
HAL Id: hal-02104057
https://hal.science/hal-02104057

Submitted on 19 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Lane–Emden equation in strips
Louis Dupaigne, Abdellaziz Harrabi

To cite this version:
Louis Dupaigne, Abdellaziz Harrabi. The Lane–Emden equation in strips. Proceedings of the Royal
Society of Edinburgh: Section A, Mathematics, 2018, 148 (1), pp.51-62. �10.1017/S0308210517000142�.
�hal-02104057�

https://hal.science/hal-02104057
https://hal.archives-ouvertes.fr


THE LANE-EMDEN EQUATION IN STRIPS

LOUIS DUPAIGNE AND ABDELLAZIZ HARRABI

Abstract. We study the Lane-Emden equation in strips.

1. Introduction

In this work, we investigate the celebrated Lane-Emden equation, see (1.1) below.
We restrict to the case where the domain is a strip: given integers n ≥ 2 and k ≥ 1,
we set

Ω = Rn−k × ω, where ω ⊂ Rk is a smoothly bounded domain.

For p > 1, we consider the equation

(1.1)

{
−∆u = |u|p−1u in Ω,

u = 0 on ∂Ω.

The case of homogeneous Neumann boundary condition

(1.2)
∂u

∂n
= 0 on ∂Ω

will also been considered. Strips provide an interesting example of unbounded
domains where, as we shall see, rather sharp classification results can be obtained.
Let us begin by observing that the symmetries of the domain allow solutions of the
form1

(1.3) u(x′, x′′) = u(x′′), for x = (x′, x′′) ∈ Ω

and, more generally,

(1.4) u(x′, x′′) = u(ρ, x′′), for x = (x′, x′′) ∈ Ω, ρ = |x′|.

Solutions of the form (1.3) are simply solutions in the bounded domain ω ⊂ Rk.
As can be read in any introductory book on PDEs, in the simplest situation e.g.
when ω is strictly star-shaped, such solutions with Dirichlet boundary condition
exist if and only if 1 < p < pS(k), where pS(k) is the classical Sobolev exponent in
dimension k. Similarly, if n− k ≥ 2, solutions of the form (1.4) can be constructed
when 1 < p < pS(n), by applying the mountain pass lemma in the space H of
functions u ∈ H1

0 (Ω) having cylindrical symmetry, i.e. such that (1.4) holds a.e.,
see Esteban [5]. The case p ≥ pS(n) seems rather unexplored for strips. To gain
further insight into the problem, we observe that the aforementioned solutions have

The authors are partially supported by the CNRS-DGRST project EDC26348.
1with a standard abuse of notation, we have used the same letter u to denote distinct functions
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2 LOUIS DUPAIGNE AND ABDELLAZIZ HARRABI

very distinct stability properties. Recall that a solution of (1.1) is said to be stable
in an open subset Ω′ ⊂ Ω if

(1.5)
ˆ

Ω′
|∇ϕ|2 dx− p

ˆ
Ω′
|u|p−1ϕ2 dx ≥ 0, for every ϕ ∈ C1

c (Ω′).

We prove

Proposition 1.1. Every solution of the form (1.3) is unstable outside every com-
pact set, while if n−k ≥ 2, the montain-pass solution in the space H of H1 functions
with symmetry (1.4) is stable outside a compact set.

Remark 1.2. The first part of the proposition is essentially due to Farina (see
Example 1 in [6]).

Remark 1.3. For quite general nonlinearities, in the case n − k ≤ 2, Dancer [2]
proved that every bounded stable solution is after rotation in the x′ variable, a
function of x1, x

′′ only, is monotone in the x1 direction, and the limits of u(x1, x
′′)

as x1 → ±∞ are stable solutions of the problem on ω with the same energy.

The above results suggest that in the supercritical case, the class of stable so-
lutions might also be relevant. We obtain the following result, also valid for nodal
solutions.

Theorem 1.4. Assume p > 1. The Dirichlet problem (1.1) has no nontrivial stable
solution u ∈ C2(Ω). More generally, for p ≥ pS(n), there is no nontrivial solution
which is stable outside a compact set.

