µh(ds, dz).

Using the third point of Lemma 6 we deduce the following on the event Wh 6= 0:

|Γ(Lh1−L
α,h
1 , Lh1 )| ≤ c

∫ 1

0

∫
|z|≤ε0h−

1
α

ρ(z)(h
1
α |z|+h|z|α)µh(ds, dz) ≤ c

∫ 1

0

∫
|z|≤1

ρ(z)(h
1
α |z|+h|z|α)µh(ds, dz)+

+c

∫ 1

0

∫
1<|z|≤ε0h−

1
α

ρ(z)µh(ds, dz)

∫ 1

0

∫
1<|z|≤ε0h−

1
α

(h
1
α |z|+ h|z|α)µh(ds, dz) ≤
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≤ c
∫ 1

0

∫
R
ρ(z)µh(ds, dz)(h

1
α + h) + c

∫ 1

0

∫
R
ρ(z)µh(ds, dz)

∫ 1

0

∫
1<|z|≤ε0h−

1
α

(h
1
α |z|+ h|z|α)µh(ds, dz) =

= c(h
1
α + h)Γ(Lh1 , L

h
1 ) + cΓ(Lh1 , L

h
1 )(

∫ 1

0

∫
1<|z|≤ε0h−

1
α

(h
1
α |z|+ h|z|α)µh(ds, dz)), (135)

where we have used that z is always less than 1 in the first integral and that, since ρ is a positive function,
we can upper bound the integrals considering whole set R. Moreover, we have used the definition of
Γ(Lh1 , L

h
1 ). Replacing (135) in (134) we get

T̃1 ≤ c(h
1
α + h)E[|g(L̂1)|] + cE[|g(L̂1)|

∫ 1

0

∫
1<|z|≤ε0h−

1
α

(h
1
α |z|+ h|z|α)µh(ds, dz))] =: T̃1,1 + T̃1,2. (136)

Concerning T̃1,1, we have

T̃1,1 ≤ ch ‖g‖∞ + ch
1
αE[|g(L̂1)|] ≤ ch ‖g‖∞ + ch

1
α ‖g‖1−

α
p

∞ ‖g‖
α
p

pol | log(h)|, (137)

where in the last inequality we have acted exactly like we did in (117) and (118) with the exponent on g
that is exactly equal to 1 instead of 1 + ε and so we have chosen r such that p(1 − r) = α. Let us now
consider T̃1,2. We observe that it is exactly like (122) but with p1 = 1 instead of p1 = 1 + ε, with the

only difference that computing (124) now we get c log(h−
1
α ) instead of ch−ε and in the definition (125)

we choose r such that p(1− r) + 1 = α. Acting exactly like we did above it follows

T̃1,2 ≤ Cp2
h| log(h)| ‖g‖∞ + Cp2

h
1
α ‖g‖1+ 1

p−
α
p

∞ ‖g‖−
1
p+α

p

pol | log(h)|1α>1. (138)

Using (132), (133), (137) and (138), the lemma is proved.

It follows Proposition 1, using also (108), (109) and (112).

A Appendix

In this section we will prove the technical proposition and lemmas we have used.

A.1 Proof of Lemma 1

Proof. We start proving 1. From the dynamic (3) of a it is

E[|at − as|p] ≤ E[|
∫ t

s

b̃udu|p] + E[|
∫ t

s

ãudWu|p] + E[|
∫ t

s

âudŴu|p]+

+E[|
∫ t

s

∫
R\{0}

γ̃u z µ̃(du, dz)|p] + E[|
∫ t

s

∫
R\{0}

γ̂u z µ̃2(du, dz)|p] =:

5∑
j=1

Ij .

In the following, since we will act on the two Brownian motions W and Ŵ in the same way, we will not
report I3 anymore. Also considering the Poisson random measures, we will deal only with I4 in detail,
underlining that on I5 the same reasoning applies. We use Burkholder - Davis - Gundy inequalities on
the stochastic integral and Kunita inequality on the jump part, in addition to a repeated use of Jensen
inequality to get

I1 + I2 + I4 ≤ |t− s|p−1

∫ t

s

E[|b̃u|p]du+ E[|
∫ s

t

(ãu)2du|
p
2 ] + E[

∫ s

t

∫
R\{0}

|γ̃u|p|z|pµ̄(du, dz)]+

+E[|
∫ s

t

∫
R\{0}

(γ̃u)2(z)2µ̄(du, dz)|
p
2 ] ≤ c|t− s|p + |t− s|

p
2−1

∫ s

t

E[|ãu|p]du+

+

∫ t

s

E[|γ̃u|p]ds(
∫
R\{0}

|z|pF (z)dz) + |t− s|
p
2−1

∫ t

s

E[|γ̃u|2]ds(

∫
R\{0}

|z|2F (z)dz) ≤

≤ c(|t− s|p + |t− s|
p
2 + |t− s|+ |t− s|

p
2 ) ≤ c|t− s|,

with the inequalities above holding true also because all the coefficients in the dynamic of a are supposed
to be bounded. The reasoning here above joint with A3 also yields that, for all q > 0, supt≥0 E[|at|q] <∞.
The proof of 2 follows the same lines as the proof of 1 above.
As we proved in point 1 that the volatility has bounded moments, it is possible to get points 3 and 4
from Theorem 66 of [26] and Proposition 3.1 in [27]. The fifth point is showed in [2], below Lemma 1,
and the last one in Section 8 of [12].
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A.2 Proof of Proposition 3

Proof. In order to show (25), we reformulate (∆XJ
i )2ϕ∆β

n
(∆Xi) as

(∆XJ
i )2[ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )] + (∆XJ
i )2[ϕ∆β

n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )] + (∆XJ
i −∆X̃J

i )2ϕ∆β
n
(∆X̃J

i )+

(139)

+2∆X̃J
i (∆XJ

i −∆X̃J
i )ϕ∆β

n
(∆X̃J

i ) + (∆X̃J
i )2ϕ∆β

n
(∆X̃J

i ) =:

5∑
k=1

Ink (i).

