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HIGH TEMPERATURE CONVERGENCE OF THE KMS BOUNDARY

CONDITIONS: THE BOSE-HUBBARD MODEL ON A FINITE GRAPH

Z. AMMARI AND A. RATSIMANETRIMANANA

Abstract. The Kubo-Martin-Schwinger condition is a widely studied fundamental property in
quantum statistical mechanics which characterises the thermal equilibrium states of quantum
systems. In the seventies, G. Gallavotti and E. Verboven, proposed an analogue to the KMS
condition for classical mechanical systems and highlighted its relationship with the Kirkwood-
Salzburg equations and with the Gibbs equilibrium measures. In the present article, we prove
that in a certain limiting regime of high temperature the classical KMS condition can be derived
from the quantum condition in the simple case of the Bose-Hubbard dynamical system on a finite
graph. The main ingredients of the proof are Golden-Thompson inequality, Bogoliubov inequality
and semiclassical analysis.
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1. Introduction

A W ∗− dynamical system (A , τt) is a pair of a von Neumann algebra of observables A and
a one-parameter group of automorphisms τt on A . Consider for instance a finite dimensional
Hilbert space H then A can be chosen to be the set of all operators B(H) and τt to be the
automorphism group defined by

τt(A) = eitHAe−itH

for any A ∈ A . The operator H denotes the Hamiltonian of a given quantum system and the
couple (A , τt) describes the dynamics. According to quantum statistical physics such system
admits a unique thermal equilibrium state ωβ at inverse temperature β given by,

ωβ(A) =
tr(e−βHA)

tr(e−βH)
. (1.1)

In general, the simplicity of the above statement have to be nuanced. In fact, the characterisation
of thermal equilibrium in statistical mechanics is a nontrivial question particularly for dynamical
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2 Z. AMMARI AND A. RATSIMANETRIMANANA

systems which have an infinite number of degrees of freedom, see [9, 26]. One of the important
and most elegant characterisation of equilibrium states was noticed by R. Kubo, P.C. Martin and
J. Schwinger in the late fifties. It is based in the following observations in finite dimension. In
fact, one remarks by a simple computation that the Gibbs state ωβ in (1.1) satisfies for all t ∈ R
and any A,B ∈ A the identity,

ωβ(A τt+iβ(B)) = ωβ(τt(B)A) , (1.2)

where τt+iβ(·) denotes an analytic extension of the automorphism τt to complex times given by

τt+iβ(B) = e(−β+it)HB e(β−it)H .

More remarkable, if one takes a state ω that satisfies the same condition as (1.2) then ω should
be the Gibbs state ωβ in (1.1). This indicates that the equation (1.2) singles out the thermal
equilibrium states among all possible states of a quantum system. In the late sixties, R. Haag,
N.M. Hugenholtz and M. Winnink suggested the identity (1.2) as a criterion for equilibrium
states and they named it the KMS boundary condition after Kubo, Martin and Schwinger [19].
The subject of KMS states is bynow deeply studied specially from an algebraic standpoint. For
instance, various characterisation related to correlation inequalities and to variational principles
have been derived (see e.g. [6, 9, 13]). Other perspectives have also been explored related for
instance to the Tomita-Takasaki theory and to the Heck algebra and number theory (see e.g.
[5, 7, 11]).

In the seventies, G. Gallavotti and E. Verboven, suggested an analogue to the KMS boundary
condition (1.2) which is suitable for classical mechanical systems and highlighted its relationship
with the Kirkwood-Salzburg equations and with the Gibbs equilibrium measures, see [18]. The
derivation of such condition is based in the following heuristic argument. Consider a state ω~
satisfying the KMS boundary condition

ω~
(
BA
)

= ω~
(
Aτi~β(B)

)
(1.3)

at inverse temperature ~β, where ~ refers to the reduced Planck constant. This relation yields

ω~

(
AB −BA

i~

)
= ω~

(
A
τi~β(B)−B

i~

)
. (1.4)

Assume for the moment that the space H = L2(Rd), so one can consider that the Hamiltonian
H and the observables A,B are given by ~-Weyl-quantized symbols (i.e., H = hW,~, A = aW,~

and B = bW,~ for some smooth functions a and b defined over the phase-space R2d). Then the
semiclassical theory firstly tell us that

AB −BA
i~

−→
~→0
{a, b} , and

τi~β(B)−B
i~

−→
~→0

β {h, b} , (1.5)

where {·, ·} is the Poisson bracket and h denotes the Hamiltonian of the corresponding classical
system. Secondly, the quantum states ω~ (or at least a subsequence) converge in a weak sense to a
semiclassical probability measure µ over R2d when ~→ 0. Therefore, the expected classical KMS
condition that should in principle characterise the statistical equilibrium for classical mechanical
systems is formally given by

