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Abstract

The problem of integrated volatility estimation for the solution X of a stochastic differential
equation with Lévy-type jumps is considered under discrete high-frequency observations in both short
and long time horizon. We provide an asymptotic expansion for the integrated volatility that gives
us, in detail, the contribution deriving from the jump part. The knowledge of such a contribution
allows us to build an unbiased version of the truncated quadratic variation, in which the bias is visibly
reduced. In earlier results the condition 8 > m on f (that is such that (%)6 is the threshold
of the truncated quadratic variation) and on the degree of jump activity a was needed to have the
original truncated realized volatility well-performed (see [22], [13]). In this paper we theoretically
relax this condition and we show that our unbiased estimator achieves excellent numerical results for

any couple («, 3).

Lévy-driven SDE, integrated variance, threshold estimator, convergence speed, high frequency data.

1 Introduction

The class of solutions of Lévy-driven stochastic differential equations has many applications in various
area such as neuroscience, physics and finance. Indeed, it includes the stochastic Morris-Lecar neuron
model [10] as well as important examples taken from finance such as the Barndorff-Nielsen-Shephard
model [4], the Kou model [19] and the Merton model [24]; to name just a few.

In this work we aim at estimating the integrated volatility in short and long time based on discrete
observations Xy, ..., Xy, ; with tg =0 <t; < ... <t, =T, of the process X given by

t t t
Xo=Xo+ [ WXds+ [a)aWes [ [ (X zi(dsda), teRs,
0 0 0 JR\{0}

where W = (W});>0 is a one dimensional Brownian motion and f is a compensated Poisson random
measure, with a possible infinity jump activity.

We consider here the setting of high frequency observations , i.e. A, = sup;,_q  ,_1A,; — 0 as
n — oo, with A, ; = (tix1 — t;). Both cases T}, € [0, 00[ fixed and lim,,_,o, T;, = oo are dealt and so
we want to estimate, respectively, IV; = & OT a®(X,)f(Xs)ds and IV, == [, a®(z) f(z)m(dx), where m
is an invariant measure and f a polynomial growth function. If on one side the estimation of I'Vs, to
our knowledge, has never been considered before, on the other the estimation of IV; has been widely
studied because of its great importance in finance. Indeed, taking f = 1, IV; turns out to be the so
called integrated volatility that has particular relevance in measuring and forecasting the asset risks; its
estimation on the basis of discrete observations of X is one of the long-standing problems.
In the sequel we will present some known results denoting by I'V; the classical integrated volatility, that
is we are assuming that f equals to 1.

When X is continuous, the canonical way for estimating the integrated volatility is to use the realized
volatility or approximate quadratic variation at time T:

n—1
(X, X7 = Z(AX¢)2, where AX; = X,
i=0

- X,

i+1

Under very weak assumptions on b and a (namely when fOT b?(X,)ds and fOT a*(X,)ds are finite for
all ¢ € (0,T]), we have a central limit theorem (CLT) with rate y/n: the processes v/n([X, X% — IV7)
converge in the sense of stable convergence in law for processes, to a limit Z which is defined on an
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extension of the space and which conditionally is a centered Gaussian variable whose conditional law is
characterized by its (conditional) variance Vg := 2 fOT a*(X,)ds.

When X has jumps, the variable [X, X% no longer converges to IV;. However, there are other known
methods to estimate the integrated volatility.
The first type of jump-robust volatility estimators are the Multipower variations (cf [5], [6], [14]), which
we do not explicitly recall here. These estimators satisfy a CLT with rate \/n but with a conditional
variance bigger than Vi (so they are rate-efficient but not variance-efficient).
The second type of volatility estimators, introduced by Jacod and Todorov in [16], is based on estimating
locally the volatility from the empirical characteristic function of the increments of the process over blocks
of decreasing length but containing an increasing number of observations, and then summing the local
volatility estimates.
Another method to estimate the integrated volatility in jump diffusion processes, introduced by Mancini
in [21], is the use of the truncated realized volatility or truncated quadratic variance (see [14], [22]):

n—1

IV; = Z(AXi)21{|AX7¢\§vn}v
=0

where v, is a sequence of positive truncation levels, typically of the form (1)# for some 38 € (0, 3).
Below we focus on the estimation of I'V; through the implementation of the truncated quadratic variation,
that is based on the idea of summing only the squared increments of X whose absolute value is smaller
than some threshold v,,.

Tt is shown in [13] that T V; has exactly the same limiting properties as [X, X} does for some « € [0, 1)
and 3 € [m, 1), where « is the degree of jump activity or Blumenthal-Getoor index, that is the

supremum of r for which [, (|z]" A 1)F(z)dz is almost surely finite; F is a Lévy measure which accounts
for the jumps of the process and it is such that the compensator i has the form f(dt,dz) = F(z)dzdt.
Mancini has proved in [22] that, when the jumps of X are those of a stable process with index o > 1,
the truncated quadratic variation is such that

(V5 — 1) & (1), (1)

This rate is less than \/n and no proper CLT is available in this case.

In this paper, in order to estimate IV = % OT a?(X,) f(Xs)ds and IV, = [ a*(x) f(x)7(dx), we

consider in particular the truncated quadratic variation defined in the following way:

n—1
Qn = n Z A (Xti+1 - Xti)2(pAZ,i(Xti+1 - X&),
=0

n,i

where ¢ is a C'*° function that vanishes when the increments of the data are too large compared to the
typical increments of a continuous diffusion process, and thus can be used to filter the contribution of
the jumps.

We aim to extend the results proved in short time in [22] characterising precisely the noise introduced by
the presence of jumps in both short and long time and finding consequently some corrections to reduce
such a noise.

The main result of our paper is the asymptotic expansion for the integrated volatility in short and long
time. Compared to earlier results, which exists only in short time case, our asymptotic expansion provides

(=) \/n, that in case of uniform

1
22-a)
In thhe case where the discretization step is uniform our work extends [22]. Indeed, we find

us precisely the limit to which W(Q” — I'V}) converges when AP

discretization steps (for which A, = L) matches with the condition 8 <

T
Qu =1V = 72+ (Ve [ alulul = du [ I8 F(X.)ds + ox(() 7).

n

where Z,, £ N(0,2 fOT a*(Xs) f?(Xs)ds) stably with respect to X. In Theorem 3 and 4 below the result
is extended to non uniform sampling step as well. The asymptotic expansion here above allows us to
deduce the behaviour of the truncated quadratic variation for each couple (v, 8), that is a plus compared
to (1).

Furthermore, providing we know « (and if we don’t it is enough to estimate it previously, see for example
[28]), we can improve the performance of the truncated quadratic variation subtracting the noise due
to the presence of jumps to the original estimator or taking particular functions ¢ that make the bias
derived from the jump part equal to zero. Using the asymptotic expansion of the integrated volatility we
also provide the rate of the error left after having applied the corrections.



Moreover, in the case where the volatility is constant, we show numerically that the corrections gained by
the knowledge of the asymptotic expansion for the integrated volatility in short time allows us to reduce
visibly the noise for any g € (0, %) and « € (0,2). It is a clear improvement because, if the original
truncated quadratic variation was a well-performed estimator only if 8 > m (condition that never

holds for a@ > 1), the unbiased truncated quadratic variation achieves excellent results for any couple
(. B).

The outline of the paper is the following. In Section 2 we present the assumptions on the process X.
In Section 3.1 we define the truncated quadratic variation, while Section 3.2 contains the main results
of the paper. In Section 4 we show the numerical performance of the unbiased estimator. The Section
5 is devoted to the statement of propositions useful for the proof of the main results, that is given in
Section 6. In Section 7 we give some technical tools about Malliavin calculus, required for the proof of
some propositions, while other proofs and some technical results are presented in the Appendix.

2 Model, assumptions

Let X be a solution to
t t t
X=X+ [ s+ [acegami+ [ sz, ey, 2)
0 0 0o JR\{0}

where W = (Wy)i>0 is a one dimensional Brownian motion and g is a Poisson random measure on
[0,00) x R associated to the Lévy process L = (L;);>0, with L; := fg Jg zi(ds, dz). The compensated
measure is i = p — fi; we suppose that the compensator has the following form: f(dt,dz) := F(dz)dt,
where conditions on the Levy measure F' will be given later.

We denote (2, F,P) the probability space on which W and p are defined. The initial condition Xo, W
and L are independent.

2.1 Assumptions

We suppose that the functions b: R - R, a: R — R and v : R — R satisfy the following assumptions:
ASSUMPTION 1: The functions b(x), v(x) and a(z) are globally Lipschitz.

Under Assumption 1 the equation (2) admits a unique non-explosive cadlag adapted solution possessing
the strong Markov property, cf [3] (Theorems 6.2.9. and 6.4.6.).

ASSUMPTION 2: There exists a constant t > 0 such that X; admits a density p:(x,y) with respect
to the Lebesgue measure on R; bounded in y € R and in x € K for every compact K C R. Moreover, for
every x € R and every open ball U € R, there exists a point z = z(x,U) € supp(F) such that y(z)z € U.

The last assumption was used in [23] to prove the irreducibility of the process X. Other sets of conditions,
sufficient for irreducibility, can be found in the same source.
ASSUMPTION 3 (Ergodicity):

1. For all g >0, [, [2|*F(z)dz < oo.

2. There exists C > 0 such that xb(x) < —Clx|?, if |z| — oo.
3. la(z)|/|z| = 0 as |z| — oo.
4. Yq > 0 we have E|X(|? < co.

The points 2 - 3 and 4 of the Assumption 3 here above are required only in the case of long time
observation.
Assumption 2 ensures, together with the Assumption 3 and the fifth point of Assumption 4 below, the
existence of unique invariant distribution 7, as well as the ergodicity of the process X, as stated in the
Lemma 2 below.

ASSUMPTION 4 (Jumps):
1. The jump coefficient v is bounded from below, that is

inf = TYmin
inf [y(@)] = ymin >0



2. The Lévy measure F is absolutely continuous with respect to the Lebesgue measure and we denote

F(z) =22,

3. The Lévy measure F satisfies F(dz) = ‘Zg‘(ﬁ)a dz, where a € (0,2) and g : R — R is a continuous
symmetric nonnegative bounded function with g(0) = 1.

4. The function g is differentiable on {0 < |z| < n} for some n > 0 with continuous derivative such
that supo. |, <, \%\ < 0.

5. The jump coefficient v is upper bounded, i.e. sup,cg |Y(x)| := Ymaz < 00.

Assumptions 4.1 and 4.5 are useful to compare size of jumps of X and L. Assumption 4.4 is satisfied
by a large class of processes: a- stable process (g = 1), truncated a-stable processes (¢ = 7, a truncation
function), tempered stable process (g(z) = e~ **I, A > 0).

We will use some moment inequalities for jump diffusions, gathered in the following lemma:

Lemma 1. Let X satisfies Assumptions 1-4. Let Ly := fot Jg zit(ds, dz) and let Fy := 0 {(Wu)o<u<s, (Lu)o<u<s: Xo}-
Then, for allt > s,

1) for all p > 2, E[| X, — X,|P]7 < cft — 5|7,

2) for allp > 2, p e N, E[|X; — X,|P|Fs] < clt — s|(1+ | Xs|P).

8) for allp > 2, p € N, supp,cpo,1) E[| X541 [P[Fs] < e(1 + | X5[P).

4) Jor allp > 1, E[|X; — XePJF < |t —s|} and E[LXg — XePPIFJ < clt — s[4 (1 + | X [P),
where we have denoted by X€ the continuous part of the process X.

The first two points follow from Theorem 66 of [26] and Proposition 3.1 in [27]. The third point is
showed in [2], below Lemma 1, and the last one in Section 8 of [12].

The following Lemma states that Assumptions 1 — 4 are sufficient for the existence of an invariant
measure 7w such that an ergodic theorem holds and moments of all order exist.

Lemma 2. Under assumptions 1 to 4, the process X admits a unique invariant distribution w and the
ergodic theorem holds:

1. For every measurable function h : R — R satisfying w(h) < oo, we have a.s.

t
lim & [ h(X,)ds = 7 (h).

t—oo t 0

2. For all ¢ > 0, 7(|x]?) < 0.

8. For all ¢ > 0, sup;>q E[| X¢]7] < oc.

A proof is in [12] (Section 8 of Supplement) in the case « € (0,1) and the proof relies on [23]. The
case a € (0,2) is dealt in [2].
3 Setting and main results
Let X be the solution to (2). Suppose that we observe a finite sample
Xppron Xes O=tg<t; <..<t,=T.

Every observation time point depends also on n, but to simplify the notation we suppress this index. We
will be working in a high-frequency setting, i.e.

Ap:= sup A,; —0, n—oo

i=0,...,n—1
with An,i = (ti-l-l - tz)
We study both the cases T' € R fixed and lim,,_, o, T = oo.

We denote by IV; the quantity + fOT a?(X,) f(Xs)ds and by IVy [, a®(z)f(2z)w(dx), where 7 is the
invariant measure introduced in Lemma 2 and f a polynomial growth function.



In order to estimate I'V; and IV, we introduce @, based on the idea of summing only some of the squared
increments of X, those whose absolute value is smaller than 2A” .. with 8 € (0, %) Indeed, we set

’I’Ll’

n—1
1 Z f( Xy,
Qn - ﬁ (A t,) (Xti+1 - Xti)230AZ ,'(th‘+1 - Xti)’ (3)
i=0 n,t "

where x x
tsi - t;
SDAQ i(Xt71+1 - Xti) = QD(Hiﬂ)»

n,t

with ¢ a smooth version of the indicator function, such that ¢(¢{) = 0 for each ¢, with || > 2 and
©(¢) =1 for each ¢, with |¢] < 1.

It is worth noting that, if we consider an additional constant k in ¢ (that becomes ¢, x5 (X¢
Rtis Xt")), the only difference is the interval on which the function is 1 or 0: it will be 1 for

( kAB
| Xt — Xt | < kAm, 0 for |X;,,, — Xy, > QkAm Hence, for shortness in notations, we restrict
the theoretical analysis to the situation where k = 1 Whlle, for applications, we may take the threshold

level as k‘Agyi with k # 1.

X,,) =

i+l i

3.1 Conditions on the step discretization

In this paragraph we introduce all the assumptions on the step discretization that we will need and we
will use, a little at a time, in the proofs of the main results.
We consider both the cases T fixed and lim,, oo T = o0.

ASSUMPTION S1 (Step Discretization, T fixed):

1. There exists a measurable function s — H (s, 0) such that for all function h continuous and bounded,

n 1
n‘ga?nplzng(h') = ﬁ Z h(Xt / h )d
2. For 6 € [0,1), there exists a measurable function s — H(s,d) such that, for every continuous

function h: R — R,
1 1
Z h(X:)A / ,0)ds (4)

B(2—a)+s
AB(E=a) 450
n

330 >0: |1 - Api | <

ST , Vi €{0,....,n—1}, for B € (0,3) and « € (0,2).
i=0 n,

We observe that, for § = 0, the point 2 fall back into point 1. It is therefore a condition stronger than
the first one, but it is not always required. Conditions on the sampling step analogous to those stated in
first and second points are introduced in Section 2.6 of Mykland and Zhang [25], related to the existence
of quadratic variation in time (see also Example 2.24 in [17]).

We remark that, considering a uniform steps discretization, the three conditions here above clearly hold.

ASSUMPTION S2 (Step Discretization, T' — 00):

maxze{o ,,,,, n—1} Ap i <
minie{(}....,nfl} An,i -

1. 9 ¢1,¢0 > 0 such that ¢; <
2. For 0 € [0,1) there exists c; such that Vn, (min;eqo,... n—1} At E?Zl \A%a T ar 5 | < ¢s.

X B(2—a)+dg
330 >0: |1 - B | < A

S , Vi €{0,....,n—1}, for B € (0,3) and a € (0,2).
i=0 .

n

Again, if we consider a uniform discretization, the three conditions here above hold.

The second point is an assumption of regularity on the function j — Aifjl. It comes naturally from the
proof of the lemma below.