Comparing (25) with (139) it turns out that our goal is to show that
∑4
k=1 I

n
k (i) = oL1(∆

β(2−α)+1)
n ). In

the sequel will prove that
∑4
k=1 E[|Ink (i)|] ≤ c∆

β(2−α)+1
n ; the same reasoning applies to the conditional

version, that is
∑4
k=1 Ei[|Ink (i)|] ≤ Ri(∆β(2−α)+1

n ).
Let us start considering In1 (i). We know that ∆Xi = ∆Xc

i + ∆XJ
i , where we have denoted by ∆Xc

i the
continuous part of the increments of the process X. We study

In1 (i) = In1,1 + In1,2 := In1 (i)1{|∆Xi|≥3∆β
n} + In1 (i)1{|∆Xi|<3∆β

n}, (140)

having omitted the dependence upon i in In1,1 and In1,2 in order to make the notation easier. Concerning

In1,1, we split again on the sets
{
|∆XJ

i | ≥ 2∆β
n

}
and

{
|∆XJ

i | < 2∆β
n

}
. Recalling that ϕ(ζ) = 0 for

|ζ| ≥ 2∆β
n, we observe that if |∆XJ

i | ≥ 2∆β
n then In1,1 is just 0. Otherwise, if |∆XJ

i | < 2∆β
n, then it

means that |∆Xc
i | must be more than ∆β

n, so we can use (34). In the sequel the constant c may change
value from line to line. Using the bound on (∆XJ

i )2 and the boundedness of ϕ we get

E[|In1,1|] ≤ c∆2β
n E[1{|∆Xi|≥3∆β

n,|∆XJi |<2∆β
n}] ≤ c∆

2β
n P(|∆Xc

i | ≥ ∆β
n) ≤ c∆2β+( 1

2−β)r
n . (141)

Hence
1

∆
1+β(2−α)
n

E[|In1,1|] ≤ c∆
( 1

2−β)r−1+αβ
n , (142)

that goes to 0 for n → ∞ since for each choice of β ∈ (0, 1
2 ) and α ∈ (0, 2) we can always find r big

enough such that the exponent on ∆n is positive.
We now consider In1,2 on the sets

{
|∆XJ

i | ≥ 4∆β
n

}
and

{
|∆XJ

i | < 4∆β
n

}
. Using the boundedness of ϕ we

have
E[|In1,2|1{|∆XJi |≥4∆β

n}] ≤ cE[(∆XJ
i )21{|∆Xi|<3∆β

n,|∆XJi |≥4∆β
n}].

We observe that also in this case |∆Xi| < 3∆β
n and |∆XJ

i | ≥ 4∆β
n involve |∆Xc

i | ≥ ∆β
n. Moreover

(∆XJ
i )2 ≤ c(∆Xi)

2 + c(∆Xc
i )2 ≤ c∆2β

n + c(∆Xc
i )2, hence

E[|In1,2|1{|∆XJi |≥4∆β
n}] ≤ c∆

2β
n P(|∆Xc

i | ≥ ∆β
n) + cE[(∆Xc

i )21{|∆Xci |≥∆β
n}] ≤

≤ c∆2β+r( 1
2−β)

n + cE[(∆Xc
i )4]

1
2P(|∆Xc

i | ≥ ∆β
n)

1
2 ≤ c∆[2β+r( 1

2−β)]∧[1+ r
2 ( 1

2−β)]
n , (143)

where we have used Cauchy Schwartz inequality, (34) and the sixth point of Lemma 1. Therefore we get

1

∆
1+β(2−α)
n

E[|In1,2|1{|∆XJi |≥4∆β
n}] ≤ c∆

[r( 1
2−β)−1+αβ]∧[ r2 ( 1

2−β)−β(2−α)]
n , (144)

that converges to 0 for n→∞ since we can always find r ≥ 1 such that the exponent ∆n is positive.
In order to conclude the study of In1 (i), we study In1,21{|∆XJi |<4∆β

n}.

E[|In1,2|1{|∆XJi |<4∆β
n}] ≤ c ‖ϕ

′‖∞∆−βn E[(∆XJ
i )2|∆Xi −∆XJ

i |1{|∆Xi|≤3∆β
n,|∆XJi |≤4∆β

n}], (145)

where we have used the smoothness of ϕ. Using Holder inequality and the sixth point of Lemma 1 it is
upper bounded by

c∆−βn E[|∆Xc
i |p]

1
pE[|(∆XJ

i )2q1{|∆Xi|≤3∆β
n,|∆XJi |≤4∆β

n}]
1
q ≤ c∆

1
2−β
n E[|(∆XJ

i )2q1{|∆Xi|≤3∆β
n,|∆XJi |≤4∆β

n}]
1
q .

(146)
Now, since our indicator function 1{|∆Xi|≤3∆β

n,|∆XJi |≤4∆β
n} is less then 1{|∆XJi |≤4∆β

n} , we can use the

first point of Lemma 3. Through the use of the conditional expectation we get

E[|(∆XJ
i )2q1{|∆Xi|≤3∆β

n,|∆XJi |≤4∆β
n}]

1
q ≤ c∆

1+β(2q−α)
q

n E[Ri(1)] ≤ c∆
1+β(2q−α)

q
n . (147)
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Replacing (147) in (146) and taking q small (next to 1), we obtain E[|In1,2|1{|∆XJi |<4∆β
n}] ≤ c∆

1
2 +β+1−αβ−ε
n .

It follows
E[|In1,2|1{|∆XJi |<4∆β

n}]

∆
β(2−α)+1
n

≤ c∆
1
2−β−ε
n , (148)

that goes to 0 for n → ∞ since we can always find an ε as small as the exponent on ∆n is positive, for
β ∈ (0, 1

2 ).
Let us now consider In2 (i).