µ
(
{a, b}

)
= β µ

(
a {h, b}

)
, (1.6)

for any smooth functions a, b on the phase-space R2d. Here the notation µ(f) =
∫
R2d f(u) dµ(u)

is used. After the works [1, 18], M. Aizenman et al. showed in [2] that the condition (1.6) singles
out thermal equilibrium states for infinite classical mechanical systems among all probability
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measures. In particular, the only measure µ satisfying (1.6) in our example is the Gibbs measure
defined with respect to the Lebesgue measure by the density,

µβ =
1

z(β)
e−βh(u) , (1.7)

where z(β) is a normalisation constant. Note that the above Gibbs measure µβ can also be
characterised as an equilibrium state by means of variational methods and maximum entropy
properties or by correlation inequalities, see [9]. Nevertheless, in this note we focus only in the
KMS boundary conditions for classical and quantum systems. In general, the derivation of the
classical KMS boundary condition (1.6) from the quantum one is a non trivial and interesting
question which depends on the considered dynamical system. In our opinion, the classical KMS
condition is an elegant characterisation of statistical equilibrium which deserves more attention
from PDE analysts. Although this condition has been studied in some subsequent works (see e.g.
[10, 14, 17, 23, 24, 25]), it seems not largely known.

Our main purpose in this note, is to provide a rigorous and simple proof for the derivation of
the classical KMS condition (1.6) as a consequence of the relation (1.2) and the classical limit,
~ → 0, for the Bose-Hubbard dynamical system on a finite graph. The system we consider is
governed by a typical many-body quantum Hamiltonian which can be written in terms of creations
annihilations operators and which is restricted to a finite volume. Our proof of convergence
is based on the Golden-Thompson inequality, the Bogoliubov inequality and the semiclassical
analysis in the Fock space. Since the classical phase-space of the system considered here is finite
dimensional it is possible by change of representation to convert the problem to a semiclassical
analysis in a L2 space. However, we avoid such a change as we lose most of the interesting
insights and structures in our problem. In particular, we will rely on the analysis on the phase-
space given in [3]. Our interest in the Bose-Hubbard system is motivated by the establishment of
a strong link between classical and quantum KMS conditions so that it leads to the exchange of
the thermodynamic and the classical limits for infinite dynamical systems and to the investigation
of phase transitions. Also note that from a physical standpoint, the Bose-Hubbard model is a
quite relevant model describing ultracold atoms in optical lattices with an observed phenomenon
of superfluid-insulator transition. From a wider perspective, the question considered here is also
related to the recent trend initiated by M. Lewin, P.T. Nam and N. Rougerie [21, 22] about the
Gibbs measures for the nonlinear Schrödinger equations (see also [16] where these investigations
were continued). In this respect, the KMS boundary conditions could provide an alternative
proof for the convergence of Gibbs states. These questions will be considered elsewhere and here
we will only focus on the Bose-Hubbard model on finite graph which is a much simpler model.

The article is organised as follows:

• In Section 2, the Bose-Hubbard Hamiltonian on a finite graph is introduced and its
relationship with the discrete Laplacian is highlighted.
• Section 3, is dedicated to the description of the unique KMS state of the Bose-Hubbard

dynamical system at inverse temperature ~β and to the extension of the dynamics to
complex times.
• Section 4, contains our main contribution stated in Theorem 4.2. Indeed, we prove that the

KMS states of the Bose-Hubbard system converge, up to subsequences, to semiclassical
(Wigner) measures satisfying the classical KMS condition. The analysis is based on
semiclassical methods in the Fock space developed in [3].
• Finally, in Section 5, we remark that any probability measure satisfying the classical KMS

condition is indeed the Gibbs equilibrium measure for the Discret nonlinear Schrödinger
equation. The proof of this fact is borrowed from the work [2].
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2. Quantum Hamiltonian on a finite graph

The discrete Laplacian: Consider a finite graph G = (V,E) where V is the set of vertices and
E is the set of edges. Assume furthermore that G is a simple undirected graph and let deg(x)
denotes the degree of each vertices x ∈ V . In the following, we denote the graph equivalently
G or V . Consider the Hilbert space of all complex-valued functions on V denoted as `2 (G) and
endowed with its natural scalar product and with the orthonormal basis (ex)x∈V such that

ex(y) := δx,y, ∀x, y ∈ V.

Then the discrete Laplacian on the graph G is a non-positive bounded operator on `2 (G) given
by,

(∆Gψ) (x) := −deg(x)ψ(x) +
∑

y∈V,y∼x
ψ(y),

with the above sum running over the nearest neighbours of x and ψ is any function in `2(G).

The Bose-Hubbard Hamiltonian: Consider the bosonic Fock space,

F = C⊕
∞⊕
n=1

⊗ns `2 (G) ,

where ⊗ns `2 (G) denotes the symmetric n-fold tensor product of `2 (G). So, any ψ ∈ ⊗ns `2 (G) is
a functions ψ : V n → C invariant under any permutation of its variables. Introduce the usual
creation and annihilation operators acting on the bosonic Fock space,

ax = a(ex) and a∗x = a∗(ex) ,

then the following canonical commutation relations are satisfied,[
ax, a

∗
y

]
= δx,y 1F and

[
a∗x, a

∗
y

]
= [ax, ay] = 0, ∀x, y ∈ V .