Remark 1.5. Farina [6, Theorem 7] proved the above result in the special case where
u is stable and 1 < p < pc(n− k), where pc(n− k) is the Joseph-Lundgren stability
exponent in dimension n− k, see e.g. [4] for the definition. He also observed that
the exponent pc(n) is sharp when Ω = Rn. Our result shows that this exponent is
irrelevant when Ω is a strip. This also corroborates a recent result of Chen, Lin and
Zou [1], who proved, in the case of the half-space Ω = Rn+, that given any p > 1,
there is no positive solution to (1.1). Note that in this case, every positive solution
is known to be stable.

Remark 1.6. Recall that for 1 < p < pS(n), there exists a positive solution of the
form (1.4) and so, according to Proposition 1.1, Theorem 1.4 is sharp.

We turn now to the case of homogeneous Neumann boundary conditions. Here,
stability in Ω means that (1.5) holds for every ϕ ∈ H1(Ω).

Theorem 1.7. Assume that 1 < p < pc(n−k). Then, the Neumann problem has no
nontrivial stable solution u ∈ C2(Ω). More generally, if pS(n− k) < p < pc(n− k),
there is no nontrivial solution which is stable outside a compact set. Finally, if
p = pS(n − k), any solution which is stable outside a compact set is a function of
x′ only and it has finite energyˆ

Ω

|∇u|2 =

ˆ
Ω

|u|p+1 <∞

Remark 1.8. We do not know whether the second statement of Theorem 1.7 remains
true in the case 1 < p < pS(n − k). But the theorem is sharp in the case p ≥
pS(n−k). Indeed, there exists a (radial) stable solution of the Lane-Emden equation
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in Rn−k whenever p ≥ pc(n − k) which is also clearly2 a stable solution of the
Neumann problem of the form (1.4). Similarly, when p = pS(n− k), the standard
bubble in Rn−k is a solution of Morse index 1 in Rn−k. As such, it is stable outside
a compact set of Rn−k and so it is also stable outside a compact set of Ω.

Notation. Without further notice, we shall use the following notation. A point
x ∈ Rn is written x = (x′, x′′) ∈ Rn−k × Rk. The same applies to the operators
∇ = (∇′,∇′′) and ∆ = ∆′ + ∆′′. Polar coordinates in the x′ variable are written
x′ = ρθ, where ρ = |x′| and θ = x′/|x′| whenever x′ 6= 0. In particular, ∂ρ = ∇·x′/ρ
differentiates functions in the ρ-variable and ∆′ = ρ1+k−n∂ρ(ρ

n−k−1∂ρ) + ρ−2∆θ,
where ∆θ is the Laplace-Beltrami operator on the unit sphere Sn−k−1 of Rn−k.

2. Proof of Proposition 1.1

As mentioned in the introduction, the fact that solutions of the form (1.3) are
unstable outside any compact set is an obvious generalization of Example 1 in [6],
so we skip it.

Turning to mountain-pass solutions in the space H of functions in H1
0 (Ω) having

the cylindrical symmetry (1.4), we recall that, thanks to Solimini’s work [9], they
have Morse index 1 in H. In particular, there exists a function φ ∈ H such that
Qu(φ) < 0, where the second variation of the energy is defined as usual by

Qu(φ) =

ˆ
Ω

|∇φ|2 dx− p
ˆ

Ω

|u|p−1φ2 dx.

Without loss of generality, we may assume in addition that φ ∈ C∞c (Ω). Fix
R > 0 large enough so that φ is supported in B′(0, R) × ω. We claim that u is
stable outside B′(0, R) × ω. To see this, assume by contradiction that a function
ϕ ∈ C∞c (Ω \B′(0, R)× ω) satisfies Qu(ϕ) < 0. Let

χ(ρ, x′′) =

[
1

|Sn−k−1|

ˆ
Sn−k−1

ϕ2(ρθ, x′′)dσ(θ)

]1/2

denote the quadratic average on the unit sphere of Rn−k of ϕ and φ0(x′, x′′) =
χ(|x′|, x′′). Clearly, φ0 ∈ H has disjoint support from φ. We are going to prove
that Qu(φ0) < 0, so that u would have Morse index in H at least equal to 2, a
contradiction. Note that

(2.1)
ˆ

Ω

|u|p−1ϕ2 =

ˆ
Ω

|u|p−1φ2
0.

