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Gaussian Process Modulated Cox Processes
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Andrés F. López-Lopera ST John Nicolas Durrande
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Abstract

Gaussian process (GP) modulated Cox pro-
cesses are widely used to model point pat-
terns. Existing approaches require a mapping
(link function) between the unconstrained
GP and the positive intensity function. This
commonly yields solutions that do not have a
closed form or that are restricted to specific
covariance functions. We introduce a novel
finite approximation of GP-modulated Cox
processes where positiveness conditions can
be imposed directly on the GP, with no re-
strictions on the covariance function. Our ap-
proach can also ensure other types of inequal-
ity constraints (e.g. monotonicity, convexity),
resulting in more versatile models that can
be used for other classes of point processes
(e.g. renewal processes). We demonstrate
on both synthetic and real-world data that
our framework accurately infers the intensity
functions. Where monotonicity is a feature
of the process, our ability to include this in
the inference improves results.

1 INTRODUCTION

Point processes are used in a variety of real-world
problems for modelling temporal or spatiotemporal
point patterns in fields such as astronomy, geogra-
phy, and ecology (Baddeley et al., 2015; Møller and
Waagepetersen, 2004). In reliability analysis, they are
used as renewal processes to model the lifetime of items
or failure (hazard) rates (Cha and Finkelstein, 2018).
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Poisson processes are the foundation for modelling
point patterns (Kingman, 1992). Their extension
to stochastic intensity functions, known as doubly
stochastic Poisson processes or Cox processes (Cox,
1955), enables non-parametric inference on the in-
tensity function and allows expressing uncertainties
(Møller and Waagepetersen, 2004). Moreover, pre-
vious studies have shown that other classes of point
processes may also be seen as Cox processes. For ex-
ample, Yannaros (1988) proved that Gamma renewal
processes are Cox processes under non-increasing con-
ditions. A similar analysis was made later for Weibull
processes (Yannaros, 1994).

Gaussian processes (GPs) form a flexible prior over
functions, and are widely used to model the intensity
process Λ(·) (Møller et al., 2001; Adams et al., 2009;
Teh and Rao, 2011; Gunter et al., 2014; Lasko, 2014;
Lloyd et al., 2015; Fernandez et al., 2016; Donner and
Opper, 2018). However, to ensure positive intensities,
this commonly requires link functions between the
intensity process and the GP g(·). Typical examples
of mappings are Λ(x) = exp(g(x)) (Møller et al., 2001;
Diggle et al., 2013; Flaxman et al., 2015) or Λ(x) =
g(x)2 (Lloyd et al., 2015; Kozachenko et al., 2016).
The exponential transformation has the drawback that
there is no closed-form expression for some of the
integrals required to compute the likelihood. Although
the square inverse link function allows closed-form
expressions for certain kernels, it leads to models
exhibiting “nodal lines” with zero intensity due to
the non-monotonicity of the transformation (see John
and Hensman, 2018, for a discussion). Furthermore,
current approaches to Cox process inference cannot
be used in applications such as renewal processes that
require both positivity and monotonicity constraints.

Here, we introduce a novel approximation of GP-
modulated Cox processes that does not rely on a
mapping to obtain the intensity. In our approach
we impose the constraints (e.g. non-negativeness or
monotonicity) directly on Λ(·) by sampling from a
truncated Gaussian vector. This has the advantage
that the likelihood can be computed in closed form.
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Moreover, our approach can ensure any type of linear
inequality constraint everywhere, which allows mod-
elling of a broader range of point processes.

This paper is organised as follows. In Section 2,
we briefly describe inhomogeneous Poisson processes
and some of their extensions. In Sections 3 and 4,
we introduce a finite representation of GP-modulated
Cox processes and the corresponding Cox process
inference under inequality constraints. In Section
5, we apply our framework to 1D and 2D inference
examples under different inequality conditions. We
also test its performance in reliability applications
with hazard rates exhibiting monotonic behaviours.
Finally, in Section 6, we summarise our results and
outline potential future work.