In2 (i) = In2 (i) 1{|∆XJi |≤2∆β
n} + In2 (i) 1{|∆XJi |>2∆β

n} =: In2,1 + In2,2. (149)

Concerning the first term of (149), we have

E[|In2,1|] ≤ ∆−βn ‖ϕ′‖∞ E[(∆XJ
i )2|∆XJ

i −∆X̃J
i |1{|∆XJi |≤2∆β

n}] ≤

≤ c∆−βn E[(∆XJ
i )41{|∆XJi |≤2∆β

n}]
1
2E[|∆XJ

i −∆X̃J
i |2]

1
2 , (150)

where we have used the smoothness of ϕ and Cauchy-Schwartz inequality. Using again the first point of
Lemma 3, we have that

E[(∆XJ
i )41{|∆XJi |≤2∆β

n}]
1
2 = E[Ei[(∆XJ

i )41{|∆XJi |≤2∆β
n}]]

1
2 ≤ ∆

1+β(4−α)
2

n E[Ri(1)] ≤ c∆
1
2 +2β−αβ2
n . (151)

We now introduce a lemma that will be proved later:

Lemma 8. Suppose that A1 -A4 hold. Then

1. ∀q ≥ 2 we have
E[|∆XJ

i −∆X̃J
i |q] ≤ c∆2

n, (152)

2. for q ∈ [1, 2] and α < 1, we have

E[|∆XJ
i −∆X̃J

i |q]
1
q ≤ c∆

1
2 + 1

q
n . (153)

Replacing (151) and (152) in (150) we get

E[|In2,1|] ≤ c∆
−β+ 1

2 +2β−αβ2 +1
n = c∆

3
2 +β−αβ2
n . (154)

Hence
E[|In2,1|]

∆
1+β(2−α)
n

≤ c∆
1
2−β+αβ

2
n , (155)

that goes to 0 for n→∞ since the exponent on ∆n is positive for β < 1
2(1−α2 ) , that is always true with

α and β in the intervals chosen.

We now want to show that also In2,2 is oL1(∆
β(2−α)+1
n ). We split In2,2 on the sets

{
|∆X̃J

i | ≤ 2∆β
n

}
and{

|∆X̃J
i | > 2∆β

n

}
. We observe that, by the definition of ϕ, In2,2 is null on the second set. Adding and

subtracting ∆X̃J
i in In2,21{|∆X̃Ji |≤2∆β

n} we have

E[|In2,2|1{|∆X̃Ji |≤2∆β
n}] ≤ cE[(∆XJ

i −∆X̃J
i )2|ϕ∆β

n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )|1{|∆X̃Ji |≤2∆β
n,|∆XJi |>2∆β

n}]+

+cE[(∆X̃J
i )2|ϕ∆β

n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )|1{|∆X̃Ji |≤2∆β
n}]. (156)

On the second term of (156) we can act exactly as we have done in In2,1, with ∆X̃J
i instead of ∆XJ

i (and
so using (30) instead of (29)). We get

E[(∆X̃J
i )2|ϕ∆β

n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )|1{|∆X̃Ji |≤2∆β
n}] ≤ c∆

3
2 +β−αβ2
n . (157)

Concerning the first term of (156), by the definition of ϕ we know it is

E[(∆XJ
i −∆X̃J

i )2| − ϕ∆β
n
(∆X̃J

i )|1{|∆X̃Ji |≤2∆β
n,|∆XJi |>2∆β

n}] ≤ cE[(∆XJ
i −∆X̃J

i )2] ≤ c∆2
n, (158)

where in the last inequality we have used (152). Using (156) - (158) it follows

E[|In2,2|] = E[|In2,2|1{|∆X̃Ji |≤2∆β
n}] ≤ c∆

3
2 +β−αβ2
n + c∆2

n = c∆
3
2 +β−αβ2
n , (159)
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considering that ∆2
n is negligible compared to ∆

3
2 +β−αβ2
n since β < 1

2(1−α2 ) . Hence

E[|In2,2|]

∆
1+β(2−α)
n

≤ c∆
1
2−β+αβ

2
n , (160)

that goes to 0 for n→∞.
Concerning In3 (i), we have

E[|In3 (i)|] ≤ cE[(∆XJ
i −∆X̃J

i )2] ≤ c∆2
n, (161)

where the last inequality follows from (152). Hence In3 (i) = oL1(∆
β(2−α)+1
n ), indeed

E[|In3 (i)|]
∆

1+β(2−α)
n

≤ c∆1−2β+αβ
n , (162)

that goes to 0 for n→∞ considering that the exponent on ∆n is positive for β < 1
2−α , condition that is

always satisfied for β ∈ (0, 1
2 ) and α ∈ (0, 2).

Let us now consider In4 (i). Using Cauchy-Schwartz inequality it is

E[|In4 (i)|] ≤ cE[(∆XJ
i −∆X̃J

i )2]
1
2E[(∆X̃J

i )2ϕ2
∆β
n
(∆X̃J

i )]
1
2 ≤ c∆n∆

1
2 + β

2 (2−α)
n = c∆

3
2 +β−αβ2
n , (163)

where we have used (152) and the first point of Lemma 3. It follows

E[|In4 (i)|]
∆

1+β(2−α)
n

≤ c∆
1
2−β+αβ

2
n , (164)

that goes to 0 for n → ∞ since the exponent on ∆n is more than 0 if β < 1
2(1−α2 ) , that is always true.

Using (139), (142), (144), (148), (155), (160), (162) and (164) we obtain (25).

In order to prove (27), we use again reformulation (139). Replacing it in the left hand side of (27)
it turns out that our goal is to show that

n−1∑
i=0

(

4∑
k=1

Ink (i))f(Xti) = oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (165)

Using a conditional on Fti version of (149), (154) and (159) we have

n−1∑
i=0

Ei[|In2 (i)f(Xti)|] ≤
1

n

n−1∑
i=0

Ri(∆
3
2 +β−αβ2 −1−ε
n ) =

1

n

n−1∑
i=0

Ri(∆
1
2 +β−αβ2 −ε
n ).

Since β(1− α
2 ) is always more than zero and, ∀ε̃ > 0 we can always find ε smaller than it, we get

n−1∑
i=0

In2 (i)f(Xti) = oL1(∆
1
2−ε̃
n ) = oL1(∆

( 1
2−ε̃)∧(1−αβ−ε̃)
n ). (166)

From a conditional version of (161) we get that
∑n−1
i=0 I

n
3 (i)f(Xti) is upper bounded in L1 norm by the

L1 norm of 1
n

∑n−1
i=0 Ri(∆

2−1−ε
n ) = 1

n

∑n−1
i=0 Ri(∆

1−ε
n ) and so

n−1∑
i=0

In3 (i)f(Xti) = oL1(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (167)

Using a conditional version of (163) we get that
∑n−1
i=0 I

n
4 (i)f(Xti) is upper bounded in L1 norm by the

L1 norm of 1
n

∑n−1
i=0 Ri(∆

3
2 +β−αβ2 −1−ε
n ) = 1

n

∑n−1
i=0 Ri(∆

1
2 +β−αβ2 −ε
n ), hence

n−1∑
i=0

In4 (i)f(Xti) = oL1(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (168)