Definition 2.1 (Bose-Hubbard Hamiltonian). For ε ∈ (0, ε̄), λ > 0 and κ < 0, define the
ε-dependent Bose-Hubbard Hamiltonian on the bosonic Fock space F by

Hε :=
ε

2

∑
x,y∈V :y∼x

(a∗x − a∗y)(ax − ay) +
ε2λ

2

∑
x∈V

a∗xa
∗
xaxax − εκ

∑
x∈V

a∗xax.

Here λ is the on-site interaction, κ is the chemical potential and ε is the semiclassical parameter.

Remark 2.2. The first term of the Hamiltonian Hε is the kinetic part of the system and corre-
sponds to the second quantization of the discrete Laplacian. Indeed, one can write

1

2

∑
x,y∈V :y∼x

(a∗x − a∗y)(ax − ay) =
∑
x∈V

deg(x) a∗xax −
∑

x,y∈V,y∼x
a∗xay = dΓ(−∆G) ,

where dΓ(·) is the second quantization operator defined on the bosonic Fock space by

dΓ(A)|⊗n
s `

2(G) =

n∑
j=1

1⊗ · · · ⊗A(j) ⊗ · · · ⊗ 1 , (2.1)

for any given operator A ∈ B(`2(G)) and where A(j) means that A acts only in the j-th compo-
nent.

The following rescaled number operator will be often used,

Nε := εdΓ(1`2(G)) = ε
∑
x∈V

a∗xax . (2.2)
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Therefore, one can rewrite the Bose-Hubbard Hamiltonian as follows

Hε = εdΓ
(
−∆G − κ1`2(G)

)
+ ε2 λ

2
IG ,

with the interaction denoted as
IG :=

∑
x∈V

a∗xa
∗
xaxax .

Since the discrete Laplacian ∆G is self-adjoint, it is easy to check that Hε defines an (unbounded)
self-adjoint operator on the Fock space F over its natural domain (for more details see e.g. [4,
Appendix A]). Remark that the operator −∆G − κ1`2(G) is positive since the chemical potential
κ is negative.

3. Quantum KMS condition

The Bose-Hubbard Hamiltonian defines a W ∗ -dynamical system (M, αt) where M is the von
Neumann algebra of all bounded operators B(F) on the Fock space and αt is the one parameter
group of automorphisms defined by

αt(A) = ei
t
ε
Hε Ae−i

t
ε
Hε ,

for any A ∈ M. The above group of automorphisms αt admits a generator S : M → M with a
domain

D(S) = {A ∈M, [Hε, A] ∈M} ,
and satisfies for any A ∈ D(S),

S(A) = lim
t→0

αt(A)−A
t

=
i

ε
[Hε, A] .

The latter convergence is with respect to the σ-weak topology on M. Remark also that the
dynamics αt depend on the semiclassical parameter ε.

Next, we point out that the dynamical system (M, αt) admits a unique KMS state at inverse
temperature εβ. Here β > 0 is a fixed, ε-independent, effective inverse temperature.

Lemma 3.1 (Partition function).
Since the chemical potential κ is negative then

trF

(
e−βHε

)
<∞.

Proof. It is a consequence of [9, Proposition 5.2.27] and the Golden-Thompson inequality. The
latter, see [15], says that for any Hermitian matrices A and B one has,

tr
(
eA+B

)
≤ tr

(
eA eB

)
. (3.1)

�

Definition 3.2 (Gibbs state).
The Gibbs equilibrium state of the Bose-Hubbard system on a finite graph is well defined, ac-
cording to Lemma 3.2, and it is given by

ωε(A) =
trF(e−βHεA)

trF(e−βHε)
. (3.2)

For the sake of completeness, we recall some useful details concerning the KMS states. One
says that A ∈ M is an entire analytic element of αt if there exists a function f : C → M such
that f(t) = αt(A) for all t ∈ R and such that for any trace-class operator ρ ∈ M the function
z ∈ C→ tr(ρf(z)) is analytic. Let Mα denotes the set of entire analytic elements for α, then it is
known that Mα is dense in M with respect to the σ-weak topology. For more details on analytic
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elements, see [8, section 2.5.3]. In particular, by [8, Definition 2.5.20], an element A ∈M is entire
analytic if and only if A ∈ D(Sn) for all n ∈ N and for any t > 0 the series below are absolutely
convergent,

∞∑
n=0

tn

n!
‖Sn(A)‖ <∞ . (3.3)

Remark that on the set of entire analytic elements Mα, the dynamics αt can be extends to complex
times. Indeed, αz(A) is well defined, for any A ∈ Mα, by the following absolutely convergent
series,

αz(A) =
∞∑
n=0

zn

n!
Sn(A) , ∀z ∈ C .