We observe that, when T' — oo, it doesn’t make sens to add a condition as (4) because its left hand side
always converges to the same quantity for all § € [0,1), as consequence of the following lemma, that we
will prove in the appendix:



Lemma 3. Suppose that Assumptions 1 to 4 and the points 1 and 2 of S2 hold. Then, for every measurable
function h : R — R with bounded derivative such that w(h) < oo and for 6 € [0,1) we have the following
convergence in probability:

5 P
Zl S=rar z; h(X,) —>/Rh(a:)7r(dm). (5)

3.2 Main results
3.2.1 Decomposition of the truncated quadratic variation

In this section we enunciate theorems that explain the asymptotic behavior of Q,. First of all we define

n,i

> F(X,)
@n = nAB /t /R\{O} 2 filds, dz ))2 Ay LN :(Xti+1 = Xu,)- (6)

in order to write the decomposition of the truncated quadratic variation into two parts: the continuous
quadratic variation and the quadratic variation deriving from jumps.

Theorem 1. Suppose that Assumptions 1 to 4 hold and that 5 € (0, %) and o € (0,2) are given in

definition (3) and in the third point of Assumption 4, respectively. Then, as A, — 0,

th c B(2—a) A
Z Xi, = Xi)P+ALEQ, &, = (7)

n—1
X i+1 ~
-~ Z e / a(X,)dW,)? + AJP=Q, + &, (8)

Ag@—a))

where X¢ is the continuous part of the process X, &, is both op( and, for each € > 0, op

with op(AF) such that OH”(A ) Bo.

We now consider the dlﬁerence between the truncated quadratic variation and the discretized volatility
and we make explicit its decomposition into the statistical error and the noise term due to the jumps.
To do that, we introduce

Qn = (2 ) Zf X)) (X, )Aa Yd(y (Xti)Ai;B)a (9)

where d(() := E[(Sf‘)ch(Sf‘C)]; (S9)t>0 is an a-stable process.

Theorem 2. Suppose that Assumptions 1 to 4 hold and that 5 € (0, %) and o € (0,2) are given in

Definition 8 and in the third point of Assumption /4, respectively. Then, as A, — 0,

1 iy 2 o Zn B(2—a) A
Qu = 3 Do S(Xe)a (X)) = T2+ AL + (10)

where &, is always OP(A,’BL(Q_O‘)) and, adding the condition 8 > ;1 it is also o]p(A(l ah- )A(%ig)).
Moreover,

1. If T is fixred we suppose moreover that point 1 of Assumption S1 holds, then Z, here above is such
that Z, = N(0,2 fOT a*(Xs) f2(Xs)H(s,0)ds) stably with respect to X.

2. If otherwise we are in the case lim,, o, T = 0o, we suppose that points 1 and 2 of Assumption S2
hold. In this case Z, = N(0,2 [ a*(z) f2(z)7(dx)).

We recognize in the expansion (10) the statistical error of model without jumps given by Z,,, whose
variance is equal to the so called quadricity. The term Qn is a bias term arising from the presence of
jumps and given by (9). From this explicit expression it is possible to remove the bias term (see Section
4).

The term &, is an additional error term that is always negligible compared to the bias deriving from the
jump part AE(Z_O‘)Qn (that is of order A5(2_°‘) by Theorems 3 and 4 below). It also gives us an upper
bound to the order of the error we get after having removed the bias. In particular, if a3 is small enough

1 s
(that is a8 < %), we get that the error term &, is op(A2 ) and so it is upper bounded by a term whose
order is roughly the same as the statistical error’s one.

The bias term admits a first order expansion that does not require the knowledge of the density of S<.

l—af— —€
(AG-eB-DNG -2y

)



Proposition 1. Suppose that Assumptions 1 to 4 hold and that 8 € (0, %) and « € (0,2) are given in
Definition 8 and in the third point of Assumption 4, respectively. Then

N 1 - B )
@n = — Fa=a) %Zf (X ) (Xe)ALE a)(/ p(u)|ul' " du) + E,, (11)
nln "
with -
ca = { TE=a]cos(F) Z_fa?él,a<2 2
o if a=1.
3 —af—EA(5 ¢ i —OA(1—2B8—¢
En =op(l) and, if a < 7, it is also WOIP’(AS ERING )) _ oP(Aif 2B8+aB—&)A(1—-28 ))'

We underline that we have not replaced directly the right hand side of (11) in (10), observing that

AJCTDE — £, because AB( ~E, is always op(ANCT)) but to get it is also O[P(A(l BN~ 6)) the
additional condltlon @ < 3 is required.
In the case « < we get the following corollary:

Corollary 1. Suppose that Assumptions 1 to 4 and point 1 of Assumption S1 (or points 1 and 2 of
Assumption 82, if limy oo T = 00) hold and that o € (0, %), B € (125, (5 A 3)). If ¢ is such that
Jg lul'*~*@(u)du = 0 then, Vé > 0,

1 n—1 Zn %_g
Qn - ﬁ ; f(Xti)a2(Xti) = ﬁ + OP(A" )’ (13)

with Z,, defined as in Theorem 2 here above.

It is always possible to build a function ¢ for which the condition here above is respected (see Section
4).
We observe that, if & > % but v = k € R, the result still holds choosing ¢ such that fR u?p(u) fa(kuAn i )
is equal to 0, where f, is the density of the a- stable process. Indeed, starting from (10), we have that Qn
is now zero: by its definition (9) it is equal to AB(Q D 01 F( X )k*AR fR 22o( zkAii_B)fa(z)dz =

= W Z?:_Ol f(Xt,i)k"_3Anﬂ- fRu o )fa(EUAn,i )du = 0, where we have used a change of
variable.

Equation (13) gives us the behaviour of the unbiased estimator, that is the truncated quadratic variation
after having removed the noise derived from the presence of jumps. Taking o and S as in the corollary

Fan
here above we also have reduced the error term &, to be op(AZ €), which means that after having applied
the corrections we get an error that is upper bounded by a term whose order is, in the case of finite time
horizon, roughly the same as the statistical error’s one.

3.2.2 Asymptotic expansion for the integrated volatility in short and long time

The limits of Qn are given below in both cases T fixed and T" — oc.
When T is fixed we have the following result:

Theorem 3. Suppose that Assumptions 1 2, 4 and points 1 and 5 of Assumption 3 hold. Moreover we
suppose that T is fixed and that points 1 and 2 of Assumption S1 hold. Then, as A, — 0,

T
A P —a «@
Qo5 co [ @l du [ OC)I FOX)H (s 5(2 - ). (14)
R 0
Moreover, if we add the third point of Assumption S1, we have

I R N T / o(w)[u]'~*du / ) (X H s, B — a))ds + 03(AZE-)), (15)
n \/ﬁ n « R 0 s s ) n )

where Z, £ N(0, 2fOT a*(X,)f2(X,)H(s,0)ds) stably with respect to X.

It is worth noting that, in both [15] and [22], the integrated volatility estimation in short time is dealt
and they show that the truncated quadratic variation has rate 1/n if 8 > ﬁ

We remark that the jump part is negligible compared to the statistic error if Ag(%a) < n~z, it follows
the condition A,, < n~ 262=a) on the discretization step. If we use, in particular, an uniform step dis-

1
cretization such that Vi € {0,....n—1} A, ; = A, = %, then the condition becomes n™! < n~ 28—



and so 8 > ﬁ, that is the same condition given in [15].
However, if we take (o, 3) for which such a condition doesn’t hold, we can still use that we know in
detail the noise deriving from jumps to implement corrections that still make the unbiased estimator

well-performed (see Section 4).

We also study the asymptotic expansion for the integrated volatility in long time that, to our knowledge,
hasn’t never been dealt before. We have the following result:

Theorem 4. Suppose that Assumptions 1 to 4 and points 1 and 2 of Assumption S2 hold. We assume
moreover that lim,, o T' = co and nA,, = O(T). Then, as A, — 0,

On B ca / () [u] / Iy (@)|° f () (de). (16)

Moreover, if we add the third condition of Assumption S2 we have

R 2 _ Zn | ABC-a) 1-a o B2-a)
Q=g | 1)@ (X5 = T af e, [ ol du [ @) () +or (a2, (17)

where Z, = N(0,2 [ a*(2) f2 ()7 (dx)).

Because of the ergodic theorem, + fOT f(X,)a?(X,)ds converges to IVa, but slowly (with rate v/T).
Anyway for the applications the convergence to I'Vs is not required.

We observe that, if we take a discretization step that is A, = n™”, with p € (0,1), the jump part

is negligible compared to the statistical error if n=P#2-) < n~2 and so if p> m Since 3 is always

_1
2—«

It is worth noting that smaller is p and less choice we have on «. In particular for p < % there is no « for
which the condition here above holds. On the other side, for p close to 1, we fall back on the condition
a <1

less than % it means that p must be more than or, equivalently, a < 2 — %.

4 Unbiased estimation in the case of constant volatility

In this section we consider a concrete application of the unbiased volatility estimator in a jump diffusion
model and we investigate its numerical performance.

We consider our model (2) in which we assume, in addition, that the functions a and 7 are both constants.
Suppose that we are given a discrete sample Xy, ..., Xz, with ¢; =iA,, = % for i = 0,...,n. We remark
that, with such a discretization step, all the points of Assumption S1 and S2 clearly hold.

We now want to analyze the estimation improvement; to do it we compare the classical error committed
using the truncated quadratic variation with the unbiased estimation derived by our main results.

We define the estimator we are going to use, in which we have clearly taken f = 1 and we have introduced
a threshold k in the function ¢, so it is

1 — (XtH»l - Xti)Q — 2
Qn = E Z —A _ @kAﬁ i(XtH»l - Xt,i) = Z(thl — Xti) (pkAi i(Xt'iJrl — Xti)- (18)
i—0 n,i » =0 s

If normalized, the error committed estimating the volatility is E; := (Q,, — 02)y/n.
We start from (11) that in our case, taking into account the presence of k, is

Qu = car® ([ pluful'~*du) + &, (19)
R

We now get different methods to make the error smaller.

First of all we can replace (19) in (10) and so we can reduce the error by subtracting a correction
term, building the new estimator Q¢ := Q,, — Aﬁ(Q_a)ca'yak2’a(fR ©(u)|u|*~*du). The error committed
estimating the volatility with such a corrected estimator is Eo := (QS — 02)y/n.

Another approach consists of taking a particular function ¢ that makes the main contribution of Qn
equal to 0. We define ¢(¢) = ¢(¢) + ctb(€), with ¢ a C* function such that ¢ (¢) = 0 for each ¢, || > 2
or [¢| < 1. In this way, for any ¢ € R\ {0}, ¢ is still a smooth version of the indicator function such that
@(¢) =0 for each ¢, |(] > 2 and @(¢) = 1 for each (, |(] < 1. We can therefore leverage the arbitrariness

A~ l—a
in ¢ to make the main contribution of @, equal to zero, choosing ¢ := %, which is such that
R

Je(e + & (u))ul'~*du = 0.



Hence, it is possible to achieve an improved estimation of the volatility by used the truncated quadratic
variation Q. := Z?;ol (X,
E3 = (Qn.c— 0?)/n.

Another method widely used in numerical analysis to improve the rate of convergence of a sequence is

the so-called Richardson extrapolation. We observe that the first term on the right hand side of (19)
does not depend on n and so we can just write @, = @ + &,. Replacing it in (10) we get

- X, )% (p+ &p)(u) To make it clear we will analyze the quantity

it+1 kAi s

Z, 1
Qn202+7+ 5(20Q+g and
Z 1 1 A
2 2n
QQn =0+ m + 25(270‘) nﬁ(Zfa) Q +52n7

- _9B(2—a) . .
where we have also used that AEL@ a)é'n = &,,. We can therefore use % as improved estimator

of 2.

We give simulation results for Fy, Fo and Fs in the situation where ¢ = 1. The given mean and the
deviation standard are each based on 500 Monte Carlo samples. We choose to simulate a tempered stable
process (that is F' satisfies F(dz) = E \1|+L“) in the case @ < 1 while, in the interest of computational
efficiency, we will exhibit results gained from the simulation of a stable Lévy process in the case a > 1
(F(d2) = )

We have taken the smooth functions ¢ and 1 as below:

Loiffef <

pa) = e TR if 1< |a] <2 (20)
0 if |z| > 2
0 if|[z]<1lor|z|>M
Un(@) = {3 TFEEE if 1< Jz| < 3 (21)
em ot

w5 if%<|x|<M;

choosing opportunely the constant M in the definition of 15, we can make its decay slower or faster. We
observe that the theoretical results still hold even if the support of ¢ changes as M changes and so it is
[-M, M| instead of [-2, 2].

Concerning the constant k in the definition of ¢, we fix it equal to 3 in the simulation of the tempered
stable process, while its value is 2 in the case & > 1, 8 = 0.2 and, in the case @ > 1 and 8 = 0.49, it
increases as a and 7y increase.

The results of the simulations are given in columns 3-6 of Table la for 8 = 0.2 and in columns 3-6 of
Table 1b for 8 = 0.49.

a | v | Mean Rms | Mean | Mean a | v | Mean Rms | Mean | Mean
Ey Ey Es Es Ey Ey Ey Es
0111 3.820 3.177 0.831 0.189 011 1.092 1.535 0.307 | -0.402
3 5.289 3.388 1.953 | -0.013 3 1.254 1.627 0.378 | -0.372
051 15.168 9.411 0.955 1.706 05 |1 2.503 1.690 0.754 | -0.753
3| 14.445 5.726 2971 0.080 3 4.680 2.146 1.651 | -0.824
09 1 13.717 4.573 4.597 0.311 09 |1 2.909 1.548 0.217 0.416
3| 42.419 6.980 | 13.664 | -0.711 3 8.042 1.767 0.620 | -0.404
1.2 | 1] 32.507 11.573 | 0.069 2.137 1.2 11 7.649 1.992 | -0.944 | -0.185
3| 112.648 | 21.279 | -0.915 | 0.800 3| 64.937 9.918 | -1.692 | -2.275
1.5 | 1| 50.305 12.680 | 0.195 0.923 1.5 1| 25713 3.653 | -1.697 | 3.653
3 | 250.832 | 27.170 | -5.749 | 3.557 3| 218.591 | 21.871 | -4.566 | -13.027
1.9 | 1| 261.066 | 20.729 | -0.530 | 9.139 1.9 | 1| 238.379 | 14.860 | -6.826 | 16.330
3 | 2311.521 | 155.950 | -0.304 | -35.177 3 | 2357.553 | 189.231 | 3.827 | -87.353
(a) 8=0.2 (b) B=10.49

Table 1: Monte Carlo estimates of FEq, Fo and E3 from 500 samples. We have here fixed n = 700; 8 = 0.2
in the first table and 8 = 0.49 in the second one.

It appears that the estimation we get using the truncated quadratic variation performs worse as soon

as « and 7y become bigger (see column 3 in both Tables la and 1b).

However, after having applied




the corrections, the error seems visibly reduced. A proof of which lies, for example, in the comparison
between the error and the root mean square: before the adjustment in both Tables 1a and 1b the third
column dominates the fourth one, showing that the bias of the original estimator dominates the standard
deviation while, after the implementation of our main results, we get Eo and FEs3 for which the bias is
much smaller.

We observe that for @ < 1, in both cases § = 0.2 and g8 = 0.49, it is possible to choose opportunely
M (on which ¢’s decay depends) to make the error F3 smaller than F5. On the other hand, for a > 1,
the approach who consists of subtracting the jump part to the error results better than the other, since
E5 is in this case generally bigger than Fs, but to use this method the knowledge of v is required. It is
worth noting that both the approaches used, that lead us respectively to Fs and E3, work well for any
Be(0,3)

We recall that, in [15], the condition found on § to get a well-performed estimator was

1

B> m7 (22)

that is not respected in the case f = 0.2. Our results match the ones in [15], since the third column
in Table 1b (where 8 = 0.49) is generally smaller than the third one in Table la (where § = 0.2). We
emphasise nevertheless that, comparing columns 5 and 6 in the two tables, there is no evidence of a
dependence on 3 of F5 and Ej.

