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THE GAMMA KUMARASWAMY-G FAMILY OF DISTRIBUTIONS:

THEORY, INFERENCE AND APPLICATIONS

RANA MUHAMMAD IMRAN ARSHAD 1, CHRISTOPHE CHESNEAU 2, FARRUKH JAMAL 3,
MUHAMMAD MANSOOR 4, MUHAMAD ZUBAIR 4 AND M. ARSLAN NASIR 4

Abstract. In this paper, we introduce a new family of univariate continuous distribu-
tions called the Gamma Kumaraswamy generalized family of distributions. We study
some general mathematical properties of this family, including analysis of the shapes of
the probability density and hazard rate functions, quantile function, skewness, kurtosis,
linear representations of the cumulative distribution and probability density functions,
moments and derived quantities, stochastic ordering, reliability parameter and order
statistics. Then, we give a special attention to a particular member of the family with
four parameters called the Gamma Kumaraswamy exponential distribution. Among its
advantages, the corresponding probability density function can have symmetrical, left-
skewed, right-skewed and reversed-J shapes, and the corresponding hazard rate function
can have (near) constant, increasing, decreasing, upside-down bathtub, and bathtub
shapes. Then, the inference on the Gamma Kumaraswamy exponential model is per-
formed. The method of maximum likelihood is applied to estimate the model parame-
ters. We illustrate the interest of the model by the analyses of two practical data sets,
with favorable results in comparison to other competitive models in the filed. It is hoped
that the Gamma Kumaraswamy model will be attractive for the practitioner in many
applied areas.

Keywords: Kumaraswamy distribution; Gamma distribution; generalized family; maxi-
mum likelihood method; data analysis.
AMS Subject: 9A60; 62E15; 62H10.

1. Introduction

In order to satisfy a legitimate scientific exigence, most of the modern experiments
require a high degree of precision in the analysis of data. Unfortunately, this exigence can
not be reached by the use of standard statistical models. For this reason, the creation of
new flexible models, well adapted to the context, remains a passionating challenge for the
statisticians. From a probabilistic point of view, attractive models can be derived from
families of distributions enjoying remarkable mathematical and practical properties. Such
families of distributions can be defined by the use of effective techniques introducing new
tuning parameters to well-established distributions. Among others, a popular technique
consists in compounding well-known distributions depending on their own parameters.
The resulting families of distributions are often characterized by sophisticated but flexible
functions, which can be easily handle thanks to the computational and analytical facilities
available in modern programming softwares (as R, Maple, Mathematica. . . ). In particular,
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the use of these softwares can easily tackle the problems involved in computing eventual
special functions. Among the families of distributions having a high impact in statistical
modelling, there are the beta-G family by [16] and [21], the Kumaraswamy-G (Kw-G)
family by [11], the McDonald-G (Mc-G) family by [2], the gamma-G type 1 family by [36]
and [7], the gamma-G type 2 family by [31] and [7], the odd-gamma-G type 3 family by
[34], the logistic-G family by [35], the odd exponentiated generalized (odd exp-G) family
by [12], the transformed-transformer (T-X) (Weibull-X and gamma-X) family by [5], the
exponentiated T-X family by [6], the odd Weibull-G family by [9], the exponentiated half-
logistic by [13], the T-X{Y}-quantile based approach family by [3], the odd Burr-III-G
family by [20], the Kumaraswamy odd Burr-G family by [27], the T-R{Y} family by [4],
the generalized odd gamma-G family by [19].

In this study, we introduce a new family of distributions derived to the Kumaraswamy-
G family of distributions introduced by [11] and the odd Gamma-G family of distributions
established by [34], offering new perspectives of models. Before going further, let us briefly
describe these two well-recognized families, beginning with the Kumaraswamy-G family of
distributions. Let a > 0, b > 0, G(x) be the cumulative distribution function (cdf) of an
univariate continuous distribution and g(x) be the corresponding probability distribution
function (pdf). Then, the Kumaraswamy-G family of distributions is characterized by the
cdf given by

H(x) = 1− {1−G(x)a}b , x ∈ R. (1)

Also, the corresponding pdf is given by

h(x) = abg(x)G(x)a−1 {1−G(x)a}b−1 , x ∈ R. (2)

The feature of Kumaraswamy-G family of distributions is to add two shape parameters
a and b to the former distribution characterized by the cdf G(x), increasing mechanically
its flexible properties. Among others, the presence of a and b allow the construction of
more flexible model to analyze a wide variety of data sets, as developed in [11] for the nor-
mal, Weibull, gamma, Gumbel and inverse Gaussian distributions. The Kumaraswamy-G
family of distributions is also known to be a simple alternative to the beta-G family of
distribution established by [16], since it deals with more tractable cdf and pdf. Interest-
ing facts about the standard Kumaraswamy distribution are developed in [22]. Current
developments and extensions of the Kumaraswamy-G family of distributions can be found
in, e.g., [30], [15], [17] and [32].

On the other side, Torabi and Montazari [34] introduced the odd Gamma-G family
of distributions, briefly described below. Let α > 0, H(x) be the cdf of an univariate
continuous distribution, H̄(x) = 1−H(x) and h(x) be the corresponding pdf. Let γ1(α, z)
be the regularized lower incomplete gamma function defined by γ1(α, z) = γ(α, z)/Γ(α),

where γ(α, z) =
∫ z
0 t

α−1e−tdt and Γ(α) =
∫ +∞
0 tα−1e−tdt. Then, the odd Gamma-G family

of distributions ”with G = H” is characterized by the cdf given by

F (x) = γ1

(
α,
H(x)

H̄(x)

)
, x ∈ R. (3)
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Also, the corresponding pdf is given by

f(x) =
1

Γ(α)

h(x)H(x)α−1

H̄(x)α+1
exp

(
−H(x)

H̄(x)

)
, x ∈ R. (4)

The odd-gamma-G family of distributions gives an alternative to the useful gamma-G type
1 family of distributions introduced by [36] in the sense that the following stochastic or-
dering holds: F (x) ≥ K(x), where K(x) = γ1

(
α,− log[H̄(x)]

)
is the cdf corresponding to

the gamma-G type 1 family of distributions. Also, the merits of the odd-gamma-G family
of distributions have been highlighted by [34], [19] and [29] via the exploration of various
theoretical and practical aspects. In particular, it is shown that the former distribution
characterized by he cdfG(x) can take the benefits of the considered polynomial-exponential
transformation with α as tuning parameter, allowing the construction of new flexible sta-
tistical models. In particular, for appropriated G(x), the analyses of a wide broad of real
life data sets are favorable to the odd-gamma-G models in comparison to well-recognized
competitors.