We say that a state ω is a (αt, εβ)-KMS state if and only if ω is normal and for any A,B ∈Mα,

ω(A αiεβ(B)) = ω(BA) . (3.4)

Remark that the above identity is known to be equivalent to the condition stated in the intro-
duction (1.2). In particular, the KMS states are stationary states with respect to the dynamics.

Proposition 3.3. The Gibbs state ωε defined by (3.2) is the unique KMS state of the W ∗ -
dynamical system (M, αt) at the inverse temperature εβ.

Proof. For A,B ∈Mα, one checks

αiεβ(B) = e−βHεBeβHε .

The formula (3.2) for the Gibbs state, gives

ωε(A αiεβ(B)) =
1

trF(e−βHε)
trF

(
Ae−βHεB

)
= ωε(BA) .

Reciprocally, let ω be a (αt, εβ)-KMS state. In particular, there exists a density matrix ρ such
that trF(ρ) = 1 and

ω(A) = trF(ρA), ∀A ∈M .

Using the KMS condition (3.4) and the cyclicity of the trace, one proves for any A ∈M,

tr(ρB A) = tr(e−βHε B eβHερA).

In particular, for any B ∈Mα,

ρB = e−βHεB eβHερ . (3.5)

Hence, one remarks that ρ commutes with any spectral projection of Hε by taking for instance
B = 1D(Hε) in the equation (3.5). Therefore, one concludes that

eβHε ρB
|1D(Hε)F

= B eβHερ
|1D(Hε)F

,

for any bounded Borel subset D of R and any bounded operator B satisfying B = 1D(Hε)B =
B1D(Hε). So, the operator eβHε ρ commutes with any bounded operator over the subspaces
1D(Hε)F. This implies that

ρ = c e−βHε ,

and then one concludes with the fact that tr(ρ) = 1. �
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4. Convergence

In this section, we prove that the KMS condition (3.4) converges, in the classical limit, towards
the classical KMS condition. It is enough to prove such convergence for some specific observables
A,B ∈M. In fact, consider for f, g ∈ `2(G),

A = W (f) , and B = W (g) , (4.1)

where W (·) denotes the Weyl operator defined by,

W (f) = ei
√
ε Φ(f) , with Φ(f) =

a∗(f) + a(f)√
2

. (4.2)

Let χ ∈ C∞0 (R) such that 0 ≤ χ ≤ 1, χ ≡ 1 if |x| ≤ 1/2 and χ ≡ 0 if |x| ≥ 1. Define, for n ∈ N,
the cut-off functions χn as

χn(·) = χ
( ·
n

)
.

Then, we are going to consider only the following smoothed observables,

An := χn(Nε)Aχn(Nε) , and Bn := χn(Nε)B χn(Nε) . (4.3)

Lemma 4.1. For all ε > 0 and n ∈ N, the elements An and Bn given by (4.3) are entire analytic
for the dynamics αt.

Proof. By functional calculus, remark that 1[0,n](Nε)χn(Nε) = χn(Nε). Moreover, the number
operator Nε and the Hamiltonian Hε commute in the strong sense. So, the generator S of the
dynamics αt satisfies for k ∈ N,

Sk(An) =

(
i

ε

)k
[Hε, · · · [Hε, An] · · · ] ,

=

(
i

ε

)k
[H̃ε, · · · [H̃ε, An] · · · ] ,

with H̃ε = 1[0,n](Nε)Hε a bounded operator. Hence, the estimate (3.3) is satisfied and so An is a
entire analytic element. �

Recall that the (αt, εβ)-KMS state ωε satisfies in particular the condition,

ωε (An αiεβ(Bm)) = ωε (BmAn) .

A simple computation then leads to the main identity,

ωε

(
An

αiεβ(Bm)−Bm
iε

)
= ωε

(
[Bm, An]

iε

)
. (4.4)

Our aim is to take the classical limit ε→ 0 in the above relation and to prove the convergence for
the left and right hand sides so that we obtain the classical KMS boundary conditions. In order
to take such limit, one needs to use the semiclasscial (Wigner) measures of {ωε}ε∈(0,ε̄). Recall

that µ a Borel probability measure on the phase-space `2(G) is a Wigner measure of {ωε}ε∈(0,ε̄)

if there exists a subsequence (εk)k∈N such that limk→∞ εk = 0 and for any f ∈ `2(G),

lim
k→∞

ωεk (W (f)) =

∫
`2(G)

ei
√

2<e〈f,u〉 dµ . (4.5)