The price you pay is that, to implement our corrections, the knowledge of « is request. Such corrections
turn out to be a clear improvement also because for a that is less than 1 the original estimator (18)
is well-performed only for those values of the couple («, 3) which respect the condition (22) while, for
a > 1, there is no g € (0, %) for which such a condition can hold. That’s the reason why, in the lower
part of both Tables 1la and 1b, FE; is so big.

Using our main results, instead, we get Fo and E3 that are always small and so we obtain two corrections
which make the unbiased estimator always well-performed without adding any requirement on « or f3.

5 Developments in small time

In order to prove our main results we need some developments in small time.

In the sequel, for § > 0, we will denote R(A?

n.i»x) for any function R(A? .,2) = R;,(x), where
Rin:R— R, x— R;,(z) is such that

n,i’

de>0 |Rin(x)] <c(l+ \x|C)Afm- (23)

with ¢ independent of i, n.
The functions R represent the term of rest and have the following useful property, consequence of the
just given definition:

R(AS ;@) = A)  R(AD ;). (24)

n,i’ n,i’

We point out that it does not involve the linearity of R, since the functions R on the left and on the right
side are not necessarily the same but only two functions on which the control (23) holds with Afm and
AV . respectively.

n,i’

We now state a proposition in which we prove a bound for the total variation distance between the
conditional law of the rescaled Levy process and the a-stable distribution. It will be shown in Section 7.

Proposition 2. Suppose that Assumptions 1 to 4 hold. Let (S§)i>0 be an a-stable process. Let h be a
|h ()|
14|x[P

measurable bounded function such that ||hl|,, = sup,egr( ) < 00, for somep > 1, p> « hence

[h(@)] < [l o0 (J2” + 1) (25)
Moreover we denote ||h| ., := sup,cg |h(x)|. Then, for any e >0,

1 o
= €
@ P+

[E((An ™ La,)] = E[M(ST)]] < Cclnlog(An ™) [|h]l o + CAT (IRl = IRl log(An ™)+ (26)

_ 1l 1
p+p T o

i 141 oy, —€
+HCAR I o log(An *)1{a>1}s

where C, is a constant independent of n.

10



Remark 1. The previous theorem is an extension of Theorem 4.2 in [9], it will be useful when ||k is
large, compared to ||hl| For instance, it is the case if consider a function h(x) := |x|*1,<pr for M
large.

pol*

The next proposition will be useful for the proof of main results. It will be shown in the appendix.

Proposition 3. Suppose that Assumptions 1 to 4 hold. We define, fori € {0,...,n — 1},

i+1 5 tit1
/ / -) zi(ds,dz) and AX/ :=/ / v(Xe,) z fi(ds, dz).
ti R\{O} ti R\{0}

1. Then we have

(AX])pnp (AXi) = (AXPops (AXY) o (A7), (27)
where oLl(Af”) is such that E; [|0L1(Ak I = R(Af”, ), with the notation E;[.] = E[|F,],

(Ft.)eepo,r) has been defined in Lemma 1. 'Moreover, for each € > 0 and f the function introduced
in the definition of Qy,

n—1 -
I f(X4,) J2 1 , _, (et
n Z Ay (AXE)as ( n Zo Ans x7) par (AXF) + op(An 7).

(28)
2. We also have

tit1 tiy1 ~ -
([ ae)aw)axt oy (X0 = ([ aCe)dn A% ey (A ou (A7) (20

i i

and

n—1 tit1
LY R aegawaxtey, (ax) -

i

n—1 tig1 - ~ €
_ Zf(Xt,_i)(/t a(X,)AW,)AX] ¢ (AX] )+ o (AL TPTINETI, (30)

i

6 Proof of main results

In our proofs, the following lemma will be useful:

Lemma 4. Let us denote by AX/ = ftt+1 fR\{o} v(Xs-) z 1(ds,dz) and let Fs be the filtration defined
in Lemma 1. Then

1. For each ¢ > 2 de > 0 such that

BIAXY 1 axscans 311F0] = RATTY,X0) = RALE, X0). (31)
BIAXY Lasscany J1IF0] = RO Xy) = RAE, X)), (32)

2. For each ¢ > 1 we have
JE[IAXg’l{ S anrieans }|q|}‘ti] — R(AL) X)), (33)

Proof. Reasoning as in Lemma 10 in [2] we easily get (31). Observing that AX'ZJ is a particular case of
AX/ where 7 is fixed, evaluated in X;,, it follows that (32) can be obtained in the same way of (31).
Using the bound on AX; obtained from the indicator function we get that the left hand side of (33) is
upper bounded by
CquiE[l NG “F&] < quiR(A:z;aﬁvXti)v
’ {%S\AX;’lswﬁ,i} ’ ’

where in the last inequality we have used Lemma 11 in [2] on the interval [t;, ¢;41] instead of on [0, A].
From property (24) of R we get (33). O

11



6.1 Proof of Theorem 1.
We observe that, using the dynamic (2) of X and the definition of the continuous part X¢, we have that

i+1
Xoo, = X, = (Xg, - X£) / [ ) aas ). (34)
R\{O}
Replacing (34) in definition (3) of @, we have
n—1
f X c 1 f X i (& c
Z Dixg,, xS I g xp)ea (X0 -1
=0 i '
2 = f(th) c c i
25 I8 i) V(X,) 2 filds, d2))p s (AX:) (35)
ni3 i t R\{0}
1 n—1 f(Xt i+l 4
+— : / / S)zi(ds, dz)) e s (AX;) = I7.
n i An,l R\{O} n,i ; J

Comparing (35) with (7), using also definition (6) of Q,,, it follows that our goal is to show that Iy + I3 =

—af—&N(L—¢
&, that is both OP(AEL(%O‘)) and 01p>(A£L1 B=anG )). In the sequel the constant ¢ may change value
from line to line. By the definition of X¢ we have

f(X
13 < —~ ZI .

Concerning 13, using Holder inequality we have

tit1 tit1
DA ] [ b dsPlleas (AX) — 1] = [134] + 113,

tq

B3] < ZE X“ |/ X)W PPE{pns (AX0) — 11711, (36)

where [E; is the conditional expectation wit respect to F%,.
We now use Burkholder-Davis-Gundy inequality to get, for p; > 2,

i+l N i1 oy 1 1
|/ dW |p1 H |/ d8|7]p1 < (Anw )p = ( nz’Xti)7 (37)

where in the last inequality we have used the polynomial growth of a and third point of Lemma 1.
We now observe that, from the definition of ¢ we know that ¢ N i(AXi) — 1 is different from 0 only
if |AX;] > A We consider two different sets: |[AX/| < lAf” and |AX/| > %Afm We recall that
AX;, = AXY —|— AXJ and so, if [AX;| > A? . and IAX]| < 1Aﬁ then it means that |[AX¢| must be
more than %Agz Using a conditional version of Tchebychev inequality we have that, Vr > 1,

n,t n,i?

E[|AX¢]" .
% <RI X,), (38)

1
Pi|AX]| 2 5AL) < e
n,t
where P; is the conditional probability with respect to F,; the last inequality follows from the fourth point

5
of Lemma 1. If otherwise |AX/ | > 1Aﬁ then we introduce the set N, ,, := {ALS < 27?:” i Vs € (t, ti—i—l]}-

’I’LZ’

We have P;({|AX/| > $A7 ,} 1 (Ni)©) < Pi((Nin)*), with

i+1
Pi(Nin)*) = Pi(3s € (i, tia] 1 |AL,| > -0 < c / / 2)dzds < AL, (39)

2%” n

where we have used the third point of Assumption 4. Furthermore, using Markov inequality,

X;,) < R(ATHHPO ) = RALS®, X,),

(40)
where in the last equality we have used the first point of Lemma 4, observing that 1y, , acts like the
indicator function in (31) (see also (219) in [2]). Now using (38), (39), (40) and the arbitrariness of r we
have

n,.

IP’i({AX;’ > ;Afbﬂ}mN@n) < CEi[|AX] ", |R(AST

1
Pi(|AX:| > A7) = Pi(|AX| > Af , JAX | < §A ) T P(AX] > AL,

1
IAX]| > AP ) <
1 2 n,t

12



< RGN ey RALY X)), (41)

n,t

Taking p big and ¢ next to 1 in (36) and replacing there (37) with p; = 2p and (41) we get, Ve > 0,

|121 — ZE

Now, for each € > 0, we can always find an € smaller than it, that is enough to get 15, = op(AL=F—¢)
and so

n—1
—af—e —ap—cC

=1

3, = op(Al PTGy, (42)
Moreover I3 = op(ASZ™)) indeed
ELAL ¢ py-esse-or-eL S gy v, i, ) (43)
Ag(%a) ! ni3 ' o

Since we can always find an € > 0 such that § < % — ¢, we observe that the exponent on A,, is positive.

Using the polynomial growth of both f and R and the third point of Lemma 2 we get that (43) goes to
zero in norm 1 and so in probability.
Let us now consider I5,. We observe that |p,s (AX;) — 1] < c. Moreover, by adding and subtracting

b(X:,) in the integral we get
ti+1 ti+1
([ b2 < et B0 + el [ B - bOXe s
t; t;
Using Jensen inequality and the regularity of b we get

tit1 tit1
Ei( / BX)ds)?) < ROAZ Xe) [ I EX, — X P)ds <
t t;

i

tit1
R(A2, X)) + ¢ / A (141X, P)ds = R(AZ ;. X)), (44)
ti

where in the last inequality we have used the second point of Lemma 1. Using (44) we get

n—1

n 1
E[lIZ2l] < An— D E[If(X)IR(1, X0,)] (45)
i=1
and so I3, = op(AS?™)) since
E[|13,]] o
ﬁ < Ayem ZE |f(Xe)|R(L, X)), (46)

that goes to 0 because the exponent on A, is always more than zero, f and R have polynomial growth
P
and we can use the third point of Lemma 2. Moreover, using (45), we have that I3’y = op(A7 ‘) and so

it is op(AZ MNP Brom (42), (43), (45) and (46) we get I3 = &,.
Let us now consider I§. From the definition of the process (Xy) it is

n—1 tit1 tit1
% > f(AX“) [/ b(X,)ds + / a(X,)dWAX] 06 (AX;) =I5, + I3,
i=0 t "

We use on I3, Cauchy-Schwartz inequality, (44) and Lemma 10 in [2], getting

n 2 fX7 « 1
g < 2 5 ) patieo x ypaz,
i—0 n,i

n—1
11.809_q) 1
X)) < AFTT TS SRR, X)),
i=0

where we have also used property (24) on R. We observe it is % +p— aﬁ > 5 L if and only if 3(1 — 5) >0,

that is always true. We can therefore say that I3, = op(A7) and so

I3, = op(A2 TNy (47)

13



Moreover,

E[|134]] 1oprap 1o .
AC-a) < An ZOE |f(Xe)IR(L, Xy,)), (48)

that goes to zero using the polynomial growth of both f and R and the third point of Lemma 2 and
observing that the exponent on A, is positive for g < %(1_712), that is always true.
2

Concerning I%,, we start proving that I3y = oP(Aﬁ(g‘a)). From (29) in Proposition 3 we have

I3y
AE(Q—Q) Aﬁ (2—a) p

Zf S At (aX) /t a(X)dW, +op (AL (49)

n,0
nz i

By the definition of or1 the last term here above goes to zero in norm 1 and so in probability. The first
term of (49) can be seen as

e A sty [ axaaw. s [ oo -axomnl o

i 7

On the first term of (50) here above we want to use Lemma 9 of [11] in order to get that it converges to
zero in probability, so we have to show the following:

1 2 f(Xt ) J >J /ti+1 P
AB(Q a5 E E;] An,z AX ﬁ (AX) 5 a(Xy,)dWs] — 0, (51)
1 4= f2(X ) 7\2 2 oy [ 21 P
s DB s T OX P AR atxaw ) 5o (52)
n,i ti
where EZH = [|]:t1]

Using the independence between W and L we have that the left hand side of (51) is

N a)nZ g (0K (AXVE | axav) =o (5)

i

Now, in order to prove (52), we use Holder inequality with p big and ¢ next to 1 on its left hand side,
getting it is upper bounded by

Cosoa 11 %= f2(X, bt 1 . . 1
PO (| NGO LI SR IS SERNES S
n =0 n,i ’

t;

1 (X : a
Al 25(2~a) Z f ti)R<An7i7Xti)R(Aq+ (e )7Xt') <

nl, n v
n—1
1 1
< A}l—2/3(2—04)-5-2,3—0z6—6EE Z fz(Xti>R(1,Xti)7 (54)
m =0

where We have used (37), (32) and property (24) of R. We observe that the exponent on An is positive if
B < 5= — € and we can always find an € > 0 such that it is true. Hence, using also that = is bounded,
the polynomlal growth of both f and R and the third point of Lemma 2, we get that (54) goes to zero
in norm 1 and so in probability.

Concerning the second term of (50), using Cauchy-Schwartz inequality, (37) and (32) we have

ti+1 t1',+1

E[AX pap (AN | [a(X)—a(X)JaW | SEAL o5p (AXDFEEL [ [a(Xo)=a(Xe)IdW, [ <

1 1189 ¢« tit1 1
B < AR X () An(14+]X, P)ds)? <

i t;

n,i

1489 g tit1
< R(Az}=C ),XmEi[/ la/[| o 1 X5~ X, |
t

3. 8(2 g
<Az 9Ra X)), (55)

where we have also used the third point of Lemma 1 and the property (24) of R. Replacing (55) in the
second term of (50) we get it is upper bounded in norm 1 by

ol ZE [1£(Xe)IR(L X)), (56)
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that goes to zero since the exponent on A, is more than 0 for 8 < =y that is always true. Using

2 (1
(49) - (52) and (56) we get
132 p
Ag@_a) (57)
We now want to show that I3, is also oP(Asléfg)A(liaﬁig)).
Using (30) in Proposition 3 we get it is enough to prove that
1 (X - tit1
Z  f(Xe) [AX{ 00 (AXY) / a(X,)dW,] 0, (58)
A2 z- ” @ . t;

1¢
where the left hand side here above can be seen as (50), with the only difference that now we have A2

instead of A~ We have again, acting like we did in (53) and (54),

n—1 t;
1 2 Xy, - - i
=2 g axyey, k) [ axaw] 2o (59)
Agie " =0 An,i i ti
and
n—1 ] n—1
I 4 X)) A w2, 2 s [ 2 2e12p—ap—c 1 1 2
AZED n? 2 Ei[ﬁ(Axi )V ops (AX] )(/ti a(Xy,)dWs)™] < Ay WA ; R (X)) R(L, X)),
(60)
that goes to zero in norm 1 and so in probability. Using also (55) we have that
N L2 5t A XtL AX{ N (AXY) Lii+1[a(Xs) — a(X¢,)]dW; is upper bounded in norm 1 by
AFT R (O IRA, X)) (61)

1¢

that goes to zero since the exponent on A,, is always positive. Using (58) - (61) we get I35 = op(A7 )
and so (3-A(1-ap-9)

Iy = op(An2~ 77 7T, (62)

From (42), (43), (45), (46), (47), (48), (57) and (62) it follows (7).
Now, in order to prove (8), we recall the definition of X7:

tiv1 tita
X¢,, - X;:/t b(XS)ds—s—/t a(X,)dW,. (63)

i i

Replacing (63) in (7) and comparing it with (8) it follows that our goal is to show that

AT 4 AR — Z fA)itl)</t (X ) ds)? + Z f(A)iti)(/ﬁ’“ b(Xs)ds)(/t X)W = &,

=0 i i=0 ) Li i

3\1\?

Using (44) and property (24) of R we know that

EfAp] _ _ 1 "ZlEMX)R(AQ

n—1
1
1-f(2—a) — E
Arﬁl(Qfa) Aﬂ(2 a)n An,z’ n ’L’Xti)] < An n EHf(XtL)lR(LXtL)] (64)

=0

and
1

E[AT] _ 3401 %
AzE T

3 M\H

I§
=)

7

that go to zero since the exponent on A, is always more than 0, f and R have both polynomial growth
and we can use the third point of Lemma 2.