Thus, by combining the Kumaraswamy-G and odd Gamma-H families of distributions,
we aim to create a new generalized family of distributions benefiting of the respective
qualities of these two families, enlarging the horizon of fields of applications. The corre-
sponding family of distributions is called the Gamma Kumaraswamy-G (GKw-G) family
of distributions. This study explores in both theoretical and practical terms the proper-
ties of the GKw-G family of distributions. A special member defined with the exponential
distribution as baseline, called the GKw-E distribution, will serve as statistical model.
The complete analyses of two practical data sets are proposed, showing that the GKw-E
model presents better fit to eight notorious models in the field.

The rest of the article is organized as follows. In Section 2, we present the main
functions of the GKw-G family of distributions, including the cdf, pdf and hrf. The shapes
of the pdf and hrf are then studied analytically. Some general mathematical properties
are presented in Section 3, as quantile function, skewness, kurtosis, linear representation
of the cumulative distribution and probability density functions, moments and consorts,
stochastic ordering, reliability parameter and order statistics. In Section 4, the GKw-
E distribution is introduced, as well as some of its structural properties. In Section 5,
the GKw-E model parameters are estimated by the maximum likelihood method and a
simulation study is performed to verify the convergence properties. In Section 6, the
usefulness of the GKw-E model is illustrated by means of two practical data sets. Finally,
Section 7 offers some concluding remarks.

2. The Gamma Kumaraswamy-G family of distributions

2.1. Cumulative and probability density functions. We characterize the GKw-G
family of distributions by the cdf of the odd Gamma-H family of distributions given by
(3), defined with the cdf H(x) of Kumaraswamy-G family of distributions given by (1).

Hence, by noticing that H(x)/H̄(x) = {1−G(x)a}−b − 1, the corresponding cdf is given
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by

F (x) = γ1

(
α, {1−G(x)a}−b − 1

)
, x ∈ R. (5)

One can remark that, if b = 1, we rediscover the cdf of the generalized odd Gamma-G
family introduced by [19], i.e., F (x) = γ1 (α,G(x)a/[1−G(x)a]), x ∈ R. In this sense, the
GKw-G family of distributions can be viewed as generalization of this family. The param-
eter b is of importance however, as we shall see in the coming mathematical properties
and applications.

The corresponding pdf can be obtained by putting (1) and (2) into (4). More directly
by differentiation of F (x), it is given by

f(x) =
ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b − 1

}α−1
× exp

[
1− {1−G(x)a}−b

]
. x ∈ R. (6)

Some special members of the GKw-G family of distributions characterized by their cdfs
are presented in Table 1.

Table 1. Some members of the GKw-G family of distributions character-
ized by their cdfs.

cdf G(x) Support GKw-G cdf F (x) Parameters

Uniform (0, θ) γ1

(
α, {1− (x/θ)a}−b − 1

)
(α, a, b, θ)

Exponential (0,+∞) γ1

(
α,
{

1− [1− e−λx]a
}−b − 1

)
(α, a, b, λ)

Weibull (0,+∞) γ1

(
α,
{

1− [1− e−(λx)β ]a
}−b
− 1

)
(α, a, b, λ)

Inverse Weibull (0,+∞) γ1

(
α,
{

1− e−a(λ/x)β
}−b
− 1

)
(α, a, b, λ, β)

Burr XII (0,+∞) γ1

(
α,
{

1− {1− [1 + (x/s)c]−k}a
}−b − 1

)
(α, a, b, c, k, s)

Logistic R γ1

(
α,
{

1− [1 + e−(x−µ)/s]−a
}−b − 1

)
(α, a, b, µ, s)

Gumbel R γ1

(
α,
{

1− exp(−ae−(x−µ)/σ)
}−b − 1

)
(α, a, b, µ, σ)

Normal R γ1

(
α, {1− Φ((x− µ)/σ)a}−b − 1

)
(α, a, b, µ, σ)

Cauchy R γ1

(
α, {1− [(1/π) arctan((x− x0)/θ) + 1/2]

a}−b − 1
)

(α, a, b, x0, θ)
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Thanks to its simplicity in the definition, the special member of the GKw-G family of
distributions using the exponential distribution as baseline will be the object of all the
attentions in Sections 4, 5 and 6.

2.2. Survival, hazard rate and cumulative hazard rate functions. Other basics
functions related to the GKw-G family of distributions, playing a central role in the
reliability theory, are given below.

The survival function (sf) of the GKw-G family of distributions is given by

S(x) = 1− F (x) = 1− γ1
(
α, {1−G(x)a}−b − 1

)
, x ∈ R,

the corresponding hazard rate function (hrf) is given by

π(x) =
f(x)

S(x)

=
ab

Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b − 1

}α−1
exp

[
1− {1−G(x)a}−b

]
1− γ1

(
α, {1−G(x)a}−b − 1

) ,

x ∈ R
and the corresponding cumulative hazard rate function (chrf) is given by

Ω(x) = − log [1− F (x)] = − log
[
1− γ1

(
α, {1−G(x)a}−b − 1

)]
, x ∈ R.

2.3. Asymptotic properties. The two following propositions investigate the asymptotic
properties of the cdf, sf, pdf and hrf of the GKw-G family of distributions.

Proposition 2.1. The asymptotic properties of the cdf, pdf and hrf of the GKw-G family
of distributions when G(x)→ 0 are, respectively, given by

F (x) ∼ bα

αΓ(α)
G(x)aα, f(x) ∼ abα

Γ(α)
g(x)G(x)aα−1, h(x) ∼ abα

Γ(α)
g(x)G(x)aα−1.

Proof. The proof follows from the following equivalences: when y → 0, we have (1−ya)−b ∼
1 + bya and γ1(α, y) ∼ yα/(αΓ(α)). �

Proposition 2.2. The asymptotic properties of the sf, pdf and hrf of the GKw-G family
of distributions when G(x)→ 1 are, respectively, given by

S(x) ∼ a−b(α−1)

Γ(α)
{1−G(x)}−b(α−1)e1−a−b{1−G(x)}−b ,

f(x) ∼ ba−αb

Γ(α)
g(x) {1−G(x)}−αb−1 e1−a−b{1−G(x)}−b

and
h(x) ∼ ba−bg(x) {1−G(x)}−b−1 .

Proof. The proof follows from the following equivalences: when y → +∞, we have
γ1(α, y) ∼ 1− yα−1e−y/Γ(α) and, when y → 1, we have ya ∼ 1− a(1− y). �



6 R. M. I. Arshad, C. Chesneau, F. Jamal, M. Mansoor, M. Zubair and M. A. Nasir

Propositions 2.1 and 2.2 show the roles of G(x), g(x), α, a and b on the asymptotic
properties of the cdf, sf, pdf and hrf of the GKw-G family of distributions. In particular,
we see that the parameter b has strong impact, mainly when G(x)→ 1.