Concerning In1 (i), we consider In1,1(i) and In1,2(i) as defined in (140). Using a conditional version of

(141) on In1,1(i) it follows that n
1
2−ε̃

∑n−1
i=0 I

n
1,1(i)f(Xti) is upper bounded in L1 norm by the L1 norm of

1
n

∑n−1
i=0 Ri(∆

( 1
2−β)r+2β−1− 1

2 +ε̃
n ) = 1

n

∑n−1
i=0 Ri(∆

( 1
2−β)r+2β− 3

2 +ε̃
n ), that goes to zero because we can find r

big enough such that the exponent on ∆n is positive, hence

n−1∑
i=0

In1,1(i)f(Xti) = oL1(∆
1
2−ε̃
n ) = oL1(∆

( 1
2−ε̃)∧(1−αβ−ε̃)
n ). (169)
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Acting as we did in the proof of (25), we consider In1,2(i) on the sets
{
|∆XJ

i | ≥ 4∆β
n

}
and

{
|∆XJ

i | < 4∆β
n

}
.

Again, from (143) and the arbitrariness of r > 0 it follows

n−1∑
i=0

In1,2(i)1{|∆XJi |≥4∆β
n,i}f(Xti) = oL1(∆

( 1
2−ε̃)∧(1−αβ−ε̃)
n ). (170)

When |∆XJ
i | < 4∆β

n we act in a different way, considering the development up to second order of ϕ∆β
n
,

centered in ∆XJ
i :

In1,2(i)1{|∆XJi |<4∆β
n} = [(∆XJ

i )2∆Xc
i ϕ
′
∆β
n
(∆XJ

i )∆−βn +(∆XJ
i )2(∆Xc

i )2ϕ′′
∆β
n
(Xu)∆−2β

n ]1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n} =

=: În1 (i)1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n} + În2 (i)1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n},

where Xu ∈ [∆XJ
i ,∆Xi]. Now, acting like we did in (145), (146) and (147), taking q next to 1 we get

Ei[|În2 (i)1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n}|] ≤ Ri(∆
1+β(2−α)−ε+1−2β
n ) = Ri(∆

2−αβ−ε
n ).

Since for each ε̃ > 0 we can find an ε such that ε̃− ε > 0 it follows, taking the conditional expectation

n−1∑
i=0

În2 (i)1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n}f(Xti) = oL1(∆1−αβ−ε̃
n ) = oL1(∆

( 1
2−ε̃)∧(1−αβ−ε̃)
n ). (171)

Concerning În1 (i)1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n}, we no longer consider the indicator function because it is

(∆XJ
i )2∆Xc

i ϕ
′
∆β
n
(∆XJ

i )∆−βn + (∆XJ
i )2∆Xc

i ϕ
′
∆β
n
(∆XJ

i )∆−βn (1{|∆Xi|≤3∆β
n, |∆XJi |<4∆β

n} − 1)

and the second term here above is different from zero only on a set smaller that
{
|∆Xi| ≥ 3∆β

n

}
or{

|∆XJ
i | ≥ 4∆β

n

}
, on which we have already proved the result (see the study of In1,1(i) in (169) and In1,2(i)

in (170)). We want to show that

n−1∑
i=0

În1 (i)f(Xti) = oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (172)

We start from the reformulation

În1 (i) = ∆Xc
i ∆−βn [(∆XJ

i )2(ϕ′
∆β
n
(∆XJ

i )− ϕ′
∆β
n
(∆X̃J

i )) + (∆XJ
i −∆X̃J

i )2ϕ′
∆β
n
(∆X̃J

i )+

+2∆X̃J
i (∆XJ

i −∆X̃J
i )ϕ′

∆β
n
(∆X̃J

i ) + (∆X̃J
i )2ϕ′

∆β
n
(∆X̃J

i )] =

4∑
j=1

În1,j(i).

and we observe that, after have used Holder inequality and have remarked that ϕ′
∆β
n

acts like ϕ∆β
n
, we

can act on În1,1 as we did on In2 , on În1,2 as on In3 and on În1,3 as on In4 . So we get, using also Holder
inequality and the sixth point of Lemma 1,

Ei[|În1,1(i) + În1,2(i) + În1,3(i)|] ≤ Ri(∆
1
2−β
n )(Ei[|In2 (i)|q]

1
q + E[|In3 (i)|q]

1
q + E[|In4 (i)|q]

1
q ). (173)

Now, taking q next to 1, we need the following lemma that we will prove later:

Lemma 9. Suppose that A1 - A4 hold. Then, ∀ε > 0,

Ei[|In2 (i)|1+ε + |In3 (i)|1+ε + |In4 (i)|1+ε]
1

1+ε ≤ Ri(∆
3
2 +β−αβ2 −ε
n ), (174)

with In2 (i), In3 (i) and In4 (i) as defined in (139).

From (173) and (174) it follows

n−1∑
i=0

[În1,1(i) + În1,2(i) + În1,3(i)]f(Xti) = oL1(∆
1
2−ε̃
n ) = oL1(∆

( 1
2−ε̃)∧(1−αβ−ε̃)
n ). (175)

On
∑n−1
i=0 Î

n
1,4f(Xti) =:

∑n−1
i=0 ζn,i we want to use Lemma 9 in [11]. By the independence between L and

W we get

1

∆
1
2−ε̃
n

n−1∑
i=0

Ei[ζn,i] =
1

∆
1
2−ε̃
n

n−1∑
i=0

f(Xti)∆
−β
n,iEi[(∆X̃

J
i )2ϕ′

∆β
n
(∆X̃J

i )]Ei[∆Xc
i ] = 0 (176)
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and

∆
−2( 1

2−ε̃)
n

n−1∑
i=0

f2(Xti)∆
−2β
n,i Ei[(∆X̃J

i )4ϕ′2
∆β
n
(∆X̃J

i )]Ei[(∆Xc
i )2] ≤ c∆2ε̃+2β−αβ

n , (177)

where we have also used the sixth point of Lemma 1 and the first point of Lemma 3. Using (176) and
(177) we have

n−1∑
i=0

În1,4f(Xti) = oP(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n )

that, joint with (175) and the fact that the convergence in norm 1 implies the convergence in probability,
give us (172). Using also (166) - (171) we get (165) and so (27).