Let us now consider A%. By adding and subtracting b(X},) in the first integral, as we have already done,
we get that

= S no._ 2 &S, [ bita
= ; Cnyi + Ay g = -~ ZO A (/t b(Xti)ds)(/t a(X,)dW,)+

)2 i i

- /t T b — b(X, ) ds)( /t X)),
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Using Lemma 9 in [11], we want to show that

n—1
Z Cn,i = gn (66)
i=0
and so that the following convergences hold:
#nig 50 Lﬂig 5 0; (67)
ARG par Ar%fg par ’
1 n—1 P 1 n—1
2 2
A26(2—a) > Gi—0 21-9 > G =0. (68)
n i=0 n =0
We have .
S S S LN
Y Eil6ud = i Z B bCXEL [ a(X.)dW.] =
i=0 t;

and so the two convergences in (67) both hold. Concerning (68), using (37) we have

tit1
12,@2(1) 2( 2 22ﬂ2a) Zz 2
and
A5 i e e[ ki) < AR E S o i R0, X,
n nAn n rar: t; ti 7 " s s nAn n rar: t; t; sy Nt ),

that go to zero in norm 1 and so in probability since A is bounded and the fact that the exponent on
A, is always positive. It follows (68) and so (66). Concernmg A3 5, using Holder inequality, (37), the
regularity of b and Jensen inequality it is

1 & f(X)

E[l 43l

B[ IV X X s RAL X)) <

i

n—1 tig1
el S rl el [ m g, - x a0t ral )<

i=0 i ti
n—1 t;
1 X -~ i1
er S eI an i [T A, X0t AL, X))
i=0 mt ti
So we get
E“AEL,QH T+3-8(2-a) c —
E An l+g cC n-l
[A” <AL CEF(X)IR(L X)) (70)
n =0

Since it holds for ¢ > 2, the best choice is to take ¢ = 2, in this way we get that (69) and (70) go to 0 in
norm 1, using the polynomial growth of both f and R, the third point of Lemma 2 and the fact that the
exponent on A, is in both cases more than zero, because of 8 < ﬁ

From (64), (65), (67), (69) and (70) it follows (8).

6.2 Proof of Theorem 2

Proof. We want to prove

% i f(A)itZ) (/tv - a(X)dW,)? — % i f(X)a?(Xy,) = =2 + &, (71)

and



where &, is always 01p>(Aﬁ(2 O‘)) and, if 8 > =, then it is also OP(A(Q_S)A(I_aﬁ_g)). We can rewrite the
last equation here above as R .
Qn = Qn +op(1) (72)
and, for g > =~ a,
~ A 1 L_A(l—aB—¢
Qn = Qn + WOP(A%A’ IAN(1—apB )) (73)

n

Using them and (8) it follows (10). Hence we are now left to prove (71) - (73).

Proof of (71).
We can see the left hand side of (71) as

n—1 t: t; n—1 t;

1 Xy, i1 1 1 X i1

=3 JX) “>[</ a<Xs)dWs>2—/ sl+ [ / [a®(X,)—a*(Xy,)]|ds =t MZ+DB,.
nz’:O An!i 123 t n An’l t

i i=0 i

1—OA(1—aB—E .
We want to show that B,, = &,, it means that it is both OP(AE(Q_Q)) and oﬂ»(Aﬁf IN(1~ab )). Consid-
2

ering the development up to second order of the function a® we get
a*(X,) = a*(Xy,) = 2aa’ (X, )(Xs = Xp,) + (') + aa”) (X0, ) (X = X3,)%, (74)
where X;, € [X;,, X,]. Replacing (74) in the definition of B, it is

2§~ (faa)(Xe) (5 S [ ek ) " g
nz_;An/t (Xy — X, )ds + — Z AL /t ((a")? +aad")(X,,)(Xs — Xy,)?ds =: B} + BY.
We start by proving that BY = OP(AE(z_a)). Indeed, using Holder inequality taking p big and ¢ next to
1, it is

s X tit1 ~ 1 1
Bmgl < £ Y Bl [T R @+ ad PP R, - X, ] <

i Ani .
1=0 ) i
C n—1 |f(Xt ) tivr1 ) 1 1
- n ;]E[ An,i /i (1 + ‘Xh ) (]- + |Xt,_ ) |S t’L| ds] <
n—1 I
1 X L N
< - ZE[f( t:) R(An—;’ ) Z [1£((a)? + aa”)|(Xe,)R(1, X1,)],

where we have used the third point of Lemma 1 for the first expected value and the second point on the
second one. It follows

E[|By ] 1
Am?a) < ALehe- @H;E[\ﬂ(xmu,&i)} and (75)
E“fi” <ajmrel ZEm (X2, R(1, Xy,), (76)

2

S

that go to zero using the polynomial growth of f and R . We have also used the third point of Lemma 2
and observed that the exponent on A, is always more than 0.
Concerning B, we recall that from (2) it follows

Xs—Xti:/b(X )dqu/a )AW,, +// -)zp(du, dz)
t;

and so, replacing it in the definition of By, we get three terms: B} := IT" + I3 + I3
We start considering I7* on which we use polynomial growth of b and the third point of Lemma 1 to get

n—1 X
il < 2 3 ED

It follows

3

tita s n—1
1) [ RO duds) < 8,5 S Bl fad| () RO, X)L
t ti i=0

Rl - . 1 n—1
Aﬁ“<|]> < AL Y Blfad (KR X)) and (77)

17



E[|I} 1
U < adr ZE |faa'|(Xe)R(1, Xy, )], (78)
Afl =0
that go to zero because of the polynomial growth of f, a, a/, a” and R and the fact that 1 — (2 —«) > 0.
Considering I3, we define ¢, ; = 2 M ft T, a(Xy)dW,)ds. We want to use Lemma 9 in [11]
to get that
IS' P Ig P
A§(2_“) =0 and A(%—a/\(l—aﬁ—é) =0 (79)
and so we have to show the following :
1 n—1 b 1 n—1
m Z E’L Kn,z] — 0; l Z Cn i 7 (80)
An i=0 Ar izo
1 n—1 P
2
W Z E:[¢,il — 0, (81)

,,e) Z Ei| (82)

By the definition of ¢, ; it is E;[¢, ] =0 and S0 (80) is clearly true. The left hand side of (81) is

A EPEme) . éi(faagj(X“)]Ei[( /t tm( /1t %a(Xu)qu)ds)Z]. (83)

nA, n i—0 n,i i

Using Fubini theorem and Ito isometry we have

tig1 s tig1 tit1
Bl () aX)aW)ds?) =Bl (ta-9)a()dW? =B [ (tua-st)a(X)ds] < RIAY X,
t ti t; ti
(84)
where in the last inequality we have used polynomial growth of @ and the third point of Lemma 1. Because
of (84), we get that (83) is upper bounded by

i

- n—1

1 1
1-28(2—a) _* ‘ 9-2(2-a) 1
Al nA nzo(faa) (X0 ) R(An,is X3,) < A A nzo(faa) (X:)R(1, X2,),
that converges to zero in norm 1 and so (81) follows, since 2 —23(2 —a) > 0 for 3 < 5=, that is always

true. Moreover we have used that nA,, is bounded, the polynomial growth of f, a, a and R and the
third point of Lemma 1.
Acting in the same way we get that the left hand side of (82) is upper bounded by

n—1 n—1
1 1
AL-(=20 _— X )R(A,i, X,y ) < A2 1, X,
—— - L PR (B Xo) w2 Uad PR X0
that goes to zero in norm 1. In order to show also
13 P 13 P
7A5(27°‘) -0 and —A(%%)A(l*txﬂfa — 0, (85)

we define (, ; == 2 (faa )(X' ) ft”l ft Jz 7(Xy-)zi(du, dz))ds. We have again Ei[ni] = 0 and so (80)

n

holds with EM- in place of Cn,i- We now act hke we did in (84), using Fubini theorem and Ito isometry.

It follows
t7,+1 t1+1
/ / / zji(du, dz)ds)? / / (tip1 — 5)v(Xs-)zfi(ds, dz))?] =

Y / Tt — 522X, )ds( / 22F(2)dz)) < R(AD,. X,,), (6)

having used in the last inequality the definition of fi(ds,dz), the fact that [, 22F(z)dz < oo, the polyno-
mial growth of v and the third point of Lemma 1. Replacing (86) in the left hand side of (81) and (82),
with ¢, ; in place of (, ;, we have

n—1 n—1 n—1
1 =2 1-28(2—a) I ¢ (faa')*(Xy,) 3 2-28(2—a) _* 11
AT ; (¢, < Al HAJ; r R X0) < A A n};(faa) (X)) R(1, X,,)

18



n—1 n—1

1 o1
and S RG] < A oA Z faa")?(X:,)R(1, Xy,).
no =0
Again, they converge to zero in norm 1 and thus in probability since 2 — 26(2 — «) > 0 always holds,
using also the polynomial growth of a, o/, f and R and the third point of Lemma 2. Therefore, we get
(85).
From (75), (76), (77), (78), (79) and (85) it follows that

B, = &,. (87)

Concerning M% := Z?:_Ol én’i, we have to act differently for T fixed and lim,,_,, T = cc.
Case 1: T fized
Genon - Catalot and Jacod have proved in [11] that, in the continuous framework, the following conditions

are enough to get \/nMZ? — N(0, 2[0 (a*f?)(Xs)H (s,0)ds) stably with respect to X:
o Ei[Cni] = 0;
o T BilGha) = 2y (@' f2) (X0 H(s, 0)ds ;
o S ElGH] =0

b Z?;ol Ei[gn,i(WtHl - Wti)} 3 0

Theorem 2.2.15 in [14] adapts the previous theorem to our framework, in which there is the presence of
jumps.
We observe that the conditions here above are respected, hence

ZTL n

MY = =~ where Z,, N(O,2/ (a*f3)(X,)H(s,0)ds), (88)
vn 0

stably with respect to X.

Case 2: lim,, oo T = 0. X

In order to show the asymptotic normality we have to prove that ¢, ; is a martingal difference array such

that > ' E; 2fR )m(dz) and that Y ;" [|Q2+5] L 0, for a constant § > 0. The

previous Condltlons are true as a consequence of the the bulldmg of our sequence CA,” and using Lemma
3 with 6 = 0. So we get

Q éwere n Cl4.’13 2.7}771‘.
M = 2, wh Zn—>N(072/R ()12 (@) (dx) (39)

From (87), (88) and (89), it follows (71).
Proof of (72).

We use Proposition 3 replacing (27) in the definition (6) of Q». Recalling that the convergence in norm
1 implies the convergence in probability it is clear that we have to prove the result on

nAﬁ i=0 "77' ’
1 L f(X) 2 AX/ AX] 1
ABC= Z % )Aﬁ,i(w)%Ag ) (WW(Xti)A&i)a (90)
n Ani Y(Xe)Ag, Co( K )Ag

where we have also rescaled the process in order to apply Proposition 2. We now define

9in(W) =y 0 (y(Xe)Az), (91)
hence we can rewrite (90) as
n—1 ol
1 f(Xt) 2 2 AXJ
5 2 A XA i (—= ) — Elgia(ST+
N = Dni V(X )AL,
1 f A
e Z 2(X0) AL Elgin(S9)] ZA 4 Qs (92)
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where 5S¢ is the a-stable process at time ¢ = 1. We want to show that y .., ! AT, converges to zero
in probability. With this purpose in mind, we take the conditional expectation of A7, and we apply
Proposition 2 on the interval [t;,¢;+1] instead of on [0, A,], observing that property (25) holds on g;

for p = 2. By the definition (91) of g; », we have ||g; |l = R(A7L(?_7) Xy,) and |[ginll,, = R(1, Xy,).
Replacing them in (26) we have that

AX/ o N
B [gi.n (— )] — Elgs (S]] < Cenlnil log(An) [ RAZT) X, )+

1 2 —a_¢ 1 2(B-1 €
e og(Ay ) |R(AZYT 2)0-3 VU X0) + ceadE log(An ) |R(AZTTEETE79 X1,

To get >_1", ! AY,; = op(1), we want to use Lemma 9 of [11]. We have

n—1 n—1
n 1 2(8 —1+(2—a—e
SOIEAL] €~ 2 X)) Hog(An A5 RO, X, )+a7 790 R, X, )+
i=0 nAn i=0
L 1 n—1
A TR, X ) 1as] < A log(An) = D (XWX IR(L X1, +
=0
1, 1 n—1 ) e 1 n—1 )
+A5 T og(An)|= D7 1F(Xe) I (Xe)IR(L Xe,) + AL log(An) |~ D7 1 (Xe) 0 (X6 )| R(L Xi) Las 1,
=0 =0

(93)
where we have used property (24) and the monotony of the logarithmic function in order to say that
log(Ay,,;) <log(A,). Using the polynomial growth of f and R, the fifth point of Assumption 4 in order
to bound 7 and the third point of Lemma 2, (93) converges to 0 in norm 1 and so in probability since

L—S
A% log(A,,) — 0 for n — oo and we can always find an € > 0 such that A; ° does the same.
To use Lemma 9 of [11] we have also to show that

n—1 i
oL f2(Xy, 1 AX/ oy P
apzoee) 25 L 1, )A] Bl (—S2 ) ~ Blga(SD7 2 0. (90
XA,
We observe that Eiugm(%) — Elgin(S§))?) < Balg?,(—2E)] + cBalBlgi n(S7)]2). Now,
X,)AZ, ToA(Xe)AR,
using equation (32) of Lemma 4, we observe it is
AX/ A;? - A;? 1+8(4—a)
Eilg7 .. ( )| = Ei[(AX]) 02 (AX)] = 2= R(A,T77, X)), (95)
Az, TH(X) an (X

where ¢ acts as the indicator function. Moreover we observe that
o =B =B
Bloan(S7)) = [ 2001 X))o (2)d = d(Xi)AL), (96)

with f,(z) the density of the stable process. We now introduce the following lemma, that will be shown
in the Appendix:

Lemma 5. Suppose that Assumptions 1-4 hold. Then, for each (, such that (, — 0 and for each € > 0,
A60) = 161" [ ul! = plu)du+ 021Gl + IG5, (97)

where co, has been defined in (12).

Since 1 — 8 > 0, (X, )Ai;ﬁ goes to zero for n — oo and so we can take ¢, as V(Xti)Afy;B, getting
that
o 1_ L_B)(a—2
Elgi(57)] = dy(Xe)A; ;") = RA: 77 X, (98)

n,t

Replacing (95) and (98) in the left hand side of (94) we get it is upper bounded by

n—1

n,i

An

n—1

1 4_ —a)— — «
DOE(A7)°] = AP —— Zf () (X)) A (R 75 X )+RA 2 7 x,) <
=0
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n—1

1
< A K P O (KR X, (99)

that converges to zero in norm 1 and so in probablhty in both cases T fixed and T — oo, using the
polynomial growth of f and R and the fact that the exponent on A,, is always positive. From (93) and

(99) it follows
n—1
> AL = op(1). (100)

=0

and so (72).

Proof of (73). 3
We use Proposition 3 replacing (28) in definition (6) of @,,. Our goal is to prove that

1 f(X - —2B+aB—&)A(1—28—¢
— Z AXJ> pas (X)) = Qu+op(AY IN1=29)

On the left hand side of the equation here above we can act like we did in (90) - (92). To get (73) we are

i af—é —2pB—€
therefore left to show that , if 5 > ﬁ, then Z?:_Ol A7, is also oP(ASE 2Brap-en(1-28 )). To prove it,
we want to use Lemma 9 of [11], hence we want to prove the following:
1 n—1
W Z ]E Al i —> 0 and (101)
1 n—1 P
n \2
A2(5—26+aB=9) Z]Ei[(Al,i) ] = 0. (102)
n =0
Using (93) we have that, if o > 1, then the left hand side of (101) is in module upper bounded by
AB- 6|log \ 1 38—af—Lté—c 1l
A I 2P Zlf MV (Xe)IR(L, Xe,) = Ay o Q(An)lﬁZ|f(Xti)||v2(Xti)|R(17Xti),
n =0

that goes to zero since we have choosen 8 > = > ﬁ Otherwise, if a < 1, then (93) gives us that
the left hand side of (101) is in module upper bounded by

Aaﬁ|log 28-14¢ 12 9
W” Z F(Xe) 22 (Xe) | R(L, Xy,) = A |log(A )|n ; | F( X )| (Xe, ) [R(L, X, ),

that goes to zero because 8 > H > i.