2 POISSON POINT PROCESSES

A Poisson process X is a random countable subset of
S ⊆ Rd where points occur independently (Baddeley
et al., 2006). Let N ∈ N be a random variable (r.v.)
denoting the number of points in X. Let X1, · · · , Xn

be a set of n independent and identically distributed
(i.i.d.) r.v.’s on S. The likelihood of (N = n,X1 =
x1, · · · , Xn = xn) under an inhomogeneous Poisson
process with non-negative intensity λ(·) is given by
(Møller and Waagepetersen, 2004)

f(N,X1,···,Xn)(n,x1, · · · ,xn) =
exp(−µ)

n!

n∏
i=1

λ(xi), (1)

where

µ =

∫
S
λ(s) ds (2)

is the intensity measure or overall intensity.

When S is the real line, the distance (inter-arrival
time) between consecutive points of a Poisson process
follows an exponential distribution. Renewal processes
are a generalisation of Poisson processes where inter-
arrival times are i.i.d. but not necessarily exponentially
distributed. An example is the Weibull process where
inter-arrival times are distributed following λ(x) =
αβxβ−1 (Cha and Finkelstein, 2018).

Cox processes (Cox, 1955) are a natural extension
of inhomogeneous Poisson processes where λ(·) is
sampled from a non-negative stochastic process Λ(·).
Previous studies have shown that many classes of
point processes can be seen as Cox processes under
certain conditions (Møller and Waagepetersen, 2004;
Yannaros, 1988, 1994). For example, Weibull renewal
processes are Cox processes for β ∈ (0, 1] (Yannaros,
1994). This motivates the construction of GPs with
non-negative and monotonic constraints, so that they
can be used as intensities Λ(·) of Cox processes.

3 APPROXIMATION OF GP
MODULATED COX PROCESSES

In this work, we approximate the intensity Λ(·) of
the Cox process by a finite-dimensional GP Λm(·)
subject to some inequality constraints (e.g. bounded-
ness, monotonicity, convexity). Since positiveness con-
straints are imposed directly on Λm(·), a link function
is no longer necessary. This has two main advantages.
First, the likelihood (1) can be computed analytically.
Second, as our approach ensures any linear inequality
constraint, it can be used for modelling a broader
range of point processes.

3.1 Finite Approximation of 1D GPs

Let Λ(·) be a zero-mean GP on R with arbitrary
covariance function k. Consider x ∈ S, with compact
space S = [0, 1], and a set of knots t1, · · · , tm ∈ S.
Here we consider equispaced knots tj = (j − 1)∆m

with ∆m = 1/(m− 1). We define Λm(·) as the finite-
dimensional approximation of Λ(·) consisting of its
piecewise-linear interpolation at knots t1, · · · , tm, i.e.,

Λm(x) =

m∑
j=1

φj(x)ξj , (3)

where ξj := Λ(tj) for j = 1, · · · ,m, and φ1, · · · , φm are
hat basis functions given by

φj(x) :=

{
1−

∣∣∣x−tj∆m

∣∣∣ if
∣∣∣x−tj∆m

∣∣∣ ≤ 1,

0 otherwise.
(4)

Similarly to spline-based approaches (e.g., Sleeper and
Harrington, 1990), we assume that Λ(·) is piecewise
defined by (first-order) polynomials. The striking
property of this basis is that satisfying the inequality
constraints (e.g. boundedness, monotonicity, convex-
ity) at the knots implies that the constraints are
satisfied everywhere in the input space (Maatouk and
Bay, 2017). Although it is tempting to generalise
the above construction to smoother basis functions,
it makes this property difficult to enforce.

We aim at computing the distribution of Λm(·) under
the condition that it belongs to a convex set of
functions E defined by some inequality constraints (e.g.
positivity). This piecewise-linear representation has
the benefit that satisfying Λm(·) ∈ E is equivalent
to satisfying only a finite number of inequality con-
straints. More precisely,

Λm(·) ∈ E ⇔ ξ ∈ C, (5)

where ξ = [ξ1, · · · , ξm]>, and C is a convex set on Rm.

