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of automata, languages and semigroups

Jean-Éric Pin1

April 18, 2019

Abstract

This is a tribute to the Brazilian mathematician Imre Simon, with
emphasis on three results that had a considerable influence on the devel-
opment of automata and semigroup theory.

Imre Simon, a Brazilian mathematician and computer scientist, was born
in Budapest, Hungary on August 14, 1943. He died in São Paulo, Brazil on
August 13, 2009, just a day short of his 66th birthday. More details on his life
can be found in the preface to the volume written on the occasion of his 60th
birthday [10]. Among the contributions of this volume, the article Imre Simon:

an exceptional graduate student by Thérien [65] deserves special mention.
The purpose of this tribute is to review three major results due to Simon that

had a considerable influence on the development of automata and semigroup
theory.

1 J -trivial monoids and their languages

LetA be a finite alphabet. A language of A∗ is piecewise testable if it is a Boolean
combination of languages of the form A∗a1A

∗a2 · · ·A
∗akA

∗, where a1, . . . , ak are
letters. In 1972, Simon obtained an elegant characterization of these languages.
Recall that a monoid is J -trivial if each of its J -classes is a singleton.
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Theorem 1.1 (Simon [47, 48]). A language is piecewise testable if and only if

its syntactic monoid is finite and J -trivial.

This result inspired a lot of subsequent research and a number of alternative
proofs have been proposed [60, 63, 1, 2, 23, 25, 28, 29], not to mention unpub-
lished ones. It was proved seven years after Schützenberger’s characterization
of star-free languages in terms of aperiodic monoids [45] and these two results,
together with Theorem 2.1 below, inspired Eilenberg’s varieties theorem [16].

Theorem 1.1 is a key step in the study of concatenation hierarchies initiated
by Cohen and Brzozowski [11]. A detailed account of the numerous develop-
ments on this topic, including connections with automata, languages and finite
model theory can be found in the survey [39]. For this reason, I will omit this
important topic and rather focus on some consequences in semigroup theory.
For each integer n > 0, three monoids, Cn, Rn and Un will serve us as examples
of J -trivial monoids.

The monoid Cn consists of all order preserving and extensive functions from
{1, . . . , n} to itself. Recall that a transformation a on {1, . . . , n} is order pre-

serving if p 6 q implies p· a 6 q · a and extensive if for all p, p 6 p· a.
Let Rn denote the monoid of all reflexive relations on {1, . . . , n}. It is

convenient to consider Rn as the monoid of Boolean matrices of size n × n

having only entries 1 on the diagonal. For example

R2 = {( 1 0
0 1 ) , (

1 1
0 1 ) , (

1 0
1 1 ) , (

1 1
1 1 )}

Finally, Un is the submonoid of Rn consisting of the upper triangular matrices
of Cn. The matrices of Un are called unitriangular. For example,

U3 =
{(

1 ε1 ε2
0 1 ε3
0 0 1

)

| ε1, ε2, ε3 ∈ {0, 1}
}

Recall that a monoid M divides a monoid N if M is a quotient of a submonoid
of N . It is relatively easy to prove the equivalence of Theorems 1.1 and the
following result of Straubing [61], but proving one of them is much more difficult.

Theorem 1.2. For each n > 0, the monoids Cn, Rn and Un are J -trivial.

Moreover, for a finite monoid M , the following conditions are equivalent:

(1) M is J -trivial,

(2) there exists an integer n > 0 such that M divides Cn,

(3) there exists an integer n > 0 such that M divides Rn,

(4) there exists an integer n > 0 such that M divides Un.

Almeida obtained another proof of Theorem 1.1 as a byproduct of his com-
plete description of the free profinite J -trivial monoid [1]. He proved in particu-
lar that the free profinite J -trivial monoid on an n-letter alphabet is countable
and contains 2n idempotents.

Another important consequence of Theorem 1.1 relates J -trivial monoids to
ordered monoids. It was first stated and proved by Straubing and Thérien [63].
An ordered monoid is a monoid equipped with a partial order 6 compatible
with the product: x 6 y implies xz 6 yz and zx 6 zy.