For ε > 0, let

χε(ρ, x
′′) =

[
χ2(ρ, x′′) + ε

]1/2 and φε = χε(|x′|, x′′).
Clearly, χε is differentiable in [0; +∞[×ω, and

∂χε
∂ρ

(ρ;x′′) =

1
|Sn−k−1|

´
Sn−k−1 ϕ

∂ϕ
∂ρ (ρθ, x′′)dσ(θ)

χε
,

and

∂χε
∂xj

(ρ, x′′) =

1
|Sn−k−1|

´
Sn−k−1 ϕ

∂ϕ
∂xj

(ρθ, x′′)dσ(θ)

χε
, n− k + 1 ≤ j ≤ n.

2the stability in Ω is a direct consequence of the stability in Rn−k and Fubini’s theorem
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Therefore, φε ∈ C1(Ω) and by Hölder’s inequality, we have

|∇φε(x′, x′′)|2 ≤
1

|Sn−k−1|

ˆ
Sn−k−1

|∇ϕ(ρθ, x′′)|2dσ(θ),

which also implies that ˆ
Ω

|∇φε|2 ≤
ˆ

Ω

|∇ϕ|2.

So, (φε) is bounded in H1 converges weakly in H1 and a.e. to φ0 as ε converges to
0. In particular, φ0 ∈ H1(Ω) andˆ

Ω

|∇φ0|2 ≤
ˆ

Ω

|∇ϕ|2.

So, Qu(φ0) < 0, and we obtain the desired contradiction.

3. Proof of Theorem 1.4

Step 1. Capacitary estimate. The following estimate is due to Farina (see [6,
Proposition 6]). Let u denote a solution which is stable outside a compact set. For
every γ ∈ [1, 2p+ 2

√
p(p− 1)−1), there exist constants C1, C2 > 0 such that every

R > 0,

(3.1)
ˆ
B′R×ω

(
|∇|u|

γ−1
2 u|2 + |u|p+γ

)
dx ≤ C1 + C2R

(n−k)−2 p+γp−1 .

Step 2. In fact, if u is stable, one can choose C1 = 0. As in Farina’s work we
readily deduce, by letting R → +∞, that there is no nontrivial stable solution of
(1.1), in the special case 1 < p < pc(n− k).
Step 3. If 1 < p ≤ ps(n − k), and u a solution of (1.1), which is stable outside a
compact set, then in view of (3.1), we obtain

(3.2)
ˆ

Ω

|∇u|2 + |u|p+1 <∞.

By dominated convergence, it follows from (3.2) that if AR = {R < |x′| < 2R},
then

(3.3)
ˆ
AR×ω

|∇u|2 + |u|p+1 = o(1), as R→∞.

Consider a test function φR(x) = φ(|x′|/R), where φ ∈ C2
c ([0;∞[), is a standard

cut-off function satisfying φ(t) = 1, if 0 ≤ t ≤ 1 and φ(t) = 0, if t ≥ 2. Multiplying
equation (1.1) by uφR and integrating by parts over B′2R × ω, we get:ˆ

B′2R×ω
|∇u|2φR −

ˆ
B′2R×ω

|u|p+1φR =
1

2

ˆ
B′2R×ω

u2∆φR.

Using Hölder’s inequality and (3.3), we conclude thatˆ
B′2R×ω

|∇u|2φR −
ˆ
B′2R×ω

|u|p+1φR = o(1), as R→∞.

Hence, letting R→∞, we getˆ
Ω

|∇u|2 =

ˆ
Ω

|u|p+1(3.4)

To complete the proof of Theorem 1.4 for ps(n) ≤ p ≤ ps(n − k), we need the
following Pohozaev identity:
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Proposition 3.1. Let u be a solution of (1.1) which is stable outside a compact
set and z = (0, z) ∈ Rn−k × ω. Then, if 1 < p ≤ ps(n− k), we have

(3.5)
(

1− 2n

(n− 2)(p+ 1)

)ˆ
Ω

|u|p+1 = − 1

n− 2

ˆ
Rn−k×∂ω

|∇′′u|2(x− z)′′ · ν′′.

where ν denotes the outward unit vector normal on B′2R × ∂ω.