2.4. Critical points. The study of the critical points of the pdf and hrf of the GKw-G
family of distributions are crucial to understand the complexity of their shapes. They can
be determined by solving the nonlinear equations ∂ log[f(x)]/∂x = 0 and ∂ log[h(x)]/∂x =
0, respectively, both given by

∂g(x)/∂x

g(x)
+ (a− 1)

g(x)

G(x)
+ a(b+ 1)

g(x)G(x)a−1

1−G(x)a

+ ab(α− 1)
g(x)G(x)a−1{1−G(x)a}−b−1

{1−G(x)a}−b − 1
− abg(x)G(x)a−1{1−G(x)a}−b−1 = 0 (7)

and

∂g(x)/∂x

g(x)
+ (a− 1)

g(x)

G(x)
+ a(b+ 1)

g(x)G(x)a−1

1−G(x)a

+ ab(α− 1)
g(x)G(x)a−1{1−G(x)a}−b−1

{1−G(x)a}−b − 1
− abg(x)G(x)a−1{1−G(x)a}−b−1

+
ab

Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b − 1

}α−1
exp

[
1− {1−G(x)a}−b

]
1− γ1

(
α, {1−G(x)a}−b − 1

)
= 0. (8)

As usual, the nature of these critical points can be determined by investigating the signs
of ∂2 log[f(x)]/∂x2 and ∂2 log[h(x)]/∂x2 taken at these points, respectively.

3. Main features

3.1. Quantile function. Let QG(x) be the quantile function corresponding to G(x), i.e.,
satisfying G(QG(p)) = QG(G(p)) = p for any p ∈ (0, 1). Then, the quantile function of
the GKw-G family of distributions is given by

Q(p) = QG

([
1−

{
1 + γ−11 (α, p)

}−1/b]1/a)
, p ∈ (0, 1), (9)

where γ−11 (α, p) denotes the inverse function of γ1 (α, p), i.e., satisfying γ1
(
α, γ−11 (α, p)

)
=

γ−11 (α, γ1 (α, p)) = p for any p ∈ (0, 1). Further details on γ−11 (α, p) can be found in [1,
Section 6.5]. In particular, the median of the GKw-G family of distributions is given by

M = Q(1/2) = QG

([
1−

{
1 + γ−11 (α, 0.5)

}−1/b]1/a)
.

Also, the three quartiles are given by Q1 = Q(1/4), Q2 = M and Q3 = Q(3/4) and
the seven octiles are given by O1 = Q(1/8), O2 = Q(2/8), O3 = Q(3/8), O4 = Q(4/8),
O5 = Q(5/8), O6 = Q(6/8) and O7 = Q(7/8).
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The quantile function and its related values are useful to evaluate some properties of
GKw-G family of distributions, as the skewness, kurtosis and central probabilistic results.
Some of them are presented in the next two subsections.

3.2. Skewness and kurtosis. A measure of the skewness of the GKw-G family of dis-
tributions is given by

S =
Q3 +Q1 − 2Q2

Q3 −Q1
. (10)

In full generality, for given G(x), α, a and b, when the corresponding GKw-G distribution
is symmetric, we have S = 0, when it is right skewed, we have S > 0 and when it is left
skewed, we have S < 0. See [23].

Also, a measure of the kurtosis of the GKw-G family of distributions is given by

K =
O3 −O1 +O7 −O5

O6 −O2
. (11)

For given G(x), α, a and b, as K increases, the tail of the corresponding GKw-G distri-
bution becomes heavier. We refer to [26].

The advantages of these measures are to be robust in presence of outliers and they
always exist (even if the distribution does not admit moments).

3.3. Some results in distribution. As usual, for any random variable U following the
uniform distribution over (0, 1), the random variable X = Q(U) has the cdf F (x). For
given G(x), α, a and b, this characterization is useful to generate random data distributed
according to the related GKw-G distribution.

We say that a random variable follows the Gamma distribution Gam(1, α) if it has the cdf
given by K(x) = γ1(α, x) with x > 0. If X is a random variable having the cdf of the GKw-

G family of distributions, then the random variable Y defined by Y = {1−G(X)a}−b− 1
follows the Gamma distribution Gam(1, α).

Also, if Y is a random variable following the Gamma distribution Gam(1, α), then the

random variable X defined by X = QG

([
1− {1 + Y }−1/b

]1/a)
has the cdf of the GKw-G

family of distributions.

3.4. Linear representations. This subsection is devoted to linear representations for
the pdf and cdf of the GKw-G family of distributions.

Proposition 3.1. We have the following linear representations for the cdf and pdf of the
GKw-G family of distributions:

F (x) =

+∞∑
i=0

wiG(x)ai, f(x) =

+∞∑
i=0

wi
[
aig(x)G(x)ai−1

]
, (12)

where

wi =

+∞∑
j,k=0

(−1)i+j+k

Γ(α)k!(α+ k)

(
α+ k

j

)(
b(j − α− k)

i

)
(13)
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and
(
b
a

)
denotes the generalized binomial coefficient, i.e.,

(
b
a

)
= b(b− 1) . . . (b− a+ 1)/a!.

Proof. By using the regularized lower incomplete gamma function series expansion, i.e.,

γ1(α, y) =
+∞∑
k=0

(−1)k
yα+k

Γ(α)k!(α+ k)
, y ≥ 0,

and after some simplifications, we can express F (x) as

F (x) = γ1

(
α,

1− {1−G(x)a}b

{1−G(x)a}b

)

=

+∞∑
k=0

(−1)k

Γ(α)k!(α+ k)
{1−G(x)a}−b(α+k)

[
1− {1−G(x)a}b

]α+k
︸ ︷︷ ︸

A

.

By virtue of the generalized binomial series expansion, the quantity A can expressed as

A =
+∞∑
j=0

(−1)j
(
α+ k

j

)
{1−G(x)a}bj .

By putting the previous equalities together, we get

F (x) =

+∞∑
j,k=0

(−1)j+k

Γ(α)k!(α+ k)

(
α+ k

j

)
{1−G(x)a}b(j−α−k)︸ ︷︷ ︸

B

.

By using again generalized binomial series expansion, the quantity B becomes

B =

+∞∑
i=0

(−1)i
(
b(j − α− k)

i

)
G(x)ai.

The desired linear representation of F (x) follows from the combination of all the equalities
above. By differentiation, we derive the linear representation of f(x). This completes the
proof of Proposition 3.1. �

Since it depends on the well-known exp-G family of distributions (with parameter ai for
any integer i), the linear representations presented in Proposition 3.1 are useful to derive
related analytical and numerical properties. Some of them are explored in the subsections
below.