Using also (99), the left hand side of (102) turns out to be upper bounded by
A iras2aft2E N L LS b p2(x ya4( X, YR(1, Xy, ), that goes to zero in norm 1 and so in prob-

ability since we have choosen 8 > ;. It follows (102) and so (10).
O

6.3 Proof of Proposition 1

Proof. To prove the proposition we replace (97) in the definition of Q.. It follows that our goal is to
show that

n—1
n_ n 1 a1 a8 —é a=h a—2-¢ 5
I+ 13 = ) > XV (X )AL (0(1A7 Ty (Xe) |~ + 1AL (X072 77 79) = &,
n i=0

where &, is always op(1) and, if « < 4 3, it is also WOP(A(iie)/\(l of= )).

We have that I7* = op(1) since it is upper bounded by
2_1-28+af—a(2-8) L X
Ag = " R(1, Xy, )op(1),

that goes to zero in norm 1 and so in probability since we can always find an é > 0 such that the exponent
on A, is positive.
Also I is op(1). Indeed it is upper bounded by

2 _ @ 1_ « é(=— 1
A 12 aB=2(E A H2(1-af) ~E(E =F) ZR(17Xti)OP(1). (103)
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We observe that the exponent on A, is 1 — aff — (f — ) and we can always find ¢ such that it is more
than zero, hence (103) converges in norm 1 and so in probability.

n 1 3¢ 3—é-p(2-a)
In order to show that I = WOP(A” ) = op(AZ ) we observe that

17

n—1
—1-ite-e(2-p) 1
Naaa) - > R(1,X¢,)op(1).

=0

Sophe

<A

If a < % we can always find € and € such that the exponent on A, is more than zero, getting the

convergence wanted. It follows I = WOP(A“_G)A(1 ap- 6)).

To conclude, I} = WOP(A};O‘B €) = op(AL726-9). Indeed,

n—1
17 E— - - —e(L— 1
Al_éﬂ_g < AT({ —1-14apf+é-2(%—B)+2(1-apf)—&(% B) L § :R(17Xt1)0[p>(].) (104)
n
n =0

The exponent on A,, is 20 —af+€é— €(§ — /) and so we can always find € and € such that it is positive. It
follows the convergence in norm 1 and so in probability of (104). The proposition is therefore proved. O

6.4 Proof of Corollary 1

Proof. We observe that (13) is a consequence of (11) in the case where Qn = 0. Moreover, 3 < i implies

that AL=*%=€ is negligible compared to A%_g. It follows (13). O

6.5 Proof of Theorem 3.

Proof. The convergence (14) clearly follows from (11) and the second point of Assumption S1 with
0=p(2-a).

Concerning the proof of (15), we can see its left hand side as

n—1 n—1
1 1
Qn — n ZO f(Xti)a’Z(Xti) + n ZO f(Xti)GQ(Xti) -1
and so, using (10), it turns out that our goal is to show that
1 n—1
o2 F(Xe)a (X)) = IVi = 0p(AC)). (105)
n
i=0
It is
1 n—1 1 n—1 i+l
S s - 3 [ et PMLAEAE 2/ (fa?)
=0 nz —

We now act as we did in (74), considering this time the development up to second order of the function
fa? instead of a?. Replacing it in the equation here above we get

(S 1 Ap 1 n—l tit1
2 - = L 2\/ _
;f(Xti)a (Xti)(n Z;:Ol An,i) S 1Ani ;(fa ) (Xti)/ti (X — Xy, )ds+

'L+1
i= 0 Ani = 0 ti

where X,, € € [Xt,, Xs]. Now, using the third point of the Assumption S1, we have

el < A% ZE fa?)(x3,) (106)

that goes to zero because of the polynomial growth of both f and a and the third point of Lemma 2.
Concerning 7', we act like we did in the proof of Theorem 2 to get that B} defined below equation (74) was

0p(AL2™)) We have used the dynamic of the process X to get E]| [IH (X = Xy, )ds|] < R(A? ;, Xy,).
We observe moreover that, as a consequence of the third point of Assumption S1, we have
An i 1 ATBL(Z*QH‘(;()
<< S (107)
Ylico Ani M n n
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It follows

B30 _ n1-pe-o) S= g po2y An g €
Aoy S B0 Z;E[(fa ) (Xti)ﬂR(l,Xti)] <A Z;]E[(fa ) (X)) R(1, X4,)],
n = i= .1 =

(108)
that goes to zero since 1 — (2 — «) is always more than 0.
Also on I} we act like we did on B in the proof of theorem 2 to get E;[| ftt:“ (fa®)"(Xy,)(Xs—Xy,)%ds|] <
R(A%7°, X;.), (see above equation (75)). Using also (107) it follows

n—1
1 — —Q)—€ c !
e Bl < AP > El(fa®)"(Xe) R(L, Xe,))- (109)
n 1=0

Again, it goes to zero in norm 1 and so in probability. From (106), (108) and (109) it follows (105) and
so the theorem is proved. O

6.6 Proof of Theorem 4.

Proof. The convergence (16) is a consequence of Lemma 3, that we can apply since we have assumed
that points 1 and 2 of Assumption S2 hold.

Concerning the proof of (17), we can again add and subtract %Z?;ol f(X¢,)a%(Xy,) and so our goal is
to show (105), with T that now goes to oo for n — co. We observe that we can act like we did in the

previous theorem because, having assumed the third point of the Assumption S2, the proof here above
still hold. O

7 Proof of developments in small time: Proposition 2.

This section is dedicate to the proof of Proposition 2. Proposition 3 will be proved in the appendix.

To prove Proposition 2, it is convenient to introduce an adequate truncation function and to consider a
rescaled process, as explained in the next subsections. Moreover, the proof of Proposition 2 requires some
Malliavin calculus; we recall in what follows all the technical tools to make easier the understanding of
the paper.

7.1 Localization and rescaling

We introduce a truncation function in order to suppress the big jumps of (L;). Let 7 : R — [0,1] be a
symmetric function, continuous with continuous derivative, such that 7 =1 on {|z| < in} and 7 =0 on
{|2| > 3n}, with 5 defined in the fourth point of Assumption 4.

On the same probability space (2, F, (F;),P) we consider the Lévy process (L) defined below (2) which
measure is F'(dz) = ﬁ%lm{o} (z)dz, according with the third point of Assumption 4, and the truncated

Lévy process (L) with measure F7(dz) given by F7(dz) = g‘(zz‘)ﬂ(f) Ir\f0}(2)dz. This can be done by

setting L; := fg Jg zii(ds, dz), as we have already done, and L] := fg Jg 207 (ds,dz), where fi and 7 are
the compensated Poisson random measures associated respectively to

u(A) ::/ // 14(t, 2)pf (dt, dz, du), AC[0,7T] xR,
0,1 Jr J{0,1]

p"(A) = / / / La(t, 2)ly<r(zyu? (dt, dz, du), AcC[0,T] xR,
[0,1] JR J[0,T] B

for u9 a Poisson random measure on [0, T xR x [0, 1] with compensator 9 (dt, dz, du) = dt|zg|(17i)a g\ {0} (2)dzdu.

By construction, the restrictions of the measures p and " to [0, A,] X R coincide on the set
{(u, z) such that u < 7(z)}, and thus coincide on the event

0, = {w e 0 u9([0, Ay] x {z ER: |2 > g} % [0,1]) = o}.

Since p9([0,A,] x {z € R:|z[ > 2} x [0,1]) has a Poisson distribution with parameter

A, 1
M ;:/ / / ) gzt < e
o Jizzado 7

P(Q) < cAn. (110)

we deduce that
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Then we have

P((Lt)i<a, # (Li)i<a,) SPQ) < cAp. (111)
To prove Proposition 2 we have to rescale the process (L¢)e[0,1], we therefore introduce an auxiliary
Lévy process (Ly)ic[o,1] defined possibly on another filtered space (Q, F, (.7:}),1?’) and admitting the de-
composition L} := f(f Jg 20" (dt, dz), with t € [0, 1]; where 4™ is a compensated Poisson random measure
p"r = p" — p", with compensator

ZAé
A" (dt, dz) = dt 9|(|1+a) (207 g (03 (2)d. (112)

_1
By construction, the process (L}')¢co,1] is equal in law to the rescaled truncated process (A, © L} )iefo.]

_1
that coincides with (An * LA, t)tef0,1] o0 2y

7.2 Malliavin calculus

In this section, we recall some results on Malliavin calculus for jump processes. We refer to [8] for a
complete presentation and to [9] for the adaptation to our framework. We will work on the Poisson space
associated to the measure p" defining the process (L} ).c[0,1] of the previous section, assuming that n is

fixed. By construction, the support of u” is contained in [0, 1] x E,,, where E,, := {z eER:|z| < gll},
AR

with 77 defined in the fourth point of Assumption 4. We recall that the measure ™ has compensator

9(2A%)

EED T(2A8 )1\ {0} (2)dz := dtF, (2)dz. (113)

gt (dt,dz) = a9 en)
In this section we assume that the truncation function 7 satisfies the additional assumption

/| z)dz < 00, Vp > 1.

We now define the Malliavin operators L and I" (omitting their dependence in n) and their basic properties
(see [8] Chapter IV, sections 8-9-10). For a test function f : [0,1] x R — R measurable, C? with respect
the second Variable with bounded derivative and such that f € N,>1LP(E"(dt, dz)), we set p"(f) =

fo Je F( "(dt,dz). As auxiliary function, we consider p : R — [0, 00) such that p is symmetric, two

times dlfferentlable and such that p(z) = z* if z € [0, 1] and p(z) = 22 if 2 > 1. Thanks to the truncation
7, we do not need that p vanishes at infinity. Assummg the fourth point of Assumption 4, we check that

p, p/ and pF belong to Np>1LP(F,(2)dz). With these notations, we define the Malliavin operator L on
the functional u"(f) as follows:

L(u"(f)) :== %u ('f +pF f +of"),

where f’ and f” are derivative with respect to the second variable. This definition permits to construct
a linear operator on the space D C Ny>1LP(F,(z)dz) which is self-adjoint: V®, ¥ € D, EOLY = ELOY
(see Section 8 in [8] for the details on the construction of D).

We associate to L the symmetric bilinear operator I':

(P, V) =L(P, V) —PL(V) — VL(D).
If f and h are two test functions, we have
L(u"(f), " (h)) = p" (pf'H). (114)
The operators L and I" satisfy the chain rule property:
LF(®) = F'(®)L® + %F”((D)F(@, D), [(F(®),V) = F'(®)[(P, V).
These) operators permit to establish the following integration by parts formula (see [8] Theorem 8-10
p-103).

Theorem 5. Let ® and ¥ be random variable in D and f be a bounded function with bounded derivatives
up to order two. If T'(®, ®) is invertible and T=H(®, ®) € N,>1LP, then we have

Ef/(®)¥ =Ef(®)Ho(T), (115)

with
Ho (V) = —20T (D, ®)LO — T(®, T (D, d)). (116)
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The random variable LY belongs to the domain of the operators L and I'. Computing L(L}), I'(LY, L)
and Hpr (1) it is possible to deduce the following useful inequalities, proved in Lemma 4.3 in [9].

Lemma 6. We have
supE[Hpp (V)P <C,  Vp2>1,

1
SUPE‘/ / |z|u™ (ds, dz)Hrn (1)|P < Cp Vp > 1.
n |z]>1

With this background we can proceed to the proof of Proposition 2.

7.3 Proof of Proposition 2

Proof. The first step is to construct on the same probability space two random variables whose laws are

close to the laws of A;éLAn and S{'. We recall briefly the notation of Section 7.1: u™ is a Poisson
random measure with compensator " (dt,dz) defined in (112) and the process L} is defined by

L} = / / z[i"(ds,dz) / / . "(ds,dz) (117)
lz|<A, « 3
with g™ = p™ — ™. Using triangle inequality we have
[E[r(An~ La,)] = E(ST)]] < [E[A(An * La,)] = E[A(LY)]] + [E[A(LT) — A(ST)]]. (118)

By the definition of L{ it is

E[A(An* La,)] — ER(LD)]| = [E[(An * La,) — h(An = L3 ]| < 2B P25) < ¢ [lhflo An,  (119)

where in the last inequality we have used (111). In order to get an estimation to the second term of (118)
we now construct a variable approximating the law of S{* and based on the Poisson measure p"

Lo o / /<Anig i"(ds, dz), (120)

where h,, is an odd function built in the proof of Theorem 4.1 in [9] for which the following lemma holds:

Lemma 7. 1. For each test function f, defined as in Section 7.2, we have

// g;% hn(2))a" (dt, dz) // g;i )" (dt, dw), (121)

where @™ (dt,dz) is the compensator defined in (112) and

T(wA,%)

7|w|1+0‘ dw

[ (dt, dw) = dt

s the compensator of a measure associated to an - stable process whose jumps are truncated with
the function .

2. There exists €g > 0 such that, for |z| < eOA;é,
|hn(z) — 2| < czzAé + clz|'teA, if a# 1,
|hn(2) = 2| < c2? A, |log(|2|AL)] if a=1.
3. The function hy, is C' on (—EoA;é,GoA;é) and for |z| < eoAﬁi,
M,(2) = 1] < zlAF +el=An  Fa#],

|hh(2) — 1] < c|z]An|log(|z]An)] if o = 1.
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The second and the third point of the lemma here above are proved in Lemma 4.5 of [9], while the first
point is proved in Theorem 4.1 [9] and it shows us, using the exponential formula for Poisson measure,
that h,, is the function that turns our measure p” into the measure associated to an a-stable process

truncated with the function 7. Thus (Ly” )te[o 1) is a Lévy process with jump intensity w — Tﬁ:"‘ﬁa) and

we recognize the law of an a-stable truncated process. We deduce, similarly to (119),
[E[A(LY™)] = E[R(ST)]| < cllhllo An. (122)

Proposition 2 is a consequence of (118), (119), (122) and the following lemma:

Lemma 8. Suppose that Assumptions 1 to 4 hold. Let h be as in Proposition 2. Then, for any ¢ > 0
and for p > «,

[BIR(LT) — h(L§™)]| < Celnliog(An)] 1Al + CeAT B2 54 (111, log(An)]+

+CAE Bl ||h\|pol » " log(An) | Last.

Proof. The proof is based of the comparison of the representation of (117) and (120). Since in Lemma

1
7 the difference h,(z) — z is controlled for |z| < egA, =, we need to introduce a localization procedure

consisting in regularizing 1 1 . Let Z be a smooth function defined on R and
{[L"([O,l]x {ZGR:\Z\>60A" e }):0}

with values in [0, 1], such that Z(z) = 1 for z < % and Z(z) = 0 for z > 1. Moreover, we denote by ¢ a

smooth function on R, with values in [0, 1] such that ((z) = 0 for |2| < 1 and ((z) =1 for |2| > 1 and we
set

1 Aé 1 Aa
yr = / / (B (ds, dz) = / / 1 R (s, do)+ / / 47 (ds, dz),
0o Jr €0 0 {%"ZOA;E§|Z|SEOA;E} €0 | |>e0An @

W= T(V").