Note that the Weyl operator depends here on the parameter εk instead of ε as in (4.2). According
to [3, Thm. 6.2] and Lemma A.3, the family of KMS states {ωε}ε∈(0,ε̄) admits a non-void set of
Wigner probability measures. Later on, we will prove that this set of measures reduces to a
singleton given by the Gibbs equilibrium measure. But for the moment, we will use subsequences
as in the definition (4.5).
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The classical Hamiltonian system related to the Bose-Hubbard model is given by the Discrete
Nonlinear Schrödinger equation, see [20]. Its energy functional (or Hamiltonian ) is given by

h(u) = −〈u,∆G u〉 − κ‖u‖2 +
λ

2

∑
j∈V
|u(j)|4 . (4.6)

Note that `2(G) is a complex Hilbert space and so in our framework the Poisson structure is
defined as follows. For F,G smooth functions on `2(G), the Poisson bracket is given by

{F,G} :=
1

i
(∂uF · ∂ūG− ∂uG · ∂ūF ) . (4.7)

Here ∂u and ∂ū are the standard differentiation with respect to u or ū.

Our main result is stated below.

Theorem 4.2 (Classical KMS condition). Let ωε by the KMS state of the Bose-Hubbard W ∗-
dynamical system (A , αt) at inverse temperature ε β. Then any semiclassical (Wigner) measure
of ωε satisfies the classical KMS condition, i.e., for any F,G smooth functions on `2(G),

β µ({h,G} F ) = µ({F,G}) , (4.8)

where the classical Hamiltonian h is given by (4.6) and {·, ·} denotes the Poisson bracket recalled
in (4.7).

In order to prove Theorem 4.2, one needs some preliminary steps.

Proposition 4.3. Let (εk)k∈N be a subsequence such that limk→∞ εk = 0. Assume that the family
of KMS states {ωεk}k∈N admits a unique Wigner measure µ. Then for all n,m integers such that
m ≥ 2n,

lim
k→∞

ωεk

(
[Bm, An]

iεk

)
=

∫
`2(G)

χ2
n(〈u, u〉) {e

√
2i<e〈g,u〉; e

√
2i<e〈f,u〉} dµ (4.9)

+

∫
`2(G)

χn(〈u, u〉) {e
√

2i<e〈g,u〉;χn(〈u, u〉)} e
√

2i<e〈f,u〉 dµ (4.10)

+

∫
`2(G)

χn(〈u, u〉) {χn(〈u, u〉); e
√

2i<e〈f,u〉} e
√

2i<e〈g,u〉 dµ . (4.11)

Proof. For simplicity, we denote ε instead of εk and χm instead of χm(Nε). Using the cyclicity
of the trace and the fact that χnχm = χn, one remarks that

ωε ([Bm, An]) = ωε (χn (BχnA−AχnB)) .

A simple computation yields,

lim
ε→0

ωε

(
[Bm, An]

iε

)
= lim

ε→0
ωε

(
χ2
n

[B,A]

iε

)
+ lim
ε→0

ωε

(
χn

[B,χn]

iε
A

)
+ lim
ε→0

ωε

(
χn

[χn, A]

iε
B

)
.

(4.12)

The Weyl commutation relations give,

[B,A]

iε
= W (f + g) (=m〈f, g〉+O(ε)) .
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So, using Lemma B.1,

lim
ε→0

ωε

(
χ2
n

[B,A]

iε

)
= =m〈f, g〉 lim

ε→0
ωε
(
χ2
nW (f + g)

)
= =m〈f, g〉

∫
`2(G)

χ2
n(〈u, u〉) e

√
2i<e〈f+g,u〉 dµ .

Checking the Poisson bracket,

{e
√

2i<e〈g,u〉; e
√

2i<e〈f,u〉} = =m〈f, g〉 e
√

2i<e〈f+g,u〉 ,

one obtains the right hand side of (4.9). Consider now the second term in (4.12). One can write

[W (g), χn] =

∫
R
χ̂n(s) [W (g), eisNε ]

ds√
2π

,

where χ̂n denotes the Fourier transform of the function χn(·). Using standard computations in
the Fock space and Taylor expansion,

[W (g), eisNε ] = eisNε
(
e−isNεW (g)eisNε −W (g)

)
= ieisNε

∫ s

0
e−irNε [W (g), Nε] e

irNε dr

= −eisNε

∫ s

0
e−irNεW (g)

(
εΦ(ig) +

ε2

2
‖g‖2

)
eirNε dr .

Hence, using the cyclicity of the trace

lim
ε→0

ωε

(
χn

[B,χn]

iε
A

)
= −

∫
R
sχ̂n(s) lim

ε→0
ωε
(
χn e

isNεW (g)Φ(ig)W (f)
) ds√

2π
. (4.13)

Knowing, by Lemma B.1, that the Wigner measure of the sequence {W (f)ρεχn(Nε)e
isNεW (g)}

is given by {
µχn(〈u, u〉)eis‖u‖2e

√
2i<e〈g+f,u〉} ,

then one obtains using [3, Thm. 6.13],

lim
ε→0

ωε

(
χn

[B,χn]

iε
A

)
= −
√

2

∫
R
sχ̂n(s)

∫
`2(G)

χn(〈u, u〉) eis‖u‖2<e〈u, ig〉e
√

2i<e〈g+f,u〉dµ
ds√
2π

.