3.5. Moments and derivations. In this subsection, we assume that all the presented
integrals and sum exist (which is not necessarily the case, depending on the definition of
G(x), among others). Let r be an integer. Then, the r-th moment of GKw-G family of
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distributions is given by

µ′r =

∫ +∞

−∞
xrf(x)dx

=

∫ +∞

−∞
xr

ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b − 1

}α−1
× exp

[
1− {1−G(x)a}−b

]
dx. (14)

By using the quantile function given by (9), with the change of variable x = Q(p), we can
express µ′r as

µ′r =

∫ 1

0
[Q(p)]rdp =

∫ 1

0

[
QG

([
1−

{
1 + γ−11 (α, p)

}−1/b]1/a)]r
dp. (15)

For givenG(x), α, a and b, this integral can be computed numerically via any mathematical
softwares (R, Maple, Matlab, Mathematica. . . ).

A linear expression of µ′r can be deduced from (12). Indeed, we have

µ′r =
+∞∑
i=0

wi

∫ +∞

−∞
xr
[
aig(x)G(x)ai−1

]
dx =

+∞∑
i=0

wiai

∫ 1

0
pai−1[QG(p)]rdp.

Among others, one can deduce the mean given by µ = µ′1, the variance given by σ2 =
µ′2 − (µ′1)

2, the r-th central moment given by

µr =

∫ +∞

−∞
(x− µ′1)rf(x)dx =

r∑
k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k, (16)

the coefficient of skewness given by CS = µ3/µ
3/2
2 , the coefficient of kurtosis given by

CK = µ4/µ
2
2 and the moment generating function given by

M(t) =

∫ +∞

−∞
etxf(x)dx =

+∞∑
r=0

tr

r!
µ′r.

Alternatively, we can use (12) to have a linear representation for M(t) without using
moments. Indeed, we have

M(t) =
+∞∑
i=0

wi

∫ +∞

−∞
etx
[
aig(x)G(x)ai−1

]
dx =

+∞∑
i=0

wiai

∫ 1

0
pai−1etQG(p)dp.

Finally, let us mention that the incomplete moments can be expressed in a similar way,
giving expressions for the Bonferroni and Lorenz curves, mean residual-life, mean waiting-
time, mean deviation about the mean and mean deviation about the median. For instance,
we refer to the methodology of [19].
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3.6. Stochastic ordering. We now prove a result on the stochastic ordering involving
the GKw-G family of distributions with a and b as common parameters. Further details
on stochastic ordering can be found in [33].

Proposition 3.2. Let X be a random variable having the pdf f1(x) given by (6) with
parameters α1, a and b and Y be a random variable having the pdf f2(x) given by (6)
with parameters α2, a and b. Then, if α1 ≤ α2, we have X ≤lr Y , i.e., f1(x)/f2(x) is
decreasing.

Proof. We have

f1(x)

f2(x)
=

Γ(α2)

Γ(α1)

{
{1−G(x)a}−b − 1

}α1−α2

.

By differentiating with respect to x, since α1 ≤ α2, we have

∂

∂x

f1(x)

f2(x)
=

Γ(α2)

Γ(α1)
(α1 − α2)

{
{1−G(x)a}−b − 1

}α1−α2−1
abg(x)G(x)a−1 {1−G(x)a}−b−1 ≤ 0.

Hence we have X ≤lr Y . This ends the proof of Proposition 3.2. �

3.7. Reliability parameter. The reliability parameter plays an important role in the
area of engineering. It is a measure of component reliability. Further details can be found
in [24]. Here, we present a result on this parameter defined with the GKw-G family
of distributions. Let X be a random variable having the pdf f1(x) given by (6) with
parameters α1, a1 and b1 and Y be a random variable having the cdf F2(x) given by (5)
with parameters α2, a2 and b2. We suppose that X and Y are independent. Then the
reliability parameter is defined by

R = P(Y < X) =

∫ +∞

−∞
f1(x)F2(x)dx.

By using the expressions of f1(x) and F2(x), we have

R =

∫ +∞

−∞

a1b1
Γ(α1)

g(x)G(x)a1−1 {1−G(x)a1}−b1−1
{
{1−G(x)a1}−b1 − 1

}α1−1

× exp
[
1− {1−G(x)a1}−b1

]
γ1

(
α2, {1−G(x)a2}−b2 − 1

)
dx.

Alternatively, with the change of variable x = Q1(p), where Q1(p) denotes the quantile
function given by (9) corresponding to f1(x), we have

R =

∫ 1

0
F2(Q1(p))dp

=

∫ 1

0
γ1

(
α2,

{
1−

[
1−

{
1 + γ−11 (α1, p)

}−1/b1]a2/a1}−b2 − 1

)
dp.
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In particular, from this expression, we see that R does not depend on the baseline distri-
bution characterized by the cdf G(x).

To the best of our knowledge, there is close form for the previous integrals. A linear
expression can be given by using (12). Indeed, let us consider the expansions:

F2(x) =
+∞∑
i=0

wi[α2, a2, b2]G(x)a2i, f1(x) =
+∞∑
j=0

wj [α1, a1, b1]
[
a1jg(x)G(x)a1j−1

]
,

where wi[α2, a2, b2] and wj [α1, a1, b1] are given by (13) with the parameters α2, a2, b2 and
α1, a1, b1, respectively. Then,

R =
+∞∑
i,j=0

wi[α2, a2, b2]wj [α1, a1, b1]a1j

∫ +∞

−∞
g(x)G(x)a1j+a2i−1dx

+∞∑
i,j=0

wi[α2, a2, b2]wj [α1, a1, b1]
a1j

a1j + a2i
.

As usual, when α1 = α2, a1 = a2 and b1 = b2 (corresponding to the identically distributed
case), we have R = 1/2.

3.8. Order statistics. The order statistics naturally arise in many applications involving
data relating to survival testing studies. All the details can be found in the book of [14].
This subsection is devoted to the order statistics of the GKw-G family of distributions.
Let X1, . . . , Xn be the random sample from the GKw-G family of distributions and Xi:n

be the i-th order statistic. Then the pdf of Xi:n is given by

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)F (x)i−1 [1− F (x)]n−i , x ∈ R. (17)

Hence, by using (5) and (6), we have

fi:n(x) =
n!

(i− 1)!(n− i)!
ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b − 1

}α−1
exp

[
1− {1−G(x)a}−b

]
γ1

(
α, {1−G(x)a}−b − 1

)i−1 [
1− γ1

(
α, {1−G(x)a}−b − 1

)]n−i
.