In order to prove (26), we reformulate ∆XJ
i ϕ∆β

n
(∆Xi) as we have already done in (139) getting

(

∫ ti+1

ti

asdWs)∆X
J
i ϕ∆β

n
(∆Xi) = (

∫ ti+1

ti

asdWs)(∆X
J
i )[ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )]+

+(

∫ ti+1

ti

asdWs)(∆X
J
i )[ϕ∆β

n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )] + (

∫ ti+1

ti

asdWs)(∆X
J
i −∆X̃J

i )ϕ∆β
n
(∆X̃J

i )+ (178)

+(

∫ ti+1

ti

asdWs)(∆X̃
J
i )ϕ∆β

n
(∆X̃J

i ) =:

4∑
j=1

Ĩnj (i).

Comparing (178) with (26) it turns out that our goal is to prove that 1

∆
β(2−α)+1
n,i

∑3
j=1 E[|Ĩnj (i)|] → 0,

for n → ∞ (again, acting as we do in the sequel it is also possible to show that
∑3
j=1 Ei[|Ĩnj (i)|] ≤

Ri(∆
β(2−α)+1
n,i ). Let us start considering Ĩn1 (i). Using Holder inequality, its expected value is upper

bounded by

E[|
∫ ti+1

ti

asdWs|p1 ]
1
p1 E[|∆XJ

i |p2 |ϕ∆β
n
(∆Xi)− ϕ∆β

n
(∆XJ

i )|p2 ]
1
p2 . (179)

We now act on E[|∆XJ
i |p2 |ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )|p2 ]
1
p2 as we did in the study of In1 (i):

|∆XJ
i |p2 |ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )|p2 = |∆XJ
i |p2 |ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )|p21{|∆Xi|≥3∆β
n}+

+|∆XJ
i |p2 |ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )|p21{|∆Xi|<3∆β
n} =: Ĩn1,1 + Ĩn1,2.

Concerning Ĩn1,1, if |∆XJ
i | ≥ 2∆β

n it is just 0, otherwise we can act exactly as we have done on In1,1, taking
p2 = 2. Hence, ∀r ≥ 1,

E[|Ĩn1,1|]
1
2 ≤ (c∆

2β+r( 1
2−β)

n )
1
2 = c∆

β+ r
2 ( 1

2−β)
n . (180)

Let us now consider Ĩn1,2. If |∆XJ
i | ≥ 4∆β

n, we act again like we did on In1,2, taking p2 = 2. It yields again

E[|Ĩn1,2|1{|∆XJi |≥4∆β
n}]

1
2 ≤ c∆β+ r

2 ( 1
2−β)

n . (181)

If |∆XJ
i | < 4∆β

n we use the smoothness of ϕ and Holder inequality getting

E[|Ĩn1,2|1{|∆XJi |<4∆β
n}] ≤ ∆−βn E[|∆XJ

i |p2 |ϕ′(ζ)|p2 |∆Xc
i |p21{|∆Xi|<3∆β

n,|∆XJi |<4∆β
n}]

1
p2 ≤

≤ ∆−βn E[|∆Xc
i |p2 p]

1
p2 pE[|ϕ′(ζ)|p2 q|∆XJ

i |p2 q1{|∆Xi|<3∆β
n,|∆XJi |<4∆β

n}]
1
p2 q , (182)

with ζ a point between ∆XJ
i and ∆Xi.

Now we observe that, if |∆Xc
i | ≥

∆β
n

4 , then taking p2 q = 1 + ε we have

E[|ϕ′(ζ)|1+ε|∆XJ
i |1+ε1{

|∆Xi|<3∆β
n,|∆XJi |<4∆β

n,|∆Xci |≥
∆
β
n
4

}]
1

1+ε ≤ c∆β+r( 1
2−β) 1

1+ε
n

where we have used the bound on |∆XJ
i | given by the indicator function, the boundedness of ϕ′ and

(34). Otherwise, by the definition of ϕ, we know that |ϕ′(ζ)| 6= 0 only if |ζ| ∈ (∆β
n, 2∆β

n). Then

∆β
n ≤ |ζ| ≤ |∆Xi| + |∆XJ

i | ≤ 2|∆XJ
i | + |∆Xc

i | ≤ 2|∆XJ
i | +

∆β
n

4 , hence |∆XJ
i | ≥ 3

8∆β
n ≥

∆β
n

4 and so we
can say it is

E[|ϕ′(ζ)|1+ε|∆XJ
i |1+ε1{

|∆Xi|<3∆β
n,|∆XJi |<4∆β

n,|∆Xci |<
∆
β
n
4

}]
1

1+ε ≤ cE[|∆XJ
i |1+ε1{

∆
β
n
4 ≤|∆X

J
i |<4∆β

n,

}].
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Using the second point of Lemma 3, passing through the conditional expected value we get it is upper
bounded by

∆1+β(1+ε−α)
n E[Ri(1)] ≤ c∆1+β(1+ε−α)

n .

Hence

E[|ϕ′(ζ)|1+ε|∆XJ
i |1+ε1{|∆Xi|<3∆β

n,|∆XJi |<4∆β
n}]

1
1+ε ≤ c∆[β+r( 1

2−β)−ε]∧[1+β(1+ε−α)] 1
1+ε

n = c∆
[1+β(1+ε−α)] 1

1+ε
n .

(183)
The last equality follows from the fact that, for each choice of β ∈ (0, 1

2 ) and α ∈ (0, 2), we can always
find r ≥ 1 and ε > 0 such that β + r( 1

2 − β)− ε > 1 + β(1 + ε− α).
Replacing (183) in (182) and using the sixth point of Lemma 1 we have that

E[|Ĩn1,2|1{|∆XJi |<4∆β
n}]

1
p2 ≤ c∆

[ 1
2−β+1+β(1+ε−α)] 1

p2
n = c∆

( 3
2−αβ−ε)

1
p2

n = c∆
3
2−αβ−ε
n , (184)

the last equality follows from the choice of both p2 and q next to 1. Using (180), (181) and (184) we get

E[|∆XJ
i |p2 |ϕ∆β

n
(∆Xi)− ϕ∆β

n
(∆XJ

i )|p2 ]
1
p2 ≤ c∆[β+ r

2 ( 1
2−β)]∧[ 3

2−αβ−ε]
n = c∆

3
2−αβ−ε
n . (185)

Replacing (33) and (185) in (179) it follows

E[|Ĩn1 (i)|] ≤ c∆2−αβ−ε
n , (186)

hence
E[|Ĩn1 (i)|]

∆
1+β(2−α)
n

≤ c∆1−2β−ε
n . (187)

Since we can always find an ε > 0 such that 1−2β−ε > 0, the expected value above goes to 0 for n→∞.
Concerning Ĩn2 (i), we split again on Ĩn2,1 := Ĩn2 (i)1{|∆XJi |≤2∆β

n} and Ĩn2,2 := Ĩn2 (i)1{|∆XJi |>2∆β
n}.