From the construction, W™ is a Malliavin differentiable random variable such that W™ # 0 implies
_1
([0, 1] x {z ER: |z| > A ° }) = 0. It is possible to show, acting as we did in (110), that P(W™ #

1) < P(u™ has a jump of size > %eoA;é) = O(A,). From the latter, it is clear that the proof of the
lemma reduces in proving the result on [E[h(L})W"|—E[h(L]"")W™"]|. Considering a regularizing sequence
(hp) converging to h in L' norm, such that Vp hy, is C' with bounded derivative and ||h, || < [|h]|,,, we
may assume that h is C! with bounded derivative too. Using the integration by part formula (115) and
denoting by H any primitive function of h we can write E[h(LT)W"] = E[H(L})Hr, (W™)] where the
Malliavin weight can be written, using (116) and the chain rule property of the operator T, as

r(wn, LT)

HL;L(W") — WnHL;L(l) — W
1>+1

(123)

Using the triangle inequality, we are now left to find upper bounds for the following two terms:

Ty = [E[A(LL™)W"] ~ ELH (LY Y Hay (W),

Ty 1= [E[H (L") My (W™)] — E[H (L} Hg (W)

Let us start considering ey Using the Lipschitz property of the function H and (123) we have it is upper
bounded by

rwn, Ly)

E[|h(L2)|[LS" =LY |[Hoy (W] < E[lh(il)\IL?’”—L?HW"HU;(1)|]+E[|h(L1)\|L“”—L”||Wl] =
1

= T2,1 + T2,27
where L is between L™ and Lp. We focus on Ty 1. Using the definitions (117) and (120) of L} and

LT it is

Ty < E[Jh(Es \|/ / "(ds, dz)|[ M (O] < Ef|h(E \|/ / o(2) =) (ds, d2) | [Hop ()W [+

|z|<1
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1
SEIAEN [ [ o) = s ) g O, (124)

where we have used that h,, is an odd function with the symmetry of the compensator " and the fact
1
that on W, # 0 we have p™([0,1] x {z eER:|z] > €A ® }) = 0. For the sake of shortness, we only give

the details of the proof in the case o # 1. In the case a = 1, one needs to modify this control with
an additional logarithmic term. For the small jumps term, from inequality 2.1.37 in [14] and the second

point of Lemma 7 we deduce E[| fol f‘z‘q(hn(z) — 2)ji"(ds, dz)|"] < Cy (A + A,%)’Jl, Vg1 > 2. Using it
and Holder inequality with ¢; big and go close to 1 we have

BRI [ [ 0o 2l ) o (W) < oy (B A5 B 2 s (D)W

< Oy (A + ADE[R(Ln) [P 2 W@ B[ H 15 (1)]%2P2) 772, (125)

where in the last inequality we have used again Holder inequality, with ps big and p; close to 1. Using
1
the first point of Lemma 6, we know that E[|Hp» (1)|%P2]%r2 is bounded, hence (125) is upper bounded
by
1 - 1
ququzAn ||h||oo + quzpzAﬁEHh(Ll)Wﬂpl qz] 2r, (126)
where we have bounded |i(L1)| with its infinity norm and used that 0 < W" < 1. We remind that we

are considering g» and p; next to 1, hence we can write gap; as 1 +¢e. We now introduce r in the following
way:

E[[A(L1) "W T = E[JA(Ly)| O (L) PO W T < (|h||7 E[|h(Ly)|(FHOC D wm o

1Al 1l BI(L+ | £ )] = Bf| Ly e
(127)
where we have estimated h with its norm oo and we have used the property (25) of h and that 0 < W™ < 1.

We observe that L; is between L} and L™ hence |Li| < |L}| 4 |L$"|. Moreover we choose 7 such that

pol < |l llo” + e 1AI1% ol E

p(1+€)(1 —r) = a; therefore r =1 — 7o In this way we have that (127) is upper bounded by
cllhllae T |25 Tyclo9(Bn). (128)

Indeed, remarking that as a consequence of the second point of Lemma 7 there exists ¢ > 0 such that
|hn(2)] < c|z|, we can act on both L} and L{"" in the same way. Using also Lemma 2.1.5 in the appendix
of [14] if « € [1,2] and Jensen inequality if & € [0,1), we have

1 1
B(L W) < cB{(LYI" + 1257w < cE) | /| _ )]+ / / _ Tl a2

—l—cIE/ / - |z|o‘ "(ds, dz)] —|—cE/ / hn(2)|“a"™ (ds, dz)].
1<)z <e0 Ay @ 1<|z|<e0Ap

We observe that, using Kunita inequality, the first term here above is bounded in LP and, as a consequence
of the second point of Lemma 7, the second term here above so does. Concerning the third term here
above (and so, again, we act on the fourth in the same way), we have

/ / 2|70 (ds, d2)] gc/ 1210 < clog(An®) < cllog(A,)],  (129)
1<|2|<e0An 1<|2|<eoAL &

where we have also used definition (112) of a™. Replacing (128) in (126) we get

RIS PRl log(An ™),

(130)

E[[h(Ly)]] / /| )= s, 4 [ (W] 5 o [l Cos A5

where we have taken another €, using its arbitrariness. The constants depend also on it.
Let us now consider the large jumps term in (124). Using the second point of Lemma 7 and the following
basic inequality

1 1 1
|/ s < [ s [ f L el ds, d2)
0 J1<|z|<eoA, 0 J1<|z|<eoA, 0 J1<|z|<eoA,
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for § > 1, we get it is upper bounded by

1 . 1
D[ [ @R A [ el s e )
0 J1<|z|<eolA, @ 0 J1<|z|<eoA, @
(131)

We now use Holder inequality with ps big and p; next to 1 and we observe that, from the second point
of Lemma 6, it follows

B[ s e (O <
1<|z |<60A

Hence (131) is upper bounded by

Cp E[|h(L I’“I/ / (AF ]2+ Anlz* " (ds, dz) [P W™ < (132)
1<|z|<eoAn &
<Oullloa®l [ [ e sar e atEEp [ [ s
1<|z |<50A 1<z |<€0A

(133)
Concerning the first term of (133), we use Lemma 2.1.5 in the appendix of [14] with p; = (1+¢€) € [1,2]
and the definition of F), given in (113), getting

K[| / / e < / / | 2|09 ds, d2)] 7
<| |<50Ana <‘ ‘<€0A

= | ety T < onn T — ear, (134)
1<|z|<e0 Ay, @

< <

where we have used the arbitrariness of € in the last equality.
On the second term of (133) we act differently depending on whether or not « is more than 1. If it does,
we act as we did in (127), considering p; = 1 + € < « and introducing r, this time we set it such that the
following equality holds:

p(l+e)(1—r)+(1+e€) = (135)

We also use the property (25) on h, hence it is upper bounded by

L s € T € n
Co AT BT, RIS EL(1 + | Ly [PO+00=1)) / / s s (136)
1< €0

Now on the first term here above we use that 0 < W™ < 1 and Lemma 2.1.5 in the appendix of [14] as
we did in (134) in order to get

1
B [ s
0 Ji<|z|<eoA, @

Moreover we observe, as we have already done, that |L;| < |L?|+ |L$""| and that, from the second point
of Lemma 7, there exists ¢ > 0 such that |h,(2)| < ¢|z[; so we get

<ec. (137)

| |2l (ds, dz)|p(1+e)(1fr)+(1+e)] e
1<|z|<e0Ap @

1
E[|Ly [P0+ / / |2l (ds, dz) [ rewn) e <
0 <|z|<eoA, @

1 _1
< 0(/  [2]o]z] ) T < e log(An =) < cllog(An)], (138)
<‘ ‘<60A7, a 1+€

having choosen a particular 7 just in order to have the exponent here above equal to o and so having
found out the same computation of (129). We haven’t considered the integral on |z| < 1 only because,
as we have already seen above (129) the integral is bounded in L? and so we simply get (137) again.
From (135) we obtain r =1 + Replacing it and using (137) and (138) we get (136) is upper

p(1+E
bounded by
1 141 o 1 1+31
Cru At IRl ” 75D Ihllpoz T (e 4 [log(An)]) = Cpu AR (11| s |h||poz T Jlog(A,)
(139)
If otherwise « is less than 1, then the second term of (133) is upper bounded by
1 ! n ny= i ﬁil ﬁ
Cp At thlooE[l/ / L |z (ds, d2) P W < Cp A Bl AR = Cp AR ||
0 Ji<|z|<cor, @
(140)
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where we have taken p; = 1 + ¢ and we have used the fact that 0 < W™ < 1 and that, for a < 1,

11
/ / | 2l (ds, dz) 1) T < AT,
1<|z |<60A’* ’
Using (133), (134), (139) and (140) it follows

E[Jh(Ly)| / /<| o () = s ) [ (W

1, _«o
|thol p(1+e)

i 1+ 1_
S szAvlfé 1] + Cp AR ||h||OO PRaTeEsS
Now from (124), (130), and (141) it follows

log(Ay)|[las1- (141)

a1 < Corgupo AL Il o +Corupn AF 1] 7 thlpoz 109(n) [+ Copgups AT ][5 thlpoz ( |)109(An)|1a>1~
142
Concerning Ty, it is already proved in Theorem 4.2 in [9] that
Top < cAy b, - (143)
Let us now consider Ty. Using (114) and (116) we can write
—Wn L(LY) wn Lywn
~(W") = L LY — L(——).
HeW =Ty ot M)
With computations using that L is a self-adjoint operator we get
- (L™, LY) s D(LY = L™ LY
Ty = [E[R(LY™)W™] — E[W(L ") 2= W"]| < E[|h(L L. 144
L= BT W]~ Bl ) W < B =h W
Using equation (114), we have
(LY — LY, LY) / / 2)(1— R (2))p"™(ds,dz).
| |<T/A a
Using the third point of Lemma 7 we deduce the following on the event W™ £ (:
(L — Lo, L) \<c/ / (AF |2|4+An 2" (ds, d2) <c/ / (AF |2+ A0] 2|V (ds, d=)+
|z|<e0A, © | \<1

—|—c/ / "(ds,dz) / / N n|z|—|—A |z|*)p" (ds, dz) <
1<|z|<e0Ap & 1<|z|<e0 Ay @
< c/ / "(ds,dz) A +A,) +c/ / ”(ds,dz)/ / 7L(A§|z|+An|z|°‘)M"(ds,dz) =
0 Ji<|z|<eoA, @

= o(AF + AD(LY, LY) + D (L7, LY) / / (ATl + Anle)un(ds,dz),  (145)

1<|z|<e0A,, @
where we have used that z is always less than 1 in the first integral and that, since p is a positive function,

we can upper bound the integrals considering whole set R. Moreover, we have used the definition of
(L7, LT). Replacing (145) in (144) we get

1 ~ ~ 1 1 ~ ~
i < o(AF + AE[R(E1)] + cIE[|h(L1)|/ / (AT 2] + Anl2) (ds, d2))] = oy + Tho.
<|z|<eoA, ©
(146)

Concerning 77 1, we have

Tin < A |l + AFE[A(E)]) < e [1Bll, + eAF (B A5, log(An)]), (147)

where in the last inequality we have acted exactly like we did in (127) and (128) with the exponent on h
that is exactly equal to 1 instead of 1 + € and so we have choosen r such that p(1 —7) = . Let us now
consider T1 2. We observe that it is exactly like (132) but with p; = 1 instead of p; = 1 + ¢, with the

1
only difference that computing (134) now we get clog(A, =) instead of ¢A; ¢ and in the definition (135)
we choose r such that p(1 —r) + 1 = a. Acting exactly like we did above it follows

T15 < Cpu Anllog(A)| [[hllg + Cpu AT [R5 % IIhHW 7 [tog(An)[las1. (148)
Using (142), (143), (147) and (148), the lemma is proved. O
It follows Proposition 2, using also (118), (119) and (122). O
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A Appendix

In this section we will prove the technical proposition and lemmas we have used.

A.1 Proof of Proposition 3
Proof. Proposition 3. In order to show (27), we reformulate (AX;)%p s (AX;) as

(AXYPlonn (AX)—ppn (AX)HAX! Ploss (AXY)=pns (AXDHAX! -AX! oy (AX))+
(149)

n,i

5
FAX (AX] — AX])p s (AX]) + (AXg)%pM (AXY) =) 1)
k=1

Comparing (27) with (149) it turns out that our goal is to show that Zk:l i) = 0L1<A57(7;27a)+1)). In
the sequel will prove that Zizl E[|I7(3)]] < CATBL&Q ~FL the same reasoning applies to the conditional
version, that is 325_, Ei[|Ip ()] < RALG ™M, x,)).

Let us start considering I7(i). We know that AX; = AX¢ + AX/, where we have denoted by AX¢ the
continuous part of the increments of the process X. We study

') = I + Iy = IIL(i)l{IAXi\ZBAf,J} + I{l(i)l{IAXiK?'Af,,i}’ (150)
having omitted the dependence upon i in [{; and I7', in order to make the notation easier. Concerning
114, we split again on the sets {|AX-‘]| > 2Aﬁ } and {|AX-J| < 2Aﬂ } Recalling that ¢(¢) = 0 for
I<| > 2Anl, we observe that if |[AX| > 2Aﬂ then I7, is just 0. Otherwise, if [AX/] < 2AP

means that |AX¢| must be more than AP

value from line to line. Using the bound on (AX{)? and the boundedness of ¢ we get

then it

so we can use (38). In the sequel the constant ¢ may change

nz’

n,i’

n c 25+( /3)
E[lIT4l] < CAiiE[l{\AXilz?)Af,i,\AX;’\<2Afw}} < AP(AXE| = A] ) < e (151)
Hence 1 )
n z—B)r—1+ap
e Bl < e, (152)

that goes to 0 for n — oo since for each choice of 8 € (0,3) and a € (0,2) we can always find 7 big
enough such that the exponent on A,, ; is positive.
We now consider 7’5 on the sets {|AX1J| > 4A§7i} and {|AX;’| < 4AZ,1‘}~ Using the boundedness of ¢
we have

E[|I{l,2|1{|AXZJ|24A5J}] < cE[(AX])? Ljaxi<aar |AX;’\24AQ‘,-}]’

We observe that also in this case |[AX;| < 3A2,¢ and [AX/| > 4A§’i involve |AXE| > Ai,i' Moreover
(AXY)? < c(AX:)? + c(AXP)? < A + ¢(AXF)?, hence

Elll72faxyjzans 3] = cAVP(AXS] > AL ) +CE[(AX¢C)21{|AX a8 ) S

< A2/3+7"(2 B) + ]E[(AXC) ] (|AXC| > A )% CA[Q@'H"(%—B)]/\U‘F%(%—B)] (153)

where we have used Cauchy Schwartz inequality, (38) and the fourth point of Lemma 1. Therefore we
get

1 n r(3=B8)~1+aBlIAl5 (4 —B8)-B(2—a
e Bl s <ear i ), (154)

that converges to 0 for n — oo since we can always find r > 1 such that the exponent A, ; is positive.
In order to conclude the study of I7(i), we study I} 21{‘AXJ‘<4A BE

E“IﬁQ‘l{\AX,iJKALAiJ}] <cle'll A;,g]E[(AXi])szi - AXiJ|1{|AX7;\gSAiyi,IAXij\S4Aiyi}]v (155)

where we have used the smoothness of . Using Holder inequality and the fourth point of Lemma 1 it is
upper bounded by

- cip1 L 1 -8
CAnfEHAXi "> E[(AX])? 1{\AX |<3Af \AX{’|§4AfM.}]q <Al TE[(AX])? l{mx |<3A8 | |AX/|<4A’

n,i’ n,i

(156)

n,i’
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Now, since our indicator function 1{\AXi|§3Aﬁ,i,\AX;’IS4AfL,i} is less then 1{|AX5\S4AfL,i} , we can use the
first point of Lemma 4. Through the use of the conditional expectation we get
1+8(2g—a) 1+8(2¢—a)

<eh,, © ER(LX,)]<cA,, * (157)

n,t

Q=

Ef (AX7{)2q1{|AX7;|§3Afw,|AXZJ|§4A§J}]

where in the last inequality we have used the polynomial growth of R and the third point of Lemma 2.
Replacing (157) in (156) and taking ¢ small (next to 1), we obtain EHI?,2|1{|AX1J\<4A§J}] < cA%j’BH*O"B*E'
It follows
E[|Iﬁ2|1{|Ax,g\<4A§m}]
N

1 _p—¢
< cAZ; (158)

71’ )

that goes to 0 for n — oo since we can always find an € as small as the exponent on A, ; is positive, for
Be0,3)

Let us now consider 1% (7).
I3(0) = IO 1njaxyj<ons } T 120 1axysoas ) = L2 + 15 (159)
Concerning the first term of (159), we have

(75111 < A7 19l BUAXY PIAXY — AXY 1o <2a8 3] <

< A TEIAXY ) L gax s cons JFEIAX] — AXY )2, (160)

where we have used the smoothness of ¢ and Cauchy-Schwartz inequality. Using again the first point of
Lemma 4, we have that

146(4-a) 1,93 af
E[(AXiI)All{\AX,g\ngfyi}}% = ]E[Ei[(AX;])41{|AX,iJ\gQAiyi}]]% <A, E[R(ALX) < CA;‘;:M i
(161)
where we have also used the polynomial growth of R and the third point of Lemma 2.
We now introduce a lemma that will be proved later:
Lemma 9. Suppose that Assumption 1 to 4 hold. Then
1. Yq > 2 we have _
E[AX] — AX |7 < eAT (162)
2. for q € [1,2] and a < 1, we have
- 1 141
E|AXY — AXY |97 < cAZl0 (163)
Replacing (161) and (162) in (160) we get
_Biliog_aB 3.5 oB
B13,)) < ca T _afmH (164)
Hence E[|13 ]
21 1-8+%
ALTAE=a) ScAR 7, (165)

that goes to 0 for n — oo since the exponent on A, ; is positive for 8 < ﬁ, that is always true with
2

« and 3 in the intervals choosen.