In particular, the pdfs of X1:n = inf(X1, . . . , Xn) and Xn:n = sup(X1, . . . , Xn) are respec-
tively given by f1:n(x) and fn:n(x).

The proposition below presents a result characterizing this pdf.

Proposition 3.3. The pdf of Xi:n can be expressed as a linear combination of pdfs of the
exp-G family of distributions.
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Proof. Let us consider the expression of fi:n(x) given by (17). It follows from the binomial
formula and (12) that

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)jf(x)[F (x)]j+i−1

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

{
+∞∑
`=0

w`

[
a`g(x)G(x)a`−1

]}[+∞∑
k=0

wkG(x)ak

]j+i−1
.

By virtue of a result established by [18, Section 0.314], we have[
+∞∑
k=0

wkG(x)ak

]j+i−1
=

+∞∑
m=0

dj+i−1,mG(x)am,

where dj+i−1,0 = wj+i−10 and, for any integer m ≥ 1,

dj+i−1,m =
1

mw0

m∑
k=1

(k(j + i)−m)wkdj+i−1,m−k.

By putting the equalities above together, we obtain

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

+∞∑
`,m=0

(
n− i
j

)
(−1)jw`dj+i−1,m

`

`+m
q`,m(x), (18)

where q`,m(x) = a(`+m)g(x)G(x)a(`+m)−1. Since q`,m(x) is a pdf of the exp-G family of
distributions with parameter a(`+m), the proof of Proposition 3.3 is complete. �

By using the existing results on the exp-G family of distributions, we can use Proposition
3.3 to derive mathematical properties of the distribution of the i-th order statistics, as
moments and all the related quantities.

4. GKw-Exponential distribution

4.1. Definition. In this section, we focus our attention on the special member of the
GKw-G family of distributions using the exponential distribution as baseline. Hence, by
substituting the cdf G(x) = 1 − e−λx, x > 0, into (5), the cdf of this special distribution
is given by

FGKw−E(x) = γ1

(
α,
{

1−
(

1− e−λx
)a}−b

− 1

)
, x > 0. (19)
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The related distribution is called the GKw-Exponential (GKw-E) distribution. The cor-
responding pdf is given by

fGKw−E(x) =

abλ

Γ(α)
e−λx

(
1− e−λx

)a−1 {
1−

(
1− e−λx

)a}−b−1{{
1−

(
1− e−λx

)a}−b
− 1

}α−1
× exp

[
1−

{
1−

(
1− e−λx

)a}−b]
. x > 0. (20)

Other basics functions related to the GKw-E distribution are given below. The corre-
sponding sf is given by

SGKw−E(x) = 1− γ1
(
α,
{

1−
(

1− e−λx
)a}−b

− 1

)
, x > 0, (21)

the corresponding hrf is given by

πGKw−E(x) =

abλ

Γ(α)

e−λx
(
1− e−λx

)a−1 {
1−

(
1− e−λx

)a}−b−1 {{
1−

(
1− e−λx

)a}−b − 1
}α−1

1− γ1
(
α,
{

1− (1− e−λx)
a}−b − 1

) ,

× exp

[
1−

{
1−

(
1− e−λx

)a}−b]
, x > 0 (22)

and the corresponding chrf is given by

ΩGKw−E(x) = − log

[
1− γ1

(
α,
{

1−
(

1− e−λx
)a}−b

− 1

)]
, x > 0.

Let us now investigate some asymptotic properties of FGKw−E(x), SGKw−E(x), fGKw−E(x)
and hGKw−E(x). When x → 0, by using Proposition 2.1 with G(x) ∼ λx and g(x) ∼ λ,
we have

FGKw−E(x) ∼ bαλaα

αΓ(α)
xaα, fGKw−E(x) ∼ abαλaα

Γ(α)
xaα−1, hGKw−E(x) ∼ abαλaα

Γ(α)
xaα−1.

Hence, when x → 0, if aα < 1, we have fGKw−E(x) → +∞, if aα = 1, we have

fGKw−E(x) → ab1/aλ/Γ(α), and if aα > 1, we have fGKw−E(x) → 0. Similarly, if

aα < 1, we have hGKw−E(x)→ +∞, if aα = 1, we have hGKw−E(x)→ ab1/aλ/Γ(α), and
if aα > 1, we have hGKw−E(x)→ 0.

When x→ +∞, by using Proposition 2.2, we have

SGKw−E(x) ∼ a−b(α−1)

Γ(α)
eλb(α−1)xe1−a

−beλbx , fGKw−E(x) ∼ λba−αb

Γ(α)
eλbαxe1−a

−beλbx

and

hGKw−E(x) ∼ λba−beλbx.
Hence, when x→ +∞, we fGKw−E(x)→ 0 and hGKw−E(x)→ +∞.
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The critical points of the GKw-E pdf and hrf can be determined by using the non-linear
equations given by (7) and (8).

In order to give more concrete illustrations on their shapes, Figures 1 and 2 display some
plots of the GKw-E pdf and hrf for specified parameters values. Figure 1 indicates that
the GKw-E distribution is right-skewed, left skewed and reversed-J shaped. Also, Figure 2
shows that GKw-E hrf can produce various shapes such as increasing, decreasing, bathtub
and upside-down bathtub.

0 1 2 3 4 5 6
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0

0.
5

1.
0

1.
5

x

pd
f

α = 0.5   a = 0.5   b = 0.3
α = 1.3   a = 0.4   b = 0.4
α = 18    a = 0.9   b = 0.58
α = 5      a = 1.2   b = 0.6
α = 3.2   a = 0.8   b = 1.1
α = 3.5   a = 0.7   b = 0.4

Figure 1. Plots of GKw-E pdfs for some parametric values with fixed λ = 1.
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5

x
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α = 0.4   a = 0.8     b = 0.27
α = 1.2   a = 1.5     b = 0.3
α = 0.2   a = 1.2     b = 0.1
α = 2.5   a = 0.8     b = 0.3
α = 0.2   a = 10.5   b = 0.05

Figure 2. Plots of GKw-E hrfs for some parametric values with fixed λ = 1.

4.2. Other properties. All the general properties determined in Section 3 can be trans-
posed to the GKw-E distribution. The most significant of them are described below.
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Since QG(p) = −(1/λ) log(1 − p), based on (9), the GKw-E quantile function is given
by

QGKw−E(p) = − 1

λ
log

[
1−

[
1−

{
1 + γ−11 (α, p)

}−1/b]1/a]
, p ∈ (0, 1).

Form this definition, the quartiles and octiles can be determined, as well as skewness
and kurtosis as given by (10) and (11), respectively, and some results on distributions,
as the useful one: for a random variable U following the uniform distribution on (0, 1),
QGKw−E(U) follows the GKw-E distribution.