Theorem 1.3. A finite monoid is J -trivial if and only if it is a quotient of a

finite ordered monoid satisfying the identity 1 6 x.
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Again, it is not very difficult to establish the equivalence of Theorems 1.1
and 1.3. But Straubing and Thérien gave a direct proof of Theorem 1.3 based on
the ideal structure of the monoid and a suitable semigroup expansion. Another
proof of Theorem 1.3 proposed in [23] makes use of factorisation trees, a notion
inspired by Imre Simon’s factorisation forests described in Section 3.

Theorem 1.3, far from being an isolated result, is actually the prototype
of similar covering theorems involving ordered monoids. Recall that a block

group is a monoid in which every regular R-class and L-class contains a unique
idempotent. Many equivalent definitions can be found for instance in [38]. The
following result was first stated in [42, Corollary 9.7], but is a consequence of
a series of some deep results obtained in the eighties [4, 5, 21, 22, 24, 30]. See
[38] for a survey and related results.

Theorem 1.4. Every finite block group monoid is the quotient of a finite ordered

monoid satisfying the identity 1 6 xω.

This result can be relativised to monoids with commuting idempotents but,
even in this case, it is a challenging open problem to find a direct proof of this
result using the techniques proposed in [63] or in [23].

Simon’s original proof [48] relied on the combinatorial study of subwords,
one of his favourite topics [58]. He also used the related shuffle operation to
solve with Ésik an open problem in language theory [17]. Subwords were later
used to describe languages whose syntactic monoids are p-groups [16, p. 238].
Another elegant proof of Theorem 1.1 via combinatorics on words was proposed
by Kĺıma [28] and is probably the shortest proof known to date.

The combinatorial study of subwords was initiated by Chen, Fox and Lyndon
[9] in a different context. See the survey chapter [33, Chapter 6] written by
Sakarovitch and Simon, and [43] for applications to Lie algebras.

2 Locally trivial semigroups and graph congru-

ences

A semigroup S is said to be locally trivial if, for every idempotent e of S, eSe = e.
Similarly, a semigroup S is said to be locally idempotent and commutative if, for
every idempotent e of S, the monoid eSe is idempotent and commutative, i.e.
a semilattice.

Locally trivial semigroups form a variety of finite semigroups, denoted LI.
If V is a variety of finite monoids, let V ∗ LI be the variety generated by all
semidirect products of monoids in V with semigroups in LI.

A language of A+ is locally testable if it is a Boolean combination of sets
of the form uA∗, A∗v or A∗wA∗ where u, v, w ∈ A+. It it relatively easy to
prove that a language is locally testable if and only if its syntactic semigroup
belongs to the variety SL ∗ LI where SL is the variety of finite semilattices.
Quoting Eilenberg [16, p. 222], this is not regarded as a satisfactory solution as
it is not clear how to decide membership in this variety. A much better answer
was given independently by Brzozowski and Simon [8] and by McNaughton [36],
who proved the following result:

Theorem 2.1. A language is locally testable if and only if its syntactic semi-

group is locally idempotent and commutative.
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In terms of semigroups, a finite semigroup belongs to SL ∗ LI if and only if
it is locally idempotent and commutative. The proof relies on a result on graph
congruences first detailed in Simon’s Ph.D. thesis [47]. Given a finite graph G,
a path congruence is an equivalence relation on the set of paths of G such that:

(1) any two equivalent paths are coterminal (i.e. have the same origin and
the same end),

(2) if p and q are equivalent paths, and if r, p and s are consecutive paths,
then rps is equivalent to rqs.

Theorem 2.2 (Simon [47]). Let ∼ be a path congruence such that, for every pair

of loops p, q around the same state, p2 ∼ p and pq ∼ qp. Then two coterminal

paths using the same sets of edges are equivalent.

Theorem 2.2 initiated the graph congruence techniques later developed in
a series of subsequent papers by Knast [30], Thérien [64], Thérien-Weiss [66],
Straubing [62], Jones and Szendrei [26], Jones and Trotter [27], Almeida [3],
Pin, Pinguet and Weil [41], Steinberg [59], etc.