Proof of Proposition 3.1. Multiplying equation (1.1) by ∇u · (x − z)φR(x′)
and integrating over B′2R × ω, we find

(3.6)
ˆ
B′2R×ω

−∆u∇u · (x− z)φR =

ˆ
B′2R×ω

|u|p−1u∇u · (x− z)φR.

For the left hand side of (3.6), integrating by parts there holds

I1(R) : =

ˆ
B′2R×ω

−∆u∇u · (x− z)φR

=
1

2

ˆ
B′2R×ω

∇(|∇u|2) · (x− z)φR +

ˆ
B′2R×ω

|∇u|2φR

+

ˆ
B′2R×ω

(∇u · ∇φR)(∇u · (x− z))−
ˆ
B′2R×∂ω

(∇u · ν)(∇u · (x− z))φR,

Integrating again by parts the first term of the last equality, we get

I1(R) =
2− n

2

ˆ
B′2R×ω

|∇u|2φR +
1

2

ˆ
B′2R×∂ω

|∇u|2(x− z) · νφR

−
ˆ
B′2R×∂ω

(∇u · ν)(∇u · (x− z))φR + o(1).(3.7)

where in view of (3.3) and the definition of φR,

o(1) =

ˆ
B′2R×ω

(∇u · ∇φR)(∇u · (x− z)) +
1

2

ˆ
B′2R×ω

|∇u|2∇φR · (x− z), as R→∞

Taking in account that ν = (0, ν′′), and u = 0 on Rn−k × ∂ω, at any point x ∈
Rn−k × ∂ω where ∇′′u 6= 0, we have ν′′ = ε ∇

′′u
|∇′′u| where ε ∈ {−1, 1}. Therefore,

(3.7) becomes

I1(R) =
2− n

2

ˆ
B′2R×ω

|∇u|2φR −
1

2

ˆ
B′2R×∂ω

|∇u|2(x− z).νφR + o(1).

Now, integrate by part the right hand side of (3.6) to obtain

I2(R) :=

ˆ
B′2R×ω

|u|p−1u∇u.(x− z)φR = − n

p+ 1

ˆ
B′2R×ω

|u|p+1φR

− 1

p+ 1

ˆ
B′2R×ω

|u|p+1∇φR.(x− z)

= − n

p+ 1

ˆ
B′2R×ω

|u|p+1φR + o(1).(3.8)

Since I1(R) = I2(R) combining (3.7), (3.8), and letting R → ∞, then from (3.6),
we get

n− 2

2

ˆ
Ω

|∇u|2 − n

p+ 1

ˆ
Ω

|u|p+1 = −1

2

ˆ
Rn−k×∂ω

|∇′′u|2(x− z)′′.ν′′.
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From (3.4), we derive the desired result. �
As a consequence of Proposition 3.1, if ω is strictly star-shaped with respect to z,

there holds (x−z)′′.ν′′ > 0 on Rn−k×∂ω and so u ≡ 0 when ps(n) < p ≤ ps(n−k).
The case p = ps(n), requires more analysis. In fact, from (3.5), one has ∂u

∂ν = 0

on ∂Ω. In addition, applying (3.1) with γ = p and recalling that n − k − 2 2p
p−1 <

n− k − 2 p+1
p−1 < 0 for p = ps(n), we findˆ

Ω

|u|2p <∞ i.e. |u|p−1u ∈ L2(Ω).

Recall that Poincaré’s inequality holds in H1
0 (Ω). By Lp-elliptic theory, we deduce

that u ∈ H2 ⊂ L
2N
N−4 and by a standard boot-strap argument, one has u ∈ W 2,r

with r > n
2 and then u ∈ L∞(Ω). Therefore (1.1) becomes ∆u + qu = 0 where

q = |u|p−1 ∈ L∞(Ω) with u ∈ H2(Ω) satisfying u = ∂u
∂ν = 0 on ∂Ω. By the unique

continuation principle for Cauchy data (see [7]), it follows that u ≡ 0.
Step 4. We derive a variant of a monotonicity formula due to Pacard [8], see also
K. Wang [10]. For λ > 0, define uλ by

uλ(x) = λ
2
p−1u(λx′, x′′), for all x = (x′, x′′) ∈ Rn−k × ω

and

E(u;λ) =

ˆ
B′1×ω

(
1

2

[
|∇′uλ|2 + λ2|∇′′uλ|2

]
− 1

p+ 1
|uλ|p+1

)
dx+

+
1

p− 1

ˆ
∂B′1×ω

|uλ|2 dσ.