A result on linear representations of F (x) and f(x) in terms of exponential functions is
presented below.

Proposition 4.1. We have the following linear representations for the cdf and pdf of the
GKw-E distribution:

FGKw−E(x) =
+∞∑
m=0

w∗me
−λmx, fGKw−E(x) =

+∞∑
m=0

w∗∗m e
−λmx, x > 0, (23)

where

w∗m =
+∞∑

i,j,k=0

(−1)i+j+k+m

Γ(α)k!(α+ k)

(
α+ k

j

)(
b(j − α− k)

i

)(
αi

m

)
, w∗∗m = −λmw∗m. (24)

Proof. For any positive integer i, by virtue of the generalized binomial formula, we have

G(x)αi = (1− e−λx)αi =

+∞∑
m=0

(
αi

m

)
(−1)me−λmx.

It follows from Proposition 3.1 that

FGKw−E(x) =

+∞∑
i=0

wiG(x)ai =

+∞∑
m=0

w∗me
−λmx,

where w∗m =

+∞∑
i=0

(
αi

m

)
(−1)mwi. The corresponding pdf is obtained by differentiation of

FGKw−E(x). This ends the proof of Proposition 4.1. �

Thanks to Proposition 4.1, several of structural properties of the GKw-E distribution
can be derived. Some of them are described below.

The r-th moment of the GKw-E distribution is given by

µ′r =

+∞∑
m=0

w∗∗m

∫ +∞

0
xre−λmxdx =

1

λr+1
Γ(r + 1)

+∞∑
m=0

w∗∗m
1

mr+1
.

We thus deduce the mean, the variance, the r-th central moment by using the formula
(16), the coefficient of skewness and the coefficient of kurtosis.
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In a similar manner, the moment generating function can be expressed as, for t ≤ 0,

M(t) =
+∞∑
m=0

w∗∗m

∫ +∞

0
etxe−λmxdx =

+∞∑
m=0

w∗∗m
1

λm− t
.

The r-th incomplete moment is given by, for t ≥ 0,

Ir(t) =

∫ t

−∞
xrfGKw−E(x)dx =

+∞∑
m=0

w∗∗m

∫ t

0
xre−λmxdx

=
1

λr+1

+∞∑
m=0

w∗∗m
1

mr+1
γ(r + 1, λmt).

The incomplete moments are useful to determine other important mathematical quanti-
ties as the Bonferroni and Lorenz curves, mean residual-life, mean waiting-time, mean
deviation about the mean and mean deviation about the median.

We end this subsection by a result about the i-th order statistics related to the GKw-E
distribution, mainly based on Proposition 3.3.

Proposition 4.2. Let X1, . . . , Xn be the random sample from the GKw-E distribution
and Xi:n be the i-th order statistic. Then the pdf of Xi:n can be expressed as a linear
combination of simple exponential functions.

Proof. By applying Proposition 3.3, and more precisely, the equality (18) in the proof, we
can write

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

+∞∑
`,m=0

(
n− i
j

)
(−1)jw`dj+i−1,m

`

`+m
q`,m(x),

where q`,m(x) = a(` + m)g(x)G(x)a(`+m)−1. It follows from the generalized binomial
theorem that

q`,m(x) = a(`+m)λ
+∞∑
k=0

(
a(`+m)− 1

k

)
(−1)ke−λ(k+1)x.

Hence we can write

fi:n(x) =
+∞∑
k=0

vke
−λ(k+1)x,

with

vk =
n!

(i− 1)!(n− i)!
aλ

n−i∑
j=0

+∞∑
`,m=0

(
n− i
j

)(
a(`+m)− 1

k

)
(−1)j+k`w`dj+i−1,m.

The proof of Proposition 4.2 is completed. �

Proposition 4.2 allows the determination of structural properties for Xi:n, as moments,
moment generating function, incomplete moments. . .
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5. Maximum likelihood estimation

In this section, we adopt the GKw-E distribution as model and consider the estimation
of the unknown parameters by the maximum likelihood method.

5.1. Characterization. The usefulness of the maximum likelihood estimates (MLEs) in
statistical inference is due to their theoretical and practical merits. Indeed, they have a
limiting normal distribution which are easily to handle either analytically or numerically.

The log-likelihood function for the vector of parameters Ω =
(
a, b, α, λ

)>
is given by

`(Ω) =
n∑
i=1

log[fGKw−E(xi)]

= n log(a) + n log(b)− n log [Γ(α)] + n log(λ)− λ
n∑
i=1

xi + (a− 1)
n∑
i=1

log
[
1− e−λxi

]
− (b+ 1)

n∑
i=1

log
[
1−

(
1− e−λxi

)a]
+ (α− 1)

n∑
i=1

log

[{
1−

(
1− e−λxi

)a}−b
− 1

]
+ n

−
n∑
i=1

{
1−

(
1− e−λxi

)a}−b
.

The first partial derivatives of `(Ω) with respect to a, b, α and λ are given by

∂

∂a
`(Ω) =

n

a
+

n∑
i=1

log
[
1− e−λxi

]
+ (b+ 1)

n∑
i=1

(
1− e−λxi

)a
log
[
1− e−λxi

]
1− (1− e−λxi)a

+ b(α− 1)

n∑
i=1

{
1−

(
1− e−λxi

)a}−b−1 (
1− e−λxi

)a
log
[
1− e−λxi

]{
1− (1− e−λxi)a

}−b − 1

− b
n∑
i=1

{
1−

(
1− e−λxi

)a}−b−1 (
1− e−λxi

)a
log
[
1− e−λxi

]
,

∂

∂b
`(Ω) =

n

b
−

n∑
i=1

log
[
1−

(
1− e−λxi

)a]
− (α− 1)

n∑
i=1

{
1−

(
1− e−λxi

)a}−b
log
[
1−

(
1− e−λxi

)a]{
1− (1− e−λxi)a

}−b − 1

+

n∑
i=1

{
1−

(
1− e−λxi

)a}−b
log
[
1−

(
1− e−λxi

)a]
,

∂

∂α
`(Ω) = −nΓ(α)′

Γ(α)
+

n∑
i=1

log

[{
1−

(
1− e−λxi

)a}−b
− 1

]
,
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∂

∂λ
`(Ω) =

n

λ
−

n∑
i=1

xi + (a− 1)
n∑
i=1

xie
−λxi

1− e−λxi
+ a(b+ 1)

n∑
i=1

xie
−λxi

(
1− e−λxi

)a−1
1− (1− e−λxi)a

+ ba(α− 1)

n∑
i=1

xie
−λxi

(
1− e−λxi

)a−1 {
1−

(
1− e−λxi

)a}−b−1{
1− (1− e−λxi)a

}−b − 1

− ab
n∑
i=1

xie
−λxi

(
1− e−λxi

)a−1 {
1−

(
1− e−λxi

)a}−b−1
.