E[|Ĩn2,1|] = E[|Ĩn2 (i)|1{|∆XJi |≤2∆β
n}] ≤ c∆

−β
n E[|

∫ ti+1

ti

asdWs||∆XJ
i ||∆XJ

i −∆X̃J
i |1{|∆XJi |≤2∆β

n}] ≤

≤ c∆−βn E[|
∫ ti+1

ti

asdWs|2|∆XJ
i |21{|∆XJi |≤2∆β

n}]
1
2E[|∆XJ

i −∆X̃J
i |2]

1
2 ≤

≤ c∆1−β
n,i E[|

∫ ti+1

ti

asdWs|2p]
1
2pE[|∆XJ

i |2q1{|∆XJi |≤2∆β
n}]

1
2q ,

where we have used Cauchy-Schwartz inequality, (152) and Holder inequality. Now we take p big and q
next to 1, using (33) and the first point of Lemma 3 we get

E[|Ĩn2,1|] ≤ c∆
1−β+ 1

2 + 1
2 + β

2 (2−α)−ε
n (188)

and so
1

∆
1+β(2−α)
n

E[|Ĩn2,1|] ≤ ∆
1−2β+αβ

2 −ε
n . (189)

It goes to 0 for n→∞ because we can always find an ε > 0 such that the exponent in ∆n is positive. Let us
now consider Ĩn2,2 = Ĩn2,21{|∆X̃Ji |≤2∆β

n}+ Ĩn2,21{|∆X̃Ji |>2∆β
n}. From the definition of ϕ, Ĩn2,21{|∆X̃Ji |>2∆β

n} =

0.

E[|Ĩn2,2|1{|∆X̃Ji |≤2∆β
n}] = E[|

∫ ti+1

ti

asdWs||∆X̃J
i ||ϕ∆β

n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )|1{|∆X̃Ji |≤2∆β
n,|∆XJi |>2∆β

n}]+

+E[|
∫ ti+1

ti

asdWs||∆XJ
i −∆X̃J

i ||ϕ∆β
n
(∆XJ

i )− ϕ∆β
n
(∆X̃J

i )|1{|∆X̃Ji |≤2∆β
n,|∆XJi |>2∆β

n,i}] ≤

≤ c∆2−αβ2 −ε
n + E[|

∫ ti+1

ti

asdWs||∆XJ
i −∆X̃J

i || − ϕ∆β
n
(∆X̃J

i )|],

where we have acted exactly like we did in Ĩn2,1, using that ∆X̃J
i is less then 2∆β

n. We have also used

that, by the definition of ϕ, evaluated in ∆XJ
i it is zero. Now we use Holder inequality, (33) and the

boundedness of ϕ to get

E[|Ĩn2,2|] ≤ c∆
2−αβ2 −ε
n + E[|

∫ ti+1

ti

asdWs|p]
1
pE[|∆XJ

i −∆X̃J
i |q]

1
q ≤ c∆2−αβ2 −ε

n + c∆
1
2
nE[|∆XJ

i −∆X̃J
i |q]

1
q .
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Now, if α < 1 we use (153), with q = 1 + ε, getting

E[|Ĩn2,2|] ≤ c∆
2−αβ2 −ε
n + c∆

1
2 + 1

2 + 1
1+ε

n = c∆
2−αβ2 −ε
n . (190)

Therefore, for α < 1, we have
1

∆
1+β(2−α)
n

E[|In2,2|] ≤ c∆
1−2β+αβ

2 −ε
n . (191)

We can find an ε > 0 such that the exponent on ∆n is positive hence, if α < 1, then In2,2 = oL1(∆
1+β(2−α)
n ).

Otherwise, if α ≥ 1, we use (152) having taken q = 2. We get

E[|Ĩn2,2|] ≤ c∆
2−αβ2 −ε
n + c∆

1
2 +1
n = c∆

3
2
n .

It follows that, for α ≥ 1, it is
1

∆
1+β(2−α)
n

E[|In2,2|] ≤ c∆
1
2−β(2−α)
n . (192)

We observe that the exponent on ∆n is more than 0 if β < 1
2

1
(2−α) , that is always true for β ∈ (0, 1

2 ) and

α ∈ [1, 2).
To conclude, we use on Ĩ3(i) Holder inequality, (33), the boundedness of ϕ and then we act as we did on
Ĩn2,2, using (153) or (152), depending on whether or not α is less than 1. In the case α < 1 we get

1

∆
1+β(2−α)
n

E[|Ĩn3 (i)|] ≤ 1

∆
1+β(2−α)
n

c∆
1
2 + 1

2 + 1
1+ε

n = c∆1−β(2−α)−ε
n , (193)

that goes to 0 for n → ∞ since we can always find ε > 0 such that the exponent on ∆n is positive.
Otherwise it follows

1

∆
1+β(2−α)
n

E[|Ĩn3 (i)|] ≤ 1

∆
1+β(2−α)
n

c∆
3
2
n = c∆

1
2−β(2−α)
n,i . (194)

The exponent on ∆n is positive if β < 1
2

1
(2−α) , that is always true since we are in the case α ≥ 1. Hence

Ĩn3 (i) = oL1(∆
1+β(2−α)
n ).

From (187) - (194) and the reformulation (178), it follows (26).

Replacing reformulation (178) in the left hand side of (28), it turns out that the theorem is proved
if

n−1∑
i=0

(

3∑
k=1

Ĩnk (i))f(Xti) = oL1(∆
( 1

2−ε̃)∧(1−αβ−ε̃)
n ). (195)

Using a conditional version of equations (186), (188), (190), (193) and (194) (adding in the last two
β(2− α) in the exponent of ∆n) we easily get (195) and so (28).