Integrating back with respect to the variable s,

lim
ε→0

ωε

(
χn

[B,χn]

iε
A

)
=
√

2i

∫
`2(G)

χ′n(‖u‖2)χn(‖u‖2)=m〈g, u〉e
√

2i<e〈g+f,u〉 dµ .

Then checking the Poisson bracket{
e
√

2i<e〈g,u〉;χn(〈u, u〉)
}

=
√

2iχ′n(‖u‖2) =m〈g, u〉e
√

2i<e〈g,u〉 ,

yields the right hand side of (4.10). The third term in the right side of (4.12) is similar to the
above one. �

The next step is to prove the convergence of the left hand side of (4.4).

Lemma 4.4.

lim
k→∞

ωεk

(
An

αiεkβ(Bm)−Bm
iεk

)
= β lim

k→∞
ωεk

(
An

[Bm, Hεk ]

iεk

)
. (4.14)
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Proof. For simplicity, we use ε instead of εk. According to Lemma 4.1, Bm is a entire analytic
element for the dynamics αt. Hence, by Taylor expansion,

ωε

(
An

αiεβ(Bm)−Bm
iε

)
= β

∫ 1

0
ωε

(
An

[αisεβ(Bm), Hε]

iε

)
ds .

Using the cyclicity of the trace and the fact that An, Bm are entire analytic elements,

ωε

(
An

[αisεβ(Bm), Hε]

iε

)
= ωε

(
esβHε An e

−sβHε
[Bm, Hε]

iε

)
.

A second Taylor expansion yields,

ωε

(
An

[αisεβ(Bm), Hε]

iε

)
= ωε

(
An

[Bm, Hε]

iε

)
+β

∫ s

0
ωε

(
erβHε [Hε, An] e−rβHε

[Bm, Hε]

iε

)
dr .

So, the equality (4.14) is proved since

lim
ε→0

∫ 1

0
ds

∫ s

0
dr ωε

(
[Hε, α−isεβ(An)]

[Bm, Hε]

iε

)
= 0 ,

thanks to the Lemma B.2 in the Appendix. �

Proposition 4.5. Let (εk)k∈N be a subsequence such that limk→∞ εk = 0. Assume that the family
of KMS states {ωεk}k∈N admits a unique Wigner measure µ. Then for all n,m integers such that
m ≥ 2n,

lim
k→∞

ωεk

(
An

αiεβ(Bm)−Bm
iε

)
= β

∫
`2(G)

χ2
n(〈u, u〉) {e

√
2i<e〈g,u〉;h(u)} e

√
2i<e〈f,u〉 dµ . (4.15)

Proof. The previous Lemma 4.4 allowed to get rid of the dynamics at complex times. So, it is
enough to show the limit,

lim
k→∞

ωεk

(
An

[Bm, Hεk ]

iεk

)
=

∫
`2(G)

χ2
n(〈u, u〉) {e

√
2i<e〈g,u〉;h(u)} e

√
2i<e〈f,u〉 dµ .

For simplicity, we denote ε instead of εk and χm instead of χm(Nε). Sincem ≥ 2n then χnχm = χn
and one notices that

χnAχn [χmBχm, Hε] = χnAχn [B,Hε]χm = χnAχn [W (g), Hε]χm .

Standard computations on the Fock space yield, (see e.g. [3, Proposition 2.10]),

i

ε
[B,Hε] =

i

ε
(W (g)HεW (g)∗ −H) W (g)

=
i

ε

(
h(· − iε√

2
g)− h(u)

)Wick

W (g)

=

{√2<e〈g, u〉, h(u)}︸ ︷︷ ︸
CWick

Wick
+R(ε)Wick

 W (g) .

The subscript Wick refers to the Wick quantization, see [3, section 2]. The remainder R(ε)Wick

can be explicitly computed and satisfies the uniform estimate

‖χn(Nε) R(ε)Wick‖ ≤ c ε ,
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which can be easily proved using [3, Lemma 2.5]. Therefore, by using Lemma B.2 one shows

lim
k→∞

ωεk

(
An

αiεβ(Bm)−Bm
iε

)
= β lim

k→∞
ωεk

(
χnAχnC

WickB
)

= β lim
k→∞

ωεk

(
χ2
nAC

WickB
)
.

Knowing, by Lemma B.1, that the Wigner measure of the sequence {W (g)ρεχ
2
n(Nε)W (f)} is

given by {
µe
√

2i<e〈f+g,u〉χ2
n(‖u‖2)

}
,

one concludes by [3, Thm. 6.13],

lim
ε→0

ωε

(
An

αiεβ(Bm)−Bm
iε

)
=

∫
`2(G)

χ2
n(‖u‖2) e

√
2i<e〈f+g,u〉C(u) dµ .