Setting these equations to zero and solving them simultaneously yields the MLEs of the
GKw-E parameters. Since there are no close form for these MLEs, one can use a standard
statistical software or numerical techniques to solve them. Also, let us mention that the
observed Fisher information for the MLEs can be computed, allowing the construction
of confidence intervals for the parameters based on the limiting normal distribution. In
particular, this is useful to examine the probability coverage of these interval through
simulation, which is done the next subsection.

5.2. A numerical study. Now we assess the performance of the maximum likelihood
method for estimating the GKw-E parameters using Monte Carlo simulations. The sim-
ulation study is repeated 5000 times each with sample sizes n = 50, 100, 200 and the
following parameter scenarios: I: a = 0.5, b = 0.5, α = 0.5, and λ = 1, II: a = 0.3, b = 1.5,
α = 0.7, and λ = 2.5 and III: a = 1.7, b = 0.7, α = 0.2, and λ = 0.3, IV: a = 0.1, b = 2.5,
α = 1.1, and λ = 1.5,V: a = 2.5, b = 1.7, α = 2.5, and λ = 1, VI: a = 1.8, b = 1.7, α = 2.1,
and λ = 0.1. Under this setting, Table 2 gives the average biases (Bias) of the MLEs, mean
square errors (MSEs) and model-based coverage probabilities (CPs) for the parameters a,
b, α and λ. Based on these results, we conclude that the MLEs perform well in estimating
the parameters of the GKw-E distribution. The CPs of the confidence intervals are quite
close to the 95% nominal levels. Therefore, the MLEs and their asymptotic results can
be adopted for efficiently estimating and constructing confidence intervals for the model
parameters.
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Table 2. Monte Carlo simulation results for the GKw-E distribution: Bi-
ases, MSEs and CPs.

I II III

Parameter n Bias MSE CP Bias MSE CP Bias MSE CP

a 50 −0.015 0.051 0.98 −0.008 0.044 0.94 0.810 14.386 0.85
100 0.007 0.047 0.97 0.023 0.049 0.95 0.616 4.488 0.90
200 0.039 0.045 0.96 0.004 0.037 0.95 0.576 2.908 0.95

b 50 −0.140 0.162 0.97 −0.404 1.318 0.90 0.244 3.047 0.97
100 −0.125 0.127 0.97 −0.217 0.918 0.96 0.307 2.484 0.98
200 −0.113 0.104 0.95 −0.072 0.477 0.99 0.287 0.977 0.99

α 50 0.153 0.257 0.91 0.465 1.300 0.92 0.452 1.404 0.83
100 0.084 0.116 0.91 0.307 0.710 0.93 0.225 0.989 0.89
200 0.046 0.082 0.89 0.306 0.628 0.96 0.139 0.958 0.96

λ 50 1.807 6.527 0.95 2.601 2.726 0.92 0.752 1.324 1.00
100 1.461 4.742 0.94 1.136 1.129 0.93 0.555 1.002 1.00
200 1.180 3.136 0.95 0.202 0.847 0.97 0.364 0.743 0.97

IV V VI

Parameter n Bias MSE CP Bias MSE CP Bias MSE CP

a 50 −0.904 1.154 0.65 0.146 0.535 0.94 0.441 1.253 0.95
100 −0.665 0.461 0.92 0.164 0.309 0.95 0.194 0.579 0.96
200 −0.002 0.019 0.97 0.195 0.228 0.97 0.015 0.263 0.99

b 50 −0.032 0.349 0.98 0.172 0.241 1.00 0.018 0.893 0.95
100 0.014 0.333 0.98 0.053 0.065 0.96 0.072 0.633 0.96
200 −0.051 0.052 0.96 0.001 0.031 0.97 0.136 0.438 0.98

α 50 0.477 0.480 0.89 0.311 0.163 0.99 −0.158 0.112 0.97
100 0.270 0.163 0.96 0.271 0.132 0.95 −0.145 0.106 0.96
200 −0.051 0.052 0.98 0.222 0.100 0.96 −0.148 0.110 0.97

λ 50 0.337 0.601 0.99 −0.062 0.022 0.95 0.179 0.298 0.95
100 0.214 0.284 0.96 −0.059 0.017 0.96 0.204 0.323 0.96
200 0.243 0.814 0.98 −0.051 0.011 0.98 0.253 0.392 0.97
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6. Applications

In this section, we compare the proposed GKw-E model with well-known models using
two real data sets.

Application 1. The first data set is reported in [31]. The data represent the annual
maximum precipitation (inches) for one rain gauge in Fort Collins, Colorado from 1900
through 1999. The data are as follows: 239, 232, 434, 85, 302, 174, 170, 121, 193, 168,
148, 116, 132, 132, 144, 183, 223, 96, 298, 97, 116, 146, 84, 230, 138, 170, 117, 115, 132,
125, 156, 124, 189, 193, 71, 176, 105, 93, 354, 60, 151, 160, 219, 142, 117, 87, 223, 215,
108, 354, 213, 306, 169, 184, 71, 98, 96, 218, 176, 121, 161, 321, 102, 269, 98, 271, 95, 212,
151, 136, 240, 162, 71, 110, 285, 215, 103, 443, 185, 199, 115, 134, 297, 187, 203, 146, 94,
129, 162, 112, 348, 95, 249, 103, 181, 152, 135, 463, 183, 241.

In the statistical literature, several models are appropriate to the analysis of such kinds
of data. The most commonly used are the lognormal, generalized logistic (GL), Gumbel,
gamma, Weibull and generalized binomial exponential 2 (GBE2) models. Several exten-
sions have also been introduced by this purpose. Here, to highlight the potentiality of the
GKw-E model, the comparison is made between the GKw-E model and eights notorious
models: the Kumaraswamy Weibull (Kw-W) model studied by [10], the Beta Weibull
(BW) model due to [25], the exponentiated generalized Weibull (EGW) model by [28],
the generalized binomial exponential 2 (GBE2) model introduced by [8], the generalized
logistic (GL) model, the Gumbel model, the gamma model and the Weibull model. We es-
timate the unknown models parameters by the maximum likelihood method (as described
in Section 5 for the GKw-E model). The log-likelihood function is evaluated at the MLEs

(ˆ̀). For model comparison, we consider three well-known statistics: Akaike information
criterion (AIC), Anderson-Darling (A∗) Cramér–von Mises (W ∗) and Kolmogrov-Smirnov
(K-S) measures, where lower values of these statistics indicate good fits.