We now want to show that also I3, is 0L1(A5§37a)+1). We split I35 on the sets {\A)?ﬂ < QAQJ} and

{|A)~(ZJ| > 2A§7i}. We observe that, by the definition of ¢, I35 is null on the second set. Adding and

subtracting AX; in I§,21{|A)€J|<2AB ) we have

E[|I§,2|1{|A)21J\§2Aﬁ,i}] < CE[(AX{I - AX{I)%‘:OAEM(AXZ‘J) - ‘pAﬁJ(AXZ'J)|1{|AX5|§2A§§11,\AX;’|>2A3 }]Jr

+CE[(A)~({])2‘<PA§J(AX1‘J') - ‘PAfu.(AXiJ)|1{|AX{|§2AfLJ}]- (166)

On the second term of (166) we can act exactly as we have done in I3, with AX/ instead of AX{ (and
so using (32) instead of (31)). We get

~ ~ 343_9b8
E[(AXZJ)QKOA[? (AX;]) - (pA[a .(AX,E])|1{|A)2;]‘S2A['I }] S CA;?B 2, (167)
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Concerning the first term of (166), by the definition of ¢ we know it is
E[(AXi] - A)~(z’])2| - @Afm(A)N(z:])|1{\A)§';’|§2A21i,\AX,EI|>2AZ,i}} < CE[(AXi] - AX{’F] < CAEW (168)
where in the last inequality we have used (162). Using (166) - (168) it follows
oB
2

n n 3+6-5 3+8-
E[|I3,]] = E[|Iz,2|1{\A)‘(iJ|§2A5J}] <cAn;t T+ CAi,z‘ =cAy; ) (169)

§+6-2

n,t

1

considering that A2 , is negligible compared to A since 8 < A=) Hence
’ 2

BN, g
At = B (170)
that goes to 0 for n — oo.
Concerning I7 (i), we have .
E[|I3 ()] < E[(AX] — AXY)?] < AT, (171)

where the last inequality follows from (162). Hence I§ (i) = oy1 (Agff_a)+1), indeed

E[|Z3(@)]]
A1+5(2*0‘)

n,t

< AL (172)

that goes to 0 for n — oo considering that the exponent on A,, ; is positive for g < ﬁ, condition that
is always satisfied for 8 € (0,1) and « € (0, 2).
Let us now consider I} (). Using Cauchy-Schwartz inequality it is

- - - 1,800 g 3.5 a8
E[|13(0)]) < cE[(AX] — AXYPBE(ARY)20%, (AXV)E < e, al70 7 —eall”™, (1)
where we have used (162) and the first point of Lemma 4. It follows
BT _ 3opres
A = Pai

n,i

(174)

that goes to 0 for n — oo since the exponent on A,, ; is more than 0 if 8 < ﬁ,
2
Using (149), (152), (154), (158), (165), (170), (172) and (174) we obtain (27).

that is always true.

In order to prove (28), we use again reformulation (149). Replacing it in the left hand side of (28)
it turns out that our goal is to show that

1

15 X, L-ON(1—-ap-¢
IO rpip ) — g agizonaesmay (175)
i=0 k=1 e

«
I
=3

Using a conditional on F3, version of (159), (164) and (169) we have

n—1 n—1 n—1
1 . 1 1 3,8 _9aB_ 1 . 1 lig_aB_.
W L EIBOfX)lg— < o S RATTTT T X = DS RATTTETOX).
=0 ’ =0 =0
Since B(1 — §) is always more than zero and, V€ > 0 we can always find e smaller than it, we get
n—1
1 X, 1_:z 1_z —afB—¢
- ng(i)f(A 1) _ o, (ABTF) = op0 (AGONIm08Dy (176)
i—0 n,i

From a conditional version of (171) we get that 1 Z?;Ol I3 (3) % is upper bounded in conditional norm

by L7 RAZIE X)) = LY R(AL X, ) and so

1 0 f(X)
E;I:s(l) A

n,s

— opi (AETONImeB=D)y (177)

Using a conditional version of (173) we get that %Z;:Ol I3 (7) ng"?) is upper bounded in conditional

34 a8 1 _ 1,5 ab_
norm 1 by 157/ RAZYPTE T X, ) =1 D R(AZYPT27° X,.), hence

n

n—1
1 X 1_¢ —af—¢€
- § If(l)f(A t1) :OLI(A;Z )/\(1 B )) (178)
n i—0 n,i
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Concerning I7 (i), we consider 7' (i) and I7'5(7) as defined in (150). Using a conditional version of (151) on

1_3) —_1—-L4¢
It (i) it follows that - Ly 01 I (i )f(AX ) is upper bounded in norm 1 by S0 (Agf Prap=izat X)) =

i Z'—o ( ﬁ)r+2ﬁ_§+€ , X¢,), that goes to zero because we can find 7 big enough such that the ex-

ponent on An is positive, hence
L& o f(Xe 1_¢ L _A(l—af—¢
=% 1171(1)% = op1 (A2 ) = opa (A2 TINATAATE (179)

Acting as we did in the proof of (27), we consider I7',(i) on the sets {|AXJ| > 4A5 } and {|AXZJ| < 4A5’i}.
Again, from (153) and the arbitrariness of r > 0 it follows

n—1
1 n (; f(Xt) (3-9A(1-ap-2)
5201172(2)1{\AX;]|24A51} Anl :OLl(An2 ) (180)
1= ’

When |AX/| < 4Afm we act in a different way, considering the development up to second order of ¢ I
centered in AX/:

Iﬁz(i)l{mxg|<4Aﬁyi} = [(AX{I)QAXE‘P/AQJ(AX{I)A:L,?"‘(AX{]) (AXC)Q j ‘(XU>A;3ﬂ]1{|AXi\§3AfWi,|AX{’\<4A£3N.} =

= B0 axi<sal jaxyi<ans } H O ax <ans axyi<anl )

where X, € [AX/, AX;]. Now, acting like we did in (155), (156) and (157), taking ¢ next to 1 we get
Ei[|jg(i)1{|AXJ§3Aﬁ’i, \AX{]\<4A§¢}H < R(A:L-‘t',B(Z—a)—e-‘rl—?B7 Xti) — R(Ai_aﬁ_stti)-

Since for each € > 0 we can find an € such that € — e > 0 it follows, taking the conditional expectation

1 = f(th) 1—aB—¢ ( ON(1—ap—e)
n Z L3 (i )1{|AX |<8Af L |AX7|<4n? YA T or:(Ay ) = op (A’ )- (181)
i=0 " e

Concerning f{l(i)l{‘AXi|<3Aﬁ o IAX|<4n? ), We 1O longer consider the indicator function because it is
(AXZJ)2AX¢C<P'AQ i(AXiJ)A;f + (AX/)PAXS N _(AX{J)A;,?(l{mxi\gfmﬁw ax7|<an? 3 —1)

and the second term here above is different from zero only on a set smaller that {|AX¢\ > 3A§,i} or

{|AX7;J| > 4A§7i} , on which we have already proved the result (see the study of I7'; () in (179) and
I7'5(7) in (180)). We want to show that

n—1

1 o J (X)) (A -A(1-aB—?)

N o — op(Ay2 . 182
- ;:0 1(4) A op( ) (182)

We start from the reformulation

I(0) = AXCATSIAXY P (pys (AX)) = s (AXY)) + (AX) = AXY)Pelys (AX)+

(3

4
+2AX) (AX] — AX/ )%5 i(AX;’ )+ (AX] )%’Aﬁ => 1,
: =
and we observe that, after have used Holder inequality and have remarked that cp 5 acts like ¢ af ) We
can act on 1171 as we did on I3, on I172 as on I3 and on I173 as on I}. So we get7 using also Holder
inequality and the fourth point of Lemma 1,

(|74 ) + I () + 75 ()] < RAZ?, X, (Bl T3 ()] + E|IZ ()77 +E(IF@)|95).  (183)

Now, taking ¢ next to 1, we need the following lemma that we will prove later:
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Lemma 10. Suppose that Assumption 1 to 4 hold. Then, Ve > 0,
B |23 ()[4 + 15 ()7 + 13 ()] e < R(Aﬁﬁfi X1, (184)

with 13 (3), IT(i) and I} (i) as defined in (149).
From (183) and (184) it follows

1 = o[ (s (. f(th) 1-€ (3—-OA(1—aB—¢)
o Z[Im(l) + 175(i) + 11,3(1)]T =op (A7 ) =opi1(Ag )- (185)
i=0 e
DI ! I{L4 fA):tl) =: 3" ¢, we want to use Lemma 9 in [11]. By the independence between L
and W we get
1\~ 1 1% 1-8 - o c
YR = s Y AX)A L EAR))2, (AXEBX] =0 (136
An " iso Ap =0 "
and
A}L—Q(%—g) n—1

S )AL T ENAK]) 2 (AX)IEN(AXL)] < AL _ A2,

(187)
where we have also used the fourth point of Lemma 1, the fact that ﬁ is bounded and the first point
of Lemma 4. Using (186) and (187) we have

(3—OA(1—ap—d)
— A2
Z 1,4 A ( )

that, joint with (185) and the fact that the convergence in norm 1 implies the convergence in probability,
give us (182). Using also (176) - (181) we get (175) and so (28).

In order to prove (29), we reformulate AX7p,s (AX;) as we have already done in (149) getting

tiy1 tit1
( / a(X)AW)AXY prs (AX) = ( / a(X)dW) (AX])pns (AX) — ppn (AXI)]+
tit1 N tit1 N ~
o / a(X)AW)(AXpns (AXY)—pas (A 4( / a(X,)AW)(AXY — AX oo (A )+
t n,i n,i t; n,i
(188)

([ X)W AK ey (AX) = T,

i j=1
Comparing (188) with (29) it turns out that our goal is to prove that B<2 T Z] 1 [|I~J”(z)|] — 0,

for n — oo (again, acting as we do in the sequel it is also possible to show that ijl ]EZ[|I~j"(z)H <

R(Agf—a)+l7 X1,)). Let us start considering I7*(7). Using Holder inequality, its expected value is upper
bounded by

tit1
I/ AW PP EAX] P2 |oan (AX) —ppn (AX])[P2]75. (189)
We now act on E[J[AX][P?|ps (AX:) — s (AX])P]72 as we did in the study of I} (i):
|AXiJ|p2|¢Ai’i(AXi) - @Aiyi(AX{]”m = |AX{]|p2|‘PAﬁ’i(AXi> - wAfw.(AXi])|p21{\AX¢|23A§_’i}+

+|AXiJ‘p2‘QDA3 (AXz) - @Afm(AX{])‘pzl{mxiKgAfM} = jfl + j{lQ

Concerning I7',, if [AX/| > 2An
taking po = 2. Hence, Vr > 1,

; it is just 0, otherwise we can act exactly as we have done on I,

B} < (a0 h < ealtEGY, (190)

n,t
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Let us now consider I7,. If |AX/| > 4A
again

we act again like we did on I7',, taking p» = 2. It yields

m 1 B+3 (3 B)
E[|11,2|1{\AX{7\24A§”_}}2 <At (191)
If [AX/| < 4Afm- we use the smoothness of ¢ and Holder inequality getting
~ 1
B[} P2 <

n}] < A;,fE[|AXg|p2“P/(C)|p2|AXic|p21{\Axi|<3Aﬁ,i7\AX;’|<4A§L7i}]

< AL PE(AXEP P RTE] (O Y| AX] 77, (192)

P29
|72 1{\AX|<3A JAXT|<an?

n,i’ n,i

with ¢ a point between AX; and AX-.
Now we observe that, if |[AX¢| > B , then taking po ¢ = 1 + € we have

APTTG-Ame

n,i

Elle ()| AX 1 s )T <
{\AX [<3Af JAX]|<4Af | ,\AXf\z%’i}

where we have used the bound on |AX/| given by the indicator function, the boundedness of ¢’ and

(38). Otherwise, by the definition of ¢, we know that |¢’( )| 75 0 only if [¢| € (AP 2AB ) Then

’I’Ll’

Al < < AKX+ |AXY| < 2|AXY |+ |AXS] < 2]AX/| + 2ni hence |AXY| > A > T and so
we can say it is

1

E[@’(C)II“IAXfIHEl{ [IAXJIIJ“l{

] .
[AX;|<3AD | |AXT|<4Al | |AXF|<—2t ” } —ri<|aX|<4Al }
Using the second point of Lemma 4, passing through the conditional expected value we get it is upper
bounded by

Alfﬁ(leE*a)E[R(l’Xti)] < CA:LJFZ_B(1+E*Q)’

n,s

where in the last inequality we have used the polynomial growth of R and the third point of Lemma 2.
Hence

1 1 1
Bl (O AKX "L can asscany y] P < Al TP ARGl sl
' (193)
The last equality follows from the fact that, for each choice of 3 € (0,3) and «a € (0,2), we can always
find » > 1 and € > 0 such that B+ (3 — ) —e>1+B(1+€e—a).