A.3 Proof of Lemma 4

Proof. By the definition of d(ζn), as in law we have that Sα1 = −Sα1 , we get d(ζn) = d(|ζn|) and thus we
can assume that ζn > 0. Using a change of variable we obtain

d(ζn) = E[(Sα1 )2ϕ(Sα1 ζn)] =

∫
R
z2ϕ(zζn)fα(z)dz = (ζn)−3

∫
R
u2ϕ(u)fα(

u

ζn
)du. (196)

We want to use an asymptotic expansion of the density (see Theorem 7.22 in [17], with d = 1 and σ = 1)
which states that, if z is big enough, then a development up to order N of fα(z) is

cα
|z|1+α

+
1

π

1

|z|

N∑
k=2

ak
k!

(|z|−α)k + o(|z|−αN ), (197)

for some coefficients ak. We therefore take M > 0 big enough such that, for u
ζn
> M , we can use (197).

Hence the right hand side of (196) can be seen as

(ζn)−3

∫
|u|≤ζnM

u2ϕ(u)fα(
u

ζn
)du+ (ζn)−3

∫
|u|>ζnM

u2ϕ(u)fα(
u

ζn
)du =: In1 + In2 . (198)

We have that, ∀ε̂ > 0, In1 = o(ζ−ε̂n ). Indeed, using that ϕ and fα are both bounded, we get

In1
ζ−ε̂n
≤ ζ−3+ε̂

n

∫
|u|≤ζnM

u2du ≤ cζ ε̂n, (199)
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that goes to zero because we have assumed that ζn → 0. In2 is

(ζn)−3

∫
|u|>ζnM

u2ϕ(u)cα(ζn)1+α|u|−1−αdu+ (ζn)−3

∫
|u|>ζnM

u2ϕ(u)[fα(
u

ζn
)− cα
|u|1+α

|ζn|1+α]du. (200)

The first term here above can be seen as

(ζn)α−2cα

∫
R
|u|1−αϕ(u)du− (ζn)α−2cα

∫
|u|≤ζnM

|u|1−αϕ(u)du = (ζn)α−2cα

∫
R
|u|1−αϕ(u)du+ o((ζn)−ε̂).

Indeed, using that ϕ is bounded, we have

1

(ζn)−ε̂
|(ζn)α−2cα

∫
|u|≤ζnM

|u|1−αϕ(u)du| ≤ c(ζn)ε̂+α−2

∫
|u|≤ζnM

|u|1−αdu ≤ c(ζn)ε̂. (201)

that goes to zero for n→∞.
Replacing (199), (200) and (201) in (198) and comparing it with (90), it turns out that our goal is to show

that the second term of (200) is o(ζ
(−ε̂)∧(2α−2−ε̂)
n ). Using on it (197) with N = 2, which implies |fα(z)−

cα
|z|1+α | ≤ c

|z|1+2α for |z| > M and some c > 0, we can upper bound it with c(ζn)2α−2
∫
|u|≤ζnM |u|

1−2αdu .

By the definition of ϕ we have∫
|u|>ζnM

|u|1−2αϕ(u)du =

∫ −ζnM
−2

(−u)1−2αϕ(u)du+

∫ ζnM

2

u1−2αϕ(u)du ≤ c+ c(ζn)2−2α. (202)

Therefore we get that the second term of (200) is upper bounded by

cζ2α−2
n + c.

The first term here above is clearly o(ζ2α−2−ε̂
n ) while the second is o(ζ−ε̂n ), hence the sum is o(ζ

(−ε̂)∧(2α−2−ε̂)
n ).

The lemma is therefore proved.

A.4 Proof of Lemma 8

Proof. We observe that, ∀α ∈ [0, 2], we have

E[|∆XJ
i −∆X̃J

i |2] = E[(

∫ ti+1

ti

∫
R

[γ(Xs−)−γ(Xti)]zµ̃(ds, dz))2] = E[

∫ ti+1

ti

∫
R

[γ(Xs−)−γ(Xti)]
2|z|2µ̄(ds, dz)] ≤

≤ c
∫ ti+1

ti

E[|Xs −Xti |2]ds

∫
R
|z|2F (z)dz ≤ c

∫ ti+1

ti

∆nds ≤ c∆2
n, (203)

where we have used Ito isometry, the regularity of γ and the third point of Lemma 1.
We have in this way proved (152) and showed that (153) holds with q = 2. For q > 2, using Kunita
inequality and acting like we did here above we get

E[|∆XJ
i −∆X̃J

i |q] ≤ E[

∫ ti+1

ti

∫
R

[γ(Xs−)−γ(Xti)]
q|z|qµ̄(ds, dz)]+E[(

∫ ti+1

ti

∫
R

[γ(Xs−)−γ(Xti)]
2|z|2µ̄(ds, dz))

q
2 ] ≤

≤ c
∫ ti+1

ti

E[|Xs−Xti |q]ds+E[(

∫ ti+1

ti

|Xs−Xti |2ds)
q
2 ] ≤ c∆2

n+c∆
q
2−1
n

∫ ti+1

ti

E[|Xs−Xti |q]ds = c∆2
n+c∆

q
2−1
n ≤ c∆2

n,

where we have also used Jensen inequality.
In order to prove (153) we observe that, if α < 1, then we have

E[|∆XJ
i −∆X̃J

i |] ≤ E[|
∫ ti+1

ti

∫
|z|≥2∆β

n

[γ(Xs−)−γ(Xti)]zµ̃(ds, dz)|]+E[|
∫ ti+1

ti

∫
|z|≤2∆β

n

[γ(Xs−)−γ(Xti)]zµ̃(ds, dz)|].