Table 3 lists the MLEs and standard errors for the considered models. Table 4 lists the
AIC, A∗, W ∗, K-S and p-values for the considered models. The values of the statistics
in Table 4 indicate that the GKw-E model shows small values of the statistics and thus
provides the best fit compared to the other models. Figures 3 and 4 show the plots of the
estimated pdfs and cdfs over the histogram of the data, respectively.
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Table 3. MLEs and their standard errors (in parentheses) for Precipita-
tion data.

Distribution α β a b µ σ θ λ

GKw-E 0.2975 - 67.1975 0.1802 - - - 0.0261
(0.1594) - (24.7418) (0.0599) - - - (0.0072)

Kw-W 0.0228 1.3122 13.4486 0.2461 - - - -
(0.0053) (0.2462) (7.6120) (0.1229) - - - -

BW 0.0243 1.4375 12.6298 0.1734 - - - -
(0.0033) (0.0193) (5.5638) (0.0446) - - - -

EGW 0.3105 0.7061 0.2357 27.1942 - - - -
(0.0148) (0.0117) (0.0276) (7.6257) - - - -

GBE2 9.0774 - - - - - 0.0222 0.0165
(1.9764) - - - - - (0.3265) (0.0029)

GL 13.5845 0.0174 - - -8.5348 - - -
(6.8592) (0.0015) - - (35.1221) - - -

Gumbel - - - - 139.8754 57.8420 - -
- - - - (6.0596) (4.7356) - -

Gamma 33.2955 5.2761 - - - - - -
(4.7925) (0.7239) - - - - - -

Weibull 0.0051 2.2608 - - - - - -
(0.0002) (0.1628) - - - - - -

Table 4. The statistics AIC, A∗, W ∗ and K-S for Precipitation data.

Distribution AIC A∗ W ∗ K-S

GKw-E 1137.2320 0.1664 0.0187 0.0421
Kw-W 1138.0280 0.1831 0.0212 0.0430
BW 1137.7220 0.1844 0.0210 0.0429
EGW 1138.7100 0.2045 0.0259 0.0481
GBE2 1138.9210 0.3655 0.0482 0.0573
GL 1143.1390 0.6335 0.0872 0.0565
Gumbel 1139.2900 0.4990 0.0675 0.0640
Gamma 1141.9400 0.7732 0.1088 0.0600
Weibull 1156.2860 1.8272 0.2927 0.0950



22 R. M. I. Arshad, C. Chesneau, F. Jamal, M. Mansoor, M. Zubair and M. A. Nasir

GKw−E

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

Kw−W

x

D
e

n
s
it
y

100 300 500
0

.0
0

0
0

.0
0

4

BW

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

EGW

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

GBE2

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

GL

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

Gumbel

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

Gamma

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

Weibull

x

D
e

n
s
it
y

100 300 500

0
.0

0
0

0
.0

0
4

Figure 3. Estimated pdfs of the considered models for Precipitation data.
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Figure 4. Estimated cdfs of the considered models for Precipitation data.
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Application 2. The second data set were reported by professor Jim Irish and can be
obtained at http://www.statsci.org/data/oz/kiama.html. It is about the Kiama Blowhole
eruptions. The data are as follows: 83, 51, 87, 60, 28,95, 8, 27, 15, 10, 18, 16, 29, 54, 91,
8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40,10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18,
73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

Table 5 lists the MLEs and standard errors for the considered models. Table 6 lists the
AIC, A∗, W ∗, K-S and p-values for the considered models. It is clear that, the GKw-E
model provides a better fit than the other tested models, because it has the smallest value
among AIC, A∗, W ∗ and K-S. Figures 5 and 6 show the plots of the estimated pdfs and
cdfs over the histogram of the data, respectively.

Table 5. MLEs and their standard errors (in parentheses) for the Kiama
Blowhole eruptions data.

Distribution α β a b µ σ θ λ

GKw-E 0.4154 - 17.7076 0.0481 - - - 0.2063
(0.0545) - (0.2513) (0.0072) - - - (0.0046)

Kw-W 0.3410 0.8685 10.4397 0.1396 - - - -
(0.0026) (0.0022) (0.0083) (0.0168) - - - -

BW 0.5484 0.7937 13.5819 0.1336 - - - -
(0.0025) (0.0025) (4.8229) (0.0177) - - - -

EGW 2.5406 0.3714 0.7506 26.1285 - - - -
(9.4366) (0.2260) (3.0932) (0.8858) - - - -

GBE2 1.7325 - - - - - 0.0048 0.0350
(0.3190) - - - - - (0.5680) (0.0111)

GL 21.5045 0.0473 - - -38.5692 - - -
(6.5526) (0.0048) - - (7.8114) - - -

Gumbel - - - - 25.6833 21.8407 - -
- - - - (2.8506) (2.3260) - -

Gamma 24.5722 1.6207 - - - - - -
(4.6509) (0.2623) - - - - - -

Weibull 0.0230 1.2701 - - - - - -
(0.0023) (0.1199) - - - - - -

Table 6. The statistics AIC, A∗, W ∗ and K-S for the Kiama Blowhole
eruptions data.

Distribution AIC A∗ W ∗ K-S
GKw-E 589.2545 0.4614 0.0530 0.0708
Kw-W 591.0460 0.6231 0.0819 0.0954
BW 591.6412 0.6366 0.0840 0.1023
EGW 595.9134 0.8324 0.1134 0.0946
GBE2 597.3321 0.9009 0.1287 0.1227
GL 612.7799 1.5554 0.2440 0.1517
Gumbel 609.6039 1.5124 0.2361 0.1493
Gamma 595.7988 0.9220 0.1324 0.1215
Weibull 597.8029 1.0058 0.1467 0.1111
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Figure 5. Estimated pdfs of competitive models for Kiama Blowhole erup-
tions data.
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Figure 6. Estimated cdfs of competitive models for Kiama Blowhole erup-
tions data.
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7. Concluding remarks

In this paper, we propose and study the new GKw-G family of distributions. We inves-
tigate some of its structural properties including skewness, kurtosis, linear representations
of the cumulative distribution and probability density functions, moments and derived
quantities, stochastic ordering, reliability parameter and order statistics. Then a special
model is considered, the GKw-E model, using the exponential distribution as baseline.
The maximum likelihood method is employed for estimating the model parameters. We
analyze two practical data sets, with fair comparison to other models, to demonstrate the
usefulness of the new family. The results are strictly favorable to the GKw-E model. We
hope that the proposed family and its generated models will attract wider application in
areas such as engineering, survival and lifetime data, hydrology, economics, among others.
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