Straubing [62] generalized Theorems 2.1 and 2.2 to describe membership in
V ∗ LI in terms of graph congruences. The modern formulation in terms of
categories is due to Tilson [67] (see also [44, p. 279, Theorem 4.8.9]).

Theorem 2.2 is also one of the key ingredients for the algebraic proof of
McNaughton’s theorem on the equivalence between non deterministic Büchi
automata and deterministic Muller automata over infinite words [32].

3 Factorization forests

Ramsey’s Theorem is frequently used in combinatorics on words to establish the
existence of unavoidable regularities in very long words [33, Chapter 4]. Simon’s
factorisation forest theorem is a nested variant of this result. It has become over
the years an essential tool in the theory of finite semigroups.

A factorisation forest is a function d that associates to every word x of length
> 2 a factorisation d(x) = (x1, . . . , xn) of x with n > 2 such that x1, . . . , xn are
nonempty words. The integer n is the degree of the factorisation.

Let S be a finite semigroup and let ϕ : A+ → S be a morphism. A factori-

sation forest d is ϕ-Ramseyan if, for every word x of length > 2, d(x) is either
of degree 2 or there exists an idempotent e of S such that d(x) = (x1, . . . , xn)
and ϕ(x1) = ϕ(x2) = . . . = ϕ(xn) = e for 1 6 i 6 n.

Simon first stated his factorisation forest theorem in the technical report
[50], which was subsequently published in [52, 53]. He later gave a different
proof in [55].

Theorem 3.1 (Simon 1987). Let ϕ : A+ → S be a morphism onto a finite

semigroup. Then there exists a factorisation forest of height 6 9|S| which is

ϕ-Ramseyan.

The bound 9|S| was subsequently improved to 3|S| in [13] and to the optimal
bound 3|S| − 1 in [31]. Simon was led to his factorisation forest theorem in
connection with his research on three topics: Brown’s theorem on locally finite
semigroups, the limitedness problem for the tropical semiring [34, 49, 51, 56] and
the star-height problem. Despite their importance, I will not develop further
these topics, which are already covered in the historical survey [40].
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The term tropical was given in honour of Imre Simon, who gave credit to
Christian Choffrut in [51], but further investigation among the members of the
French school suggests that the term was originally coined by Schützenberger.
The term has become standard since the success of tropical geometry.

Simon’s factorisation forest theorem has been extended by Colcombet to
infinite words [13] and to trees [12]. It is also crucial in the characterization
of polynomial languages [42]. Bojanczyck [6] wrote a survey of applications
of factorisation forests to fast string algorithms and transducers. There are
aspects of Simon’s work that remain to be explored. For instance, very recently
an unambiguous version of the Factorization Theorem has been announced in
[15, 18].

The reader is referred to the recent survey by Colcombet [14] for more in-
formation on Simon’s forest factorisation theorem.

4 Conclusion

Due to space constraints, several areas studied by Imre Simon had to be omitted,
notably nondeterministic complexity of finite automata [54], compression and
entropy [20], string matching algorithms [57]. However, I would like to briefly
mention Simon’s research on the Burnside problem for semigroups. Simon’s
contribution to this question is reported in the survey [37] coauthored with do
Lago.

The general problem concerns the free Burnside monoid satisfying xn =
xn+m, but the results of Green and Rees [19] and McLean [35] essentially reduce
the problem for n = 1 to the case n = 0, that is, the Burnside problem for
groups. Simon addressed in 1970 what he thought to be the easiest remaining
case: the free Burnside monoid satisfying x2 = x3. Unfortunately for him, it
turns out to be the hardest case, which is not yet completely understood. Simon
rediscovered the fact that this monoid was infinite, a result previously obtained
by Brzozowski et al. [7], but also extended some properties of the free bands to
the free Burnside monoids. He never published his results [46], but later passed
the problem on to his best student, Alair Pereira do Lago, who obtained the
beautiful results reported in the surveys [37] and [40, Section 6].

Imre Simon’s work had a tremendous impact on subsequent research and
considerable influence in semigroup theory, automata, formal languages, combi-
natorics on words and finite model theory. Ten years after his death, his work
is still at the heart of current research.
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