(204)
The first term in the right hand side of (204) is upper bounded by

‖γ′‖∞ E[

∫ ti+1

ti

∫
|z|≥2∆β

n

|Xs− −Xti ||z|F (z)dzds] ≤ c
∫ ti+1

ti

∫
|z|≥2∆β

n

E[|Xs− −Xti |2]
1
2 ds|z|F (z)dz ≤

≤ c
∫ ti+1

ti

∆
1
2
n (

∫
|z|≥2∆β

n

|z|F (z)dz)ds ≤ c∆
3
2
n , (205)
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where we have used the compensation formula, the regularity of γ, Cauchy-Schwartz inequality in order
to use the third point of Lemma 1 and the boundedness of the integral for |z| ≥ 2∆β

n. Moreover, acting
in the same way, the second term in the right hand side of (204) is upper bounded by

‖γ′‖∞ E[

∫ ti+1

ti

∫
|z|≤2∆β

n

|Xs−−Xti ||z|F (z)dzds] ≤ c
∫ ti+1

ti

∆
1
2
n (

∫
|z|≥2∆β

n

|z|−αdz)ds ≤ c∆
3
2 +β(1−α)
n , (206)

using again compensation formula, the regularity of γ and Cauchy-Schwartz inequality in order to use
the third point of Lemma 1. We have also used the third point of A4 and computed the integral on z.
Using (204) - (206) we get

E[|∆XJ
i −∆X̃J

i |] ≤ c∆
3
2∧[ 3

2 +β(1−α)]
n = c∆

3
2
n , (207)

since α < 1 and so (1− α) > 0. We now use interpolation theorem (see below Theorem 1.7 in Chapter 4
of [7]) getting

E[|∆XJ
i −∆X̃J

i |q]
1
q ≤ E[|∆XJ

i −∆X̃J
i |]θ(E[|∆XJ

i −∆X̃J
i |2]

1
2 )1−θ,

with 1
q = θ + 1−θ

2 , hence θ = 2
q − 1. Using (203) and (207) it follows

E[|∆XJ
i −∆X̃J

i |q]
1
q ≤ c∆

3
2 θ
n ∆1−θ

n,i = c∆
1
2 θ+1
n = c∆

1
q+ 1

2
n ,

where we have also replaced θ.

A.5 Proof of Lemma 9

Proof. We want to use a conditional version of the interpolation theorem, therefore we have to estimate
the norm 2 of In2 (i), In3 (i) and In4 (i). Observing that ϕ is a bounded function and using Kunita inequality
we get

Ei[|In2 (i)|2] ≤ Ei[|∆XJ
i |4] ≤ cEi[

∫ ti+1

ti

∫
R
|γ(Xs−)|4|z|4µ̄(ds, dz)]+cEi[(

∫ ti+1

ti

∫
R
|γ(Xs−)|2|z|2µ̄(ds, dz))2] ≤

≤ c(
∫
R
|z|4F (z)dz)Ei[

∫ ti+1

ti

|γ(Xs−)|4ds] + cEi[(
∫
R
|z|2F (z)dz)2(

∫ ti+1

ti

|γ(Xs−)|2ds)2] ≤

≤ Ri(∆n) +Ri(∆
2
n) = Ri(∆n), (208)

where in the last inequality we have also used the polynomial growth of γ and the fifth point of Lemma
1.
Concerning the norm 2 of In3 (i), we use the conditional version of the first point of Lemma 8 for q = 2 to
get

Ei[|In3 (i)|2] ≤ Ei[|∆XJ
i −∆X̃J

i |4] ≤ Ri(∆2
n). (209)

We now consider In4 (i). Using Cauchy-Schwartz inequality and a conditional version of both the first
point of Lemma 8 for q = 2 and (30) in Lemma 3, where ϕ acts like the indicator function, we have

Ei[|In4 (i)|2]
1
2 ≤ cEi[|∆XJ

i −∆X̃J
i |4]

1
2Ei[|∆X̃J

i ϕ∆β
n
(∆X̃J

i )|4]
1
2 ≤ Ri(∆

3
2 + β

2 (4−α)
n ). (210)

Using interpolation theorem it follows, ∀j ∈ {2, 3, 4},

Ei[|Inj (i)|1+ε]
1

1+ε ≤ Ei[|Inj (i)|]θ(Ei[|Inj (i)|2]
1
2 )1−θ, (211)

with θ such that 1
1+ε = θ + 1−θ

2 , hence θ = 2
1+ε − 1 = 1− 2ε

1+ε .
From a conditional version of (149), (154), (159) and equations (208) and (211) it follows

Ei[|In2 (i)|1+ε]
1

1+ε ≤ Ri(∆
3
2 +β−αβ2
n )θRi(∆

1
2
n )1−θ = Ri(∆

( 3
2 +β−αβ2 )(1− 2ε

1+ε )+ ε
1+ε

n ) = Ri(∆
3
2 +β−αβ2 −

ε
1+ε (2+2β−αβ)

n,i ).
(212)

Since 2 + 2β − αβ is always more than zero we can just see the exponent on ∆n,i as 3
2 + β − αβ

2 − ε.
From a conditional version of (161), (209) and (211) it follows

Ei[|In3 (i)|1+ε]
1

1+ε ≤ Ri(∆2
n)θRi(∆n)1−θ = Ri(∆

1+θ
n ) = Ri(∆

2− 2ε
1+ε

n ). (213)

In the same way, using a conditional version of (163), (210) and (211) it follows

Ei[|In4 (i)|1+ε]
1

1+ε ≤ Ri(∆
( 3

2 +β−αβ2 )(1− 2ε
1+ε )+ 2ε

1+ε ( 3
2 +2β−αβ2 )

n ) = Ri(∆
3
2 +β−αβ2 + 2βε

1+ε
n ). (214)

The result (174) is a consequence of (212), (213), (214) and that 2 is always more than 3
2 + β − αβ

2 .
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29, 119-151.

[12] Gloter, A., Loukianova, D. and Mai, H. (2018). Jump filtering and efficient drift estimation for
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[19] Loéve, M. Probability Theory, Springer, New York, NY, USA, 4th edition, 1977

[20] Mancini, C. (2001). Disentangling the jumps of the diffusion in a geometric jumping Brownian
motion. G. Ist. Ital. Attuari LXIV 19–47.

[21] Mancini, C. (2011). The speed of convergence of the threshold estimator of integrated variance.
Stochastic processes and their applications, 121(4), 845-855.

[22] Masuda, H. (2007). Ergodicity and exponential β-mixing bounds for multidimensional diffusions
with jumps. Stochastic processes and their applications, 117(1), 35-56.

[23] Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. J. Financial
Economics 3 125–144.

[24] Mies, F. (2019). Rate-optimal estimation of the Blumenthal-Getoor index of a Lévy process. arXiv
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