�

Corollary 4.6. Any Wigner measure of the (αt, εβ)-KMS family of states ωε satisfies for all
f, g ∈ `2(G),

β

∫
`2(G)
{ei<e〈g,u〉;h(u)} ei<e〈f,u〉 dµ =

∫
`2(G)

{ei<e〈g,u〉; ei<e〈f,u〉} dµ . (4.16)

Proof. It is a consequence of Proposition 4.3, Proposition 4.5 and dominated convergence while
taking n,m→∞. �

Thus, we come to the following conclusion.

Proof of Theorem 4.2. The phase-space `2(G) is a d-euclidean space. Let F,G be two smooth
functions in C∞0 (`2(G)). The inverse Fourier transform gives,

F (u) =

∫
`2(G)

ei<e〈f,u〉 F̂ (f)
dL(f)

(2π)d/2
, and G(u) =

∫
`2(G)

ei<e〈g,u〉 Ĝ(g)
dL(g)

(2π)d/2
,

where F̂ , Ĝ denote the Fourier transforms of F and G respectively. Multiplying the equation
(4.16) by F̂ (f)Ĝ(g) and integrating with respect to the Lebesgue measure in the variables f and
g, one obtains

β

∫
`2(G)
{G(u), h(u)}F (u) dµ =

∫
`2(G)

{G(u), F (u)} dµ .

This proves the classical KMS condition (4.8). �

5. Classical KMS condition

In this section, we point out that the only probability measure satisfying the classical KMS
condition is the Gibbs equilibrium measure. This is a known fact and we provide here a short
proof only for reader’s convenience. The argument used below is borrowed from the work of
M. Aizenman, S. Goldstein, C. Grubber, J. Lebowitz and P.A. Martin [2].

Proposition 5.1 (Gibbs measure). Suppose that µ is a Borel probability measure on `2(G) sat-
isfying the classical KMS condition (4.8). Then µ is the Gibbs equilibrium measure, i.e.,

dµ

dL
=
e−β h(u)

z(β)
, and z(β) =

∫
`2(G)

e−β h(u) dL(u) ,

with h(·) is the classical Hamiltonian of the Discrete Nonlinear Schrödinger equation given by
(4.6) and dL is the Lebesgue measure on `2(G).
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Proof. Consider the Borel probability measure ν = eβh(u)µ, so that for any Borel set B,

ν(B) =

∫
B
eβh(u)dµ .

Note that, for any F,G ∈ C∞0 (`2(G)), the Poisson bracket satisfies{
Fe−βh(u), G

}
=
{
F,G

}
e−βh(u) − β

{
h,G

}
F (u)e−βh(u) .

Hence, the classical KMS condition (4.8) can be written as

µ
(
eβh(u)

{
Fe−βh(u), G

})
= 0 ,

or equivalently for any F,G ∈ C∞0 (`2(G)),

ν
({
Fe−βh(u), G

})
= 0 .

Remark that the classical Hamiltonian h is a smooth C∞(`2(G)) function. Hence, the measure
ν satisfies for any F,G ∈ C∞0 (`2(G)),

ν
({
F,G

})
= 0 .

This condition implies that ν is a multiple of the Lebesgue measure. Indeed, take g(·) = 〈ej , ·〉 ϕ(·)
with ϕ ∈ C∞0 (`2(G)) being equal to 1 on the support of f . Then the Poisson bracket gives,

{f, g} = −i∂jf .

So, in a distributional sense the derivatives of the measure ν are null and therefore dν = c dL for
some constant c. Using the normalisation requirement for µ, one concludes that dν = 1

z(β) dL. �

Appendix A. Number estimates

Consider the quasi free state ω0
ε(·) given by,

ω0
ε(·) =

tr
(
· eβεdΓ(∆G+κ1)

)
tr
(
eβεdΓ(∆G+κ1)

) .

The following uniform number of particles estimates are well know. Here we recall them for
reader’s convenience. For more details on quasi free states and such inequalities, see e.g. [9, 16, 21].
Remember that the rescaled number operator is given by,

Nε := εdΓ
(
1`2(G)

)
= ε

∑
x∈V

a∗xax.

Lemma A.1. For any k ∈ N, there exists a positive constant ck such that

ω0
ε(N

k
ε ) ≤ ck ,

uniformly with respect to ε ∈ (0, ε̄).

Lemma A.2. There exists a positive constant c such that

tr(eβεdΓ(∆G+κ1))

tr(e−βHε)
≤ c ,

uniformly with respect to ε ∈ (0, ε̄).
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Proof. By using a Bogoliubov type inequality, see [27, Appendix D], one has that

ln(tr(eβεdΓ(∆G+κ1)))− ln(tr(e−βHε)) ≤ β
tr
(
ε2 λ

2 IG e
βεdΓ(∆G+κ1)

)
tr
(
eβεdΓ(∆G+κ1)

) .