We claim that E is a nondecreasing function of λ. Furthermore, E is differentiable
and

dE

dλ
= λ

[ˆ
∂B′1×ω

|∂λuλ|2 dσ +

ˆ
B′1×ω

|∇′′uλ|2dx

]
To prove our claim, we note that uλ solves

(3.9) −∆′uλ − λ2∆′′uλ = |uλ|p−1uλ in Rn−k × ω,
that

(3.10) E(u;λ) = E(uλ; 1),

and that

(3.11) λ∂λu
λ =

2

p− 1
uλ + ρ∂ρu

λ for x ∈ Ω, λ > 0,

where we recall that ρ = |x′| and ∂ρ = ∇ · x
′

ρ . So, if

(3.12) E1 =

ˆ
B′1×ω

(
1

2
|∇′uλ|2 − 1

p+ 1
|uλ|p+1

)
dx,

then
dE1

dλ
=

ˆ
B′1×ω

(
∇′uλ · ∇′∂λuλ − |uλ|p−1uλ∂λu

λ
)
dx.

Integrating by parts and using (3.9),
dE1

dλ
= λ2

ˆ
B′1×ω

∆′′uλ∂λu
λ +

ˆ
∂B′1×ω

∂ρu
λ∂λu

λ
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Integrating by parts again and using the boundary condition, the first addend is
equal to

λ2

ˆ
B′1×ω

∆′′uλ∂λu
λ = −λ2

ˆ
B′1×ω

∇′′uλ · ∇′′∂λuλ

= −λ
2

2

d

dλ

ˆ
B′1×ω

|∇′′uλ|2 = − d

dλ

[
λ2

2

ˆ
B′1×ω

|∇′′uλ|2
]

+ λ

ˆ
B′1×ω

|∇′′uλ|2.

Thanks to (3.11), the second addend is equal toˆ
∂B′1×ω

∂ρu
λ∂λu

λ =

ˆ
∂B′1×ω

(
λ∂λu

λ − 2

p− 1
uλ
)
∂λu

λ

= λ

ˆ
∂B′1×ω

|∂λuλ|2 −
1

p− 1

d

dλ

ˆ
∂B′1×ω

|uλ|2

and the result follows.
Step 5. Blow-down analysis for stable solutions.

From Step 1 (applied to u on a ball of radius λR), we know that given R > 0,

(3.13)
ˆ
B′R×ω

(
|∇′uλ|2 + λ2|∇′′uλ|2 + |uλ|p+1

)
dx ≤ CR(n−k)−2 p+1

p−1 .

So, (uλ)λ≥1 is uniformly bounded in H1∩Lp+1(B′R×ω), for any R > 0. In particu-
lar, a sequence (uλn) converges weakly to some function u∞ in H1 ∩Lp+1(B′R×ω)
for every R > 0, as λn → +∞. Note also that uλ satisfies the following PDE

(3.14) −∆′′uλ = λ−2
(
∆′uλ + |uλ|p−1uλ

)
.

Taking limits in the sense of distributions, if follows that

−∆′′u∞ = 0 in D′(Rn−k × ω)

The maximum principle, applied for a.e. x′ ∈ Rn−k to the function u∞(x′, ·) implies
that u∞ ≡ 0.

Actually, the full family (uλ) converges strongly to u∞ = 0 in Lp+1(B′R × ω).
Indeed, by Rellich’s theorem, (uλ) is compact in L2(B′R × ω), while it remains
bounded in Lp+γ(B′R×ω) for some γ > 1, thanks to Step 1. By Hölder’s inequality,
(uλ) is compact in Lp+1(B′R × ω). u∞ = 0 being its only cluster point, the claim
follows.

Now, multiply equation (1.1) by puζ2, where ζ ∈ C1
c (Ω) is a cut-off function to

be specified soon3. We find

p

ˆ
Ω

∇u · ∇(uζ2) = p

ˆ
Ω

|u|p+1ζ2

The left-hand side is equal to

p

ˆ
Ω

|∇(uζ)|2 − u2|∇ζ|2

while the right-hand side is bounded above by
´

Ω
|∇(uζ)|2, since u is stable. It

follows that

(3.15) (p− 1)

ˆ
Ω

|∇(uζ)|2 ≤ p
ˆ
u2|∇ζ|2.