Replacing (193) in (192) and using the fourth point of Lemma 1 we have that

= L —BH1+B(1+e—a)l 55 aﬂ )55 B—e
E[|Il,2|1{|AX7{\<4AiJ}]P2 CA ? = A A2 PR (194)

IN

Tll

the last equality follows from the choice of both ps and ¢ next to 1. Using (190), (191) and (194) we get

EHAXZJ‘ZMKOA?”(AX) WAB (AXJ)|p2]% A[ﬁJr (%*5)]/\[%704376] Az —aff—e (195)

mn,

Replacing (37) and (195) in (189) it follows

E[|I} ()] < cAZZ7F, (196)
hence ~
E(F @  \1- 2p-c
ALTACE- o = A, (197)

n,t

Since we can always find an € > 0 such that 1 —28—¢ > 0, the expected value above goes to 0 for n — oco.
Concerning I3 (i), we split again on I2 V=15 )1{|AXJ‘<2A5 ) and 12 o = I3 (i )1{|AX."\>2AB it

- - B tit1 ~
B[|T34]] = EI 5 ()11 ax71<208 )] < e, 7E] / a(X)AW,||AXT|AX] = AXY |1 ax1cons 3] <
tit1
<cALTEI [ alX)dWiPIAXY PLaxs cons PEIAXY — AX] ]2 <
t; T

- i+ AR a
< CA:L,iﬁE‘/ dW |2p]2 HAXJ| 1{|AX]|<2Aﬂ }]211’
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where we have used Cauchy-Schwartz inequality, (162) and Holder inequality. Now we take p big and ¢
next to 1, using (37) and the first point of Lemma 4 we get

E[| 5[] < cAL SrETEaem (198)
and so .
“n 1— 2,6+——e
A1+5(2,Q)E[|I2,1” < A (199)

n,i

It goes to 0 for n — oo because we can always find an € > 0 such that the exponent in A,,, is pos-
itive. Let us now consider 122 = 12 21{|AXJ|<2A5 } + 12 21{|AXJ‘>2A/3 3 From the deﬁmtlon of ¢,

IEolgazsisans } =0

n,i

~ tit1 ~
E[|I§L,2|1{|Aj(if|§2AB |/ dW||AXJ||<pAB (AX )— SOAELJ(AX{])‘I{‘AX{‘SQA JAXT |>208

tit1

+E[| t a(X)AW||AX] = AX] s (AXT) = ops (AXf Az i<on? jaxysoar }) <

B tit1

< AT UL E] a(X,)AW,[|AX] — AX] || — o0 (AX])]],
ti n,i

where we have acted exactly like we did in 1:3 1, using that AX;I is less then 2A§,i. We have also used

that, by the definition of ¢, evaluated in AX/ it is zero. Now we use Holder inequality, (37) and the
boundedness of ¢ to get

n,i

~ _aB_ tiv1 ~ _aB_ 1 ~
E[|I5,)] < A2 T 4E] / a(X,)dW,[P]PE[|AX; ~AX] |97 < eAZ 7 " 1eAZ E[|AX] -AX] |95,
ti

Now, if @ < 1 we use (163), with ¢ = 1 + ¢, getting

- _ _ap
BT[] < cAZ;F 4 et E o Z oa?] (200)
Therefore, for v < 1, we have
1 n 1-28+28 —¢
A1+B(2_Q)E[|12,2|] < CAn,i : ' (201)

n,i
We can find an ¢ > 0 such that the exponent on A, ; is positive hence, if a < 1, then I3y, =
oLl(AH'ﬁ(Q_a)). Otherwise, if a > 1, we use (162) having taken ¢ = 2. We get

n,1
~ _aB 1 3
EI5,)] SeAL.? “+eAZT =cAZ,

It follows that, for @ > 1, it is

1 -B(2
AT SEIIZ,) < caZ PO, (202)
We observe that the exponent on A,, ; is more than 0 if 8 < 5 Ty that is always true for 8 € (0, 1)

and a € [1,2).
To conclude, we use on I3(7) Holder inequality, (37), the boundedness of ¢ and then we act as we did on
12’2, using (163) or (162), depending on whether or not « is less than 1. In the case o < 1 we get

1 i 1 stato 1-B(2—a)—e
WE[HS @) < WCATQL,Z‘ 2 = cAn)i , (203)

n,i n,i

that goes to 0 for n — oo since we can always find € > 0 such that the exponent on A, ; is positive.
Otherwise it follows 1 ]
-
e B0 < Sy

n,: n,:

CA?%J; = cA%;B(Z_a). (204)

The exponent on A, ; is positive if § < 2 =a a) that is always true since we are in the case a > 1. Hence
I3(i) = o0 (A, 7%7).

n,t

From (197) - (204) and the reformulation (188), it follows (29).
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Replacing reformulation (188) in the left hand side of (30), it turns out that the theorem is proved
if

=

n—

3
S fpan I < o alimontera), (205)

k=1 Ani

SRS

Using a conditional version of equations (196), (198), (200), (203) and (204) (adding in the last two
B(2 — @) in the exponent of A, ;) we easily get (205) and so (30). O

A.2 Proof of Lemma 3

Proof. In this proof, we emphasize that the sampling scheme (157)7 0,...ndepends on n, by noting ¢; = T), ;,
and we have Ty, ; = 370 A, ;. We define X,, ; := o 377, [/ h( s)ds and we observe that

ng

T, j+1 Tn,j T, j+1
Tn7j+an,j+1 — Tn,an,j = /0 h(XS)dS —/0 h(XS)dS = / h(XS)dS =

Tn,j

Tn,j+1
:/ [(Xs) = h(Xr, )lds + Ap ;h(X7, ).

T
Hence .
1 -
Spi= = > A (X7, ,) = AV A (X, ) =
n n—1 Th,i mn,? n,i
Ei:O A?m,l ; Zz 0 nl ;
== AL [ X T0niXnil + ————— A (/ [M(XT, ,) — h(Xs)]ds).
n—1 n,i+13ni4+1 = dniAng n—1 n,i Th,i s
Zi:o Az,i i=0 Ei:o Ai,i i=0 T
(206)
Now, concerning the second term of (206), we have that its norm 1 is upper bounded by
e LA I B, - X ) < T W <
n—1 n,t n,i s ~—7n—1 A5 n,i >~
Zz 0 AlezO n,i Z Afzzzo

ZA5+2 < cAZ,
Z nzz 0

where we have used the regularity of h, Cauchy-Schwartz inequality, the first point of Lemma 1 and the
fact that A, ; < A,,. Therefore the second term of (206) converges to zero in norm 1, that implies the
convergence to zero in probability.

Concerning the first term of (206), it is

- 1 =" i TiXna (AL =AY AL T X
Sni= mg 2 Ani Tt Xnin =T Xn i) = == VR 5
>imo A% D0 >ico A Yico A,
We define )
. . 5 1 y J—
an Z?;l X Tnd(A J 1 An] ) for j < n—2,
Aanl 1-n,n
Anp.n—-1 = Zn 1A6
Let us start assuming the following two conditions, that we will prove later:
n—1
de>0:su an.i| < c < oo, 207
3 o (207)

n—1
> ani=1. (208)
1=0

We now write

n—1 n—1
Sn = Z an,an,i =X+ Z an,i(Xn,i - X)a
=0 =0
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with X := [, h(z)7(dz). In the last equality here above we have used (208). In order to show that
n—1
3" ni(Xns — X) 50, (209)
i=0
we first prove that, Vi € {0,...,n — 1}, T, ; = O(£T,, ). Indeed, we clearly have
n—1
nmkin App <Thn= Z;) Ap < nm]?xAn,k.
j=

Using the first point of Assumption S2 it follows

Ton 1 Thn
< nk < mmA and so
nce C2
Thmn T, T, coT,
n,k > < n7 L = n,k S ﬂ-
nco k n n k n
Hence
i—1
1 Tn n { 02 Tn n
e < T X;Ang < — (210)
J

Now, using ergodic theorem, we know that Ve > 0 37, > 0 such that, VT > T¢,

T
|%/O h(Xs)ds—/Rh(x)W(dx)| < e. (211)

By the equation (210), we choose 1 > 0, n < 1 such that, Vi > nn Thi>Te.
We can see E?:_Ol an,i(Xn,; —X) as Z}lﬁj ani(Xn,: —X) + ZZ Lyn+1 Gn i(Xn,i — X). Using (207) and
(211) we get

n—1

o JanllXni — X| < ec. (212)
i=[nn|+1

Concerning EZLZBJ an,i(Xn,i —X), we use that |X,, ; — X| is bounded and that, by its definition, T, ; is
upper bounded by T}, ;. Therefore, using also that § > 0 and § — 1 < 0, we have

[nn] [nn) . \A‘S 1 - A1 ng max A L]
il | X — X| < Y mi < ASTL AL (213
2 fanillXos = Xl 03 S r e < e q T r 2 A — Al e

We use the first and the second point of Assumption S2, getting

[nn]

D lanllXni = X[ < en. (214)
=0

From (212) and (214) and the arbitrariness of both € and 7 it follows that (209) holds almost surely
and so in probability. If we show (207) and (208) the lemma is therefore proved. Concerning (207), we
observe it is enough to study the behavior of Z?:f (A Ai}l) . Indeed if it converges

Zn 1Ao 'rL’L 1
then

n—2
,‘| + co < 00.

n—1 n—2
PBLEE S pM
We focus on Y1) > |an, ;| and we act like we did in (213), using this time that T, ; < T}, ,,. We get
n—2

( man n k §—1
S E <s E AL AL,
up ‘an Z| up c n(mlnk | n,i— 1 .1

n>1

Again, using the first and the second point of Assumption S2, we get it is bounded by a constant.
To conclude, we observe that 75, ; = T, ;-1 + A, ;—1 and so it is enough to compute Zi:l an,; to get it
is equal to 1. O
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A.3 Proof of Lemma 5

Proof. By the definition of d((,), as in law we have that SY = —S¢, we get d(¢,) = d(|¢,]) and thus we
can assume that ¢, > 0. Using a change of variable we obtain

d(Gn) = E[(S8)%0(S5¢,)] = / 2(200) fa(2)dz = ()~ / (1) (L) (215)

Cn

We want to use an asymptotic expansion of the density (see Theorem 7.22 in [18], with d = 1 and 0 = 1)
which states that, if z is big enough, then a development up to order N of f,(z) is

Ca

P MZ,?’“ 21 7)* + 0z (2] ~*™), (216)

for some coefficients ai. We therefore take M > 0 big enough such that, for z > M, we can use (216).
Hence the right hand side of (215) can be seen as

— U n n
@ [ (it @) [ (D= )
[ul<CnM <n |u|>Cn M gn
We have that, Vé > 0, I = op((; €). Indeed, using that ¢ and f,, are both bounded, we get
i
Cn©

that goes to zero because we have assumed that ¢, — 0. I} is

o I e (218)
[u|<Cn

|Gl ] du. (219)

— al, |—1—-«a — U
@ [ apweal) s ) [ el ) -
Jul>Cn > Cn G’ u |
The first term here above can be seen as
e [l ptudu=(G) e [l (e = (6" [l el dutor((6) )
R |u| < M
Indeed, using that ¢ is bounded, we have

1 a—2 11—« E+a—2 11— €
2 n (o4 d — n d — n )
el e /ulw ' ()] < e(G,) /Mw W' Cdu < (), (220)

that goes to zero for n — oo.

Replacing (218), (219) and (220) in (217) and comparing it with (97), it turns out that our goal is to show
that the second term of (219) is op((n (ZEN(2a—2- E)) Using on it (216) with N = 2, which implies | f,(2) —
|zlcﬁ| < e for |z] > M and some ¢ > 0, we can upper bound it with ¢((,)%*~2 f\uISCnM |u|t*=2%du .
By the definition of ¢ we have

_CnM <nM
/| e lu|' 2o (u)du = / (—u)' 2o (u)du +/ ur 72 p(u)du < ¢+ c(C)? 2 (221)
wu|>Cn —2 2

Therefore we get that the second term of (219) is upper bounded by
22 .

The first term here above is clearly op(¢2*~2~¢) while the second is op(;; ¢), hence the sum is o]p(C,(L_é)A(Qa_2_€)).

The lemma is therefore proved. O

A.4 Proof of Lemma 9
Proof. We observe that, Vo € [0, 2], we have

E[IAX! ~AXYP) = / oK) e, a2) / [ X)Xl s, a2)] <

it+1 i
<ec / E[|Xs — X4, | ]ds/ |2|2F(2)dz < c/ Ay ds < CA%,” (222)
t ti

i
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where we have used Ito isometry, the regularity of v and the first point of Lemma 1.
We have in this way proved (162) and showed that (163) holds with ¢ = 2. For ¢ > 2, using Kunita
inequality and acting like we did here above we get

E[|AX{ —AX |2 <]E/tm/ (X2 |9 Fi(ds, d2)]+E /tm/ X222 E(ds, dz)) 3] <

n’L7

tit1 tit1 q q_ tit1
<c / E[|X,— X, |]ds+E[( / Xo— X, [2ds) %] < eA? i+ cB[AL / XX, [tds] = eA2 oAl < A2
t t t

where we have also used Jensen inequality.
In order to prove (163) we observe that, if @ < 1, then we have

BlaX/ A%/ <ull [ [ h (s L[ ) (6 )l

(223)
The first term in the right hand side of (223) is upper bounded by

tiy1 tit1
Il Ef / / Xoe — Xy, |2 F(2)dzds] < / / E[|X._ — X;,[2) ds|2| F()dz <
t; \z|22Afm t; |z|22A§J

tit1

<c AZ (/ |2|F(2)dz)ds < cAZ
|z|>2A7

TLZ ’ﬂl’
t;

(224)

where we have used the compensation formula, the regularity of v, Cauchy-Schwartz inequality in order
to use the first point of Lemma 1 and the boundedness of the integral for |z| > QAEM.. Moreover, acting
in the same way, the second term in the right hand side of (223) is upper bounded by

fen 1 34B(1-a)
Il E] / / Xoe — X, |2 F(2)dzds] < / A / |2 ~@dz)ds < cAZ ),
t; |z]<2A2 . t; T |z>208 ’

(225)
using again compensation formula, the regularity of v and Cauchy-Schwartz inequality in order to use
the first point of Lemma 1. We have also used the third point of Assumption 4 and computed the integral
on z. Using (223) - (225) we get

E[JAX] — AX|] < cAZ 0 _ op

’ﬂZ’

(226)

since a < 1 and so (1 — «) > 0. We now use interpolation theorem (see below theorem 1.7 in Chapter 4
of [7]) getting
E[IAXf’ - AX-J 17 <EJAXY - AX/E|AXY - AXY PR,

with 1 =0+ 352 hence § = 2 — 1. Using (222) and (226) it follows
E[JAX] — AX/|9]7 < cAZOALY = eAZ’ = cAl

where we have also replaced 6. O

A.5 Proof of Lemma 10

Proof. We want to use a conditional version of the interpolation theorem, therefore we have to estimate
the norm 2 of I} (7), I3 () and I} (¢). Observing that ¢ is a bounded function and using Kunita inequality
we get

EABOF < BIAX/ < &[T [ ot e E I [ R a)) <

o [ 1P| a4 el PG s <

< R(Ani, Xi,) + R(AL ;, X,) = R(An i, X1,), (227)

where in the last inequality we have also used the polynomial growth of v and the third point of Lemma
1.
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Concerning the norm 2 of I%'(7), we use the conditional version of the first point of Lemma 9 for ¢ = 2 to
get B

E[|I5 ()] < E(IAX] — AXT['] < R(AT 5, Xe,)- (228)
We now consider I} (7). Using Cauchy-Schwartz inequality and a conditional version of both the first
point of Lemma 9 for ¢ = 2 and (32) in Lemma 4, where ¢ acts like the indicator function, we have

\ - - ~ 3484
(| I7()2)? < B(JAX] — AXYPRAX 0,0 (AX)AE < R(AZTZ4 X)), (229)
Using interpolation theorem it follows, Vj € {2,3,4},
n(; €1 —— n . ny- 1 _
Bl ()] < B[l 1)) (Bl 12 (3)[2)%)1 2, (230)

with @ such that 1; =0+ 1%9, hence 6 = 136 —-1=1- 12;.

From a conditional version of (159), (164), (169) and equations (227) and (230) it follows

1

3 _ap 1
123 (5) )™ < QAT X, )PR(AZ , X,,)' 0 =

n,i’

(B+6-P)0-Fo)+ 5 §+6—F - 15 (2+26-0p)

= R(A, ,Xe,) = R(A s Xt,)- (231)

Since 2 + 28 — o8 is always more than zero we can just see the exponent on A,, ; as % + 38— % — €.
From a conditional version of (171), (228) and (230) it follows

1

Eil| I3 ()] < R(A]

n,i’

_ 2
Xe)'R(Ani, Xi,)' =0 = R(AMY X)) = RIAZ™ X)), (232)

n,g n,s

In the same way, using a conditional version of (173), (229) and (230) it follows

3 _aB _ _2e 2¢ (3 _aB 3 _aB y 2Be
Ei[‘lf(i)|l+€] 1_}_6 < R(Aflgl‘f‘ﬁ ) (I- )t (5 28— 5 )7Xti) _ R(AZ-:B 2 +1+€’Xti). (233)

s

The result (184) is a consequence of (231), (232), (233) and that 2 is always more than 2 + 3 — %B O
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