According to Definition 2.1, recall that

IG =
∑
x∈V

a∗xa
∗
xaxax .

Therefore, there exists c > 0 such that

ln(tr(eβεdΓ(∆G+κ1)))− ln(tr(e−βH
ε
)) ≤ c

(
ω0
ε(N

2
ε ) + ω0

ε(Nε)
)
.

Using Lemma A.1, one proves the inequality. �

Lemma A.3. For any k ∈ N, there exists a positive constant ck such that

ωε(N
k
ε ) ≤ ck ,

uniformly with respect to ε ∈ (0, ε̄).

Proof. A direct consequence of Lemma A.1, Lemma A.2 and the Golden-Thompson inequality.
�

Appendix B. Technical estimates

We refer the reader to [3] for more details in the semiclassical analysis on the Fock space. Here,
we only sketch some useful technical results based in the above work. Remember that the KMS
states ωε, given by (3.2), are normal and so we denote,

ωε(·) = trF (ρε ·) .
Furthermore, assume for a subsequence (εk)k∈N, such that limk→∞ εk = 0, that the set {ρεk}k∈N
admits a unique Wigner measure µ. Then the following result holds true.

Lemma B.1. For any χ ∈ C∞0 (R) and f, g ∈ `2(G), the set {W (f)ρεkχ(Nεk)W (g)}k∈N admits
a unique Wigner measure given by {

µ e
√

2i<e〈f+g,u〉χ(‖u‖2)
}
.

Proof. For simplicity, we denote ε instead of εk. It is enough to prove that the set of Wigner
measures for the density matrices {ρεχ(Nε)} is the singleton

{µ χ(‖u‖2)} .
In fact, using the Weyl commutation relations, one checks according to (4.5),

lim
ε→0

trF (W (f)ρεχ(Nε)W (g) W (η)) =

∫
`2(G)

ei
√

2<e〈f+g+η,u〉 dν ,

where ν is a Wigner measure of the set of density matrices {ρεχ(Nε)}. Now, using Pseudo-
differential calculus,

χ(Nε) =
(
χ(‖u‖2)

)Weyl
+O(ε) ,

where the subscript refers to the Weyl ε-quantization and the difference between the right and
left operators is of order ε in norm (see e.g. [12, Thm. 8.7]). Then [3, Thm. 6.13] with Lemma
A.3, gives

ν = µ χ(‖u‖2) .

�

Lemma B.2. For any χ ∈ C∞0 (R) and f ∈ `2(G), there exists c > 0 such that for all ε ∈ (0, ε̄),

‖χ(Nε) [Nε,W (f)] χ(Nε)‖ ≤ c ε , and ‖χ(Nε) [Hε,W (f)] χ(Nε)‖ ≤ c ε .
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Proof. The proof of the two inequalities are similar. We sketch the second one. Using standard
computation in the Fock space (see e.g. [3, Proposition 2.10]),

[Hε,W (f)] = W (f)

(
h(·+ i

ε√
2
f)− h(·)

)Wick

,

where the subscript refers to the Wick quantization, see [3, Section 2], and h is the classical
Hamiltonian in (4.6). By Taylor expansion, one writes

h(u+ i
ε√
2
f)− h(u) = εCε(u) ,

where Cε(u) is a polynomial in u which can be computed explicitly. Using the number estimate
in [3, Lemma 2.5], one proves the inequality. �
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[23] J. V. Pulé. A unified approach to classical and quantum KMS theory. Rep. Math. Phys.,

20(1):75–81, 1984.
[24] M. Pulvirenti. Stability, equilibrium and KMS for an infinite classical system. J. Mathemat-

ical Phys., 18(11):2099–2103, 1977.
[25] M. Pulvirenti and G. Riela. KMS condition for stable states of infinite classical systems. J.

Mathematical Phys., 18(12):2364–2367, 1977.
[26] David Ruelle. Statistical mechanics: Rigorous results. W. A. Benjamin, Inc., New York-

Amsterdam, 1969.
[27] Valentin A. Zagrebnov and Jean-Bernard Bru. The Bogoliubov model of weakly imperfect

Bose gas. Phys. Rep., 350(5-6):291–434, 2001.

Univ Rennes, [UR1], CNRS, IRMAR - UMR 6625, F-35000 Rennes, France.
E-mail address: zied.ammari@univ-rennes1.fr

BCAM - Basque Center for Applied Mathematics. Alameda de Mazarredo 14, E-48009 Bilbao,
Spain.

E-mail address: aratsimanetrimanana@bcamath.org


	1. Introduction
	2. Quantum Hamiltonian on a finite graph
	3. Quantum KMS condition
	4. Convergence
	5. Classical KMS condition
	Appendix A. Number estimates
	Appendix B. Technical estimates
	Acknowledgements
	References