3Such test functions can indeed be used in the stability inequality, thanks to the Dirichlet
boundary condition, see [6, Remark 5]
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Choose now ζ(x) = ζ0

(
x′

λ

)
, where ζ0 ≡ 1 in B′1 and ζ0 ≡ 0 outside B′2. Then,ˆ
B′λ×ω

|∇u|2 ≤ Cλ−2

ˆ
B′2λ×ω

u2

Scaling back, we arrive atˆ
B′1×ω

|∇′uλ|2 + λ2|∇′′uλ|2 ≤ C
ˆ
B′2×ω

|uλ|2

Recalling that (uλ) converges to zero in Lp+1(B′R×ω), thus also in L2(B′2×ω), we
conclude that

lim
λ→+∞

E2(u;λ) = lim
λ→+∞

E2(uλ; 1) = 0,

where E2 is given by

E2(uλ; 1) =

ˆ
B1×ω

[
1

2

(
|∇′uλ|2 + λ2|∇′′uλ|2

)
− 1

p+ 1
|uλ|p+1

]
dx

We claim that the same holds true for E. To see this, simply observe that since E
is nondecreasing,

(3.16) E(uλ, 1) = E(u, λ) ≤ 1

λ

ˆ 2λ

λ

E(u, t)dt =

=
1

λ

ˆ 2λ

λ

E2(u, t)dt+
1

p− 1
λ−1

ˆ 2λ

λ

tn−k−1− 4
p−1

ˆ
∂B′t×ω

|u|2

≤ sup
t≥λ

E2(u, t) + C

ˆ
B′2×ω

|uλ|2

Thanks to this, we deduce that

lim
λ→+∞

E(u, λ) = lim
λ→+∞

E(uλ, 1) = 0.

In addition, since u is C2, one easily verifies that

E(u, 0) = 0.

And so, E(u, λ) ≡ 0, since E is nondecreasing. So, dE
dλ = 0, which means that

u is homogeneous and independent of x′′. Thanks to the boundary condition, we
readily deduce that u ≡ 0.
Step 6. Blow-down analysis for solutions which are stable outside a compact set.

We assume that p > pS(n− k). As before, by Step 1, (uλ) is uniformly bounded
in Lp+γ(B′R × ω) for some γ > 1. In addition, |∇′uλ|2 + λ2|∇′′uλ|2 is bounded in
L1(B′R × ω), for any R > 0. As in Step 5, this is enough to conclude that (uλ)
converges strongly to u∞ ≡ 0 in Lp+1(B′R × ω). In addition, E2(uλ; 1) remains
bounded. This time however, (3.15) remains valid only for cut-off functions ζ ∈
C1
c (Ω\BR0×ω), for R0 sufficiently large. So, choose ζ(x) = ζ0(x′/λ), where ζ0 ≡ 0

in B′ε/2, ζ0 ≡ 1 in B′1 \B′ε and ζ0 ≡ 0 outside B′2. Then, for λ > R0/ε,ˆ
B′λ\B

′
ελ×ω

|∇u|2 ≤ Cλ−2

ˆ
B′2λ×ω

u2

Scaling back yieldsˆ
B′1\B′ε×ω

|∇′uλ|2 + λ2|∇′′uλ|2 ≤ C
ˆ
B′2×ω

|uλ|2.
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And so,

E2(uλ; 1) =

ˆ
B′1×ω

(
1

2

[
|∇′uλ|2 + λ2|∇′′uλ|2

]
− 1

p+ 1
|uλ|p+1

)
dx

=

ˆ
B′ε×ω

+

ˆ
B′1\B′ε×ω

= εn−k−2 p+1
p−1E2(u;λε) +

ˆ
B′1\B′ε×ω

≤ C

(
εn−k−2 p+1

p−1 +

ˆ
B′2×ω

|uλ|2
)

Letting λ → +∞ and then ε → 0, we deduce that limλ→+∞E2(u;λ) = 0. The
remaining part of the proof of Step 5 can be used unchanged. �

4. Proof of Theorem 1.7

We indicate here how to adapt the proof of Theorem 1.4 in this case.
The case p > pS(n− k)

Here the only difference comes from the classification of the blow-down limit u∞.
In fact, multiplying (3.9) by u∞φR(x′), we see easily that

´
B′2R×ω

(∇′′uλj ·∇′′u∞)φR

converges to 0 as j →∞. Since (uλj ) converges weakly to u∞ in H1(B′2R × ω), we
deduce that

´
B′2R×ω

|∇′′u∞|2φR = 0, ∀ R > 0. In other words, u∞ is a function
of x′ only. But then, integrating (3.9) in the x′′ variable and passing again to the
weak limit implies that u∞ = 1

|ω|
´
ω
u∞dx′′ is an energy solution of

−∆′u∞ = |u∞|p−1u∞ in Rn−k

In addition, since u is stable outside a compact set, u∞ is stable outside the ori-
gin. If n − k ≥ 2, points have zero Newtonian capacity and so u∞ is stable in
all of Rn−k. By Farina’s [6, Theorem 1] (which still holds for energy solutions),
u∞ ≡ 0 . If n − k = 1, then u∞ is stable only outside the compact set {0}. But
pS(n− k) = pc(n− k) = +∞, so we can apply e.g. [6, Theorem 2] to arrive at the
same conclusion.

The case p = pS(n− k)
First we need the following version of Pohozaev identity:

Proposition 4.1. Let u be a solution of (1.1) which is stable outside a compact
set, then we have(

1− 2(n− k)

(p+ 1)(n− k − 2)

)ˆ
Ω

|u|p+1 = − 2

n− k − 2

ˆ
Ω

|∇′′u|2.

Proof of Proposition 4.1. Note that (3.2), (3.3) and (3.4) hold for (1.2). As
in the proof of Proposition 3.1, multiplying equation (1.2) by ∇′u.(x− z)′φR(|x′|)
and integrating over B′2R × ω, we get

(4.1)
ˆ
B′2R×ω

−∆u∇′u.(x− z)φR =

ˆ
B′2R×ω

|u|p−1u∇′u.(x− z)φR.



10 LOUIS DUPAIGNE AND ABDELLAZIZ HARRABI

For the left hand side of (4.1), integrating by parts there holds

J1(R) : =

ˆ
B′2R×ω

−∆u∇′u.(x− z)′φR

=
1

2

ˆ
B′2R×ω

∇′(|∇u|2).(x− z)′φR +

ˆ
B′2R×ω

|∇′u|2φR

+o(1)

Integrating again by parts the first term of the last equality, we get

J1(R) =
k − n

2

ˆ
B′2R×ω

|∇u|2φR

+

ˆ
B′2R×ω

|∇′u|2φR + o(1)

= −n− k − 2

2

ˆ
B′2R×ω

|∇u|2φR −
ˆ
B′2R×ω

|∇′′u|2φR + o(1)(4.2)

Now, integrating by part the right hand side of (4.1) to obtain

J2(R) :=

ˆ
B′2R×ω

|u|p−1u∇′u.(x− z)′φR = −n− k
p+ 1

ˆ
B′2R×ω

|u|p+1φR + o(1).

Since J1(R) = J2(R) combining (4.2), (4.3), and letting R → ∞, then from (4.1),
we get

n− k − 2

2

ˆ
Ω

|∇u|2 − n− k
p+ 1

ˆ
Ω

|u|p+1 = −
ˆ

Ω

|∇′′u|2.(4.3)

Therefore, (4.3) becomesˆ
Ω

|∇u|2 − 2(n− k)

(p+ 1)(n− k − 2)

ˆ
Ω

|u|p+1 = − 2

n− k − 2

ˆ
Ω

|∇′′u|2

From (3.4), we derive(
1− 2(n− k)

(p+ 1)(n− k − 2)

)ˆ
Ω

|u|p+1 = − 2

n− k − 2

ˆ
Ω

|∇′′u|2

If p = ps(n− k), from (4.4), one hasˆ
Ω

|∇′′u|2 = 0.

This gives the following classification: u(x′, x′′) = u(x′) in Ω and u satisfies

−∆′u = |u|p−1u, in Rn−k, with p = ps(n− k).

�
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