For non-negativeness conditions E+, C is given by

C+ := {c ∈ Rm; ∀ j = 1, · · · ,m : cj ≥ 0}, (6)
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Figure 1: Samples from the prior Λm(·) under (a) no constraints, (b) non-negativeness constraints, (c) both
non-negativeness and non-increasing constraints. The grey region shows the 95% confidence interval.

and for non-increasing conditions E↓, C is given by

C↓ := {c ∈ Rm; ∀ j = 2, · · · ,m : cj−1 ≥ cj}. (7)

Constraints can be composed, e.g. the convex set
of non-negativeness and non-increasing conditions is
given by C↓+ = C+ ∩ C↓.
Assuming that ξ is zero-mean Gaussian-distributed
with covariance matrix Γ = (k(ti, tj))1≤i,j≤m, then the
distribution of ξ conditioned on ξ ∈ C is a truncated
Gaussian distribution. Then, quantifying uncertainty
on Λm relies on sampling ξ ∈ C (see López-Lopera
et al., 2018, for further discussion).

The effect of different constraints on samples from the
prior Λm(·) can be seen in Figure 1. Here we set m =
100 and use a squared-exponential (SE) covariance
function1 with covariance parameters σ2 = 1, ` = 0.2.
The samples were generated via Hamiltonian Monte
Carlo (HMC) (Pakman and Paninski, 2014).

3.2 Application to 1D GP-Modulated Cox
Processes

The key challenge in building GP-modulated Cox pro-
cesses is the evaluation of the integral in the intensity
measure. By considering Λm(·) as the intensity of the
Cox process, the intensity measure (2) becomes

µm =

∫ 1

0

Λm(x) dx =

∫ 1

0

m∑
j=1

φj(x)ξj dx =

m∑
j=1

cjξj ,

where c1 = cm = ∆m

2 and cj = ∆m for 1 < j < m.
The likelihood of (N = n,X1 = x1, · · · , Xn = xn) is

f (N,X1,···,Xn)|{ξ1,···,ξm}(n, x1, · · · , xn)

=
1

n!
exp

(
−

m∑
j=1

cjξj

) n∏
i=1

m∑
j=1

φj(xi)ξj . (8)

1SE covariance function: k(t, t′) = σ2 exp(− (t−t′)2

2`2
).

Since (8) depends on r.v.’s ξ1, · · · , ξm, it can be
approximated using samples of ξ. To estimate the
covariance parameters θ of the vector ξ, we can use
stochastic global optimisation (Jones et al., 1998).

3.3 Extension to Higher Dimensions

The approximation in (3) can be extended to grids in d
dimensions by tensorisation. For ease of notation, we
assume the same number of knots m and knot-spacing
∆m in each dimension, but the generalisation to dif-
ferent m1, · · · ,md or ∆m1

, · · · ,∆md is straightforward.
Consider x = (x1, · · · , xd) ∈ [0, 1]d, and a set of knots
per dimension (t11, · · · , t1m), · · · , (td1, · · · , tdm). Then Λm
is given by

Λm(x) =

m∑
j1,···,jd=1

[ ∏
i={1,···,d}

φiji(xi)

]
ξj1,···,jd , (9)

where ξj1,···,jd := Λ(tj1 , · · · , tjd) and φiji are the hat
basis functions defined in (4). Inequality constraints
can be imposed as in López-Lopera et al. (2018). By
substituting (9) in (2), we obtain

µm =

∫ 1

0

Λm(x) dx =

m∑
j1,···,jd=1

[ ∏
i={1,···,d}

cji

]
ξj1,···,jd ,

with cji defined as in 1D, and the likelihood is

f (N,X1,···,Xn)|ξ(n,x1, · · · ,xn)

=
1

n!
exp

(
−

m∑
j1,···,jd=1

[ ∏
i={1,···,d}

cji

]
ξj1,···,jd

)
(10)

×
n∏
i=1

m∑
j1,···,jd=1

[ ∏
k={1,···,d}

φji(xi,k)

]
ξj1,···,jd ,

where xi,k is the k-th component of the point xi.

Due to the tensor structure of the finite representation,
it becomes costly as the dimension d increases. The
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HMC sampler for truncated multivariate Gaussians
from Pakman and Paninski (2014) follows the same
dynamics as a classical HMC sampler, but the particle
“bounces” on the boundaries if its trajectory reaches
one of the inequality constraints. The computational
complexity of each iteration scales linearly with the
number of inequality conditions (e.g. md for posi-
tiveness constraints) if the iteration does not require
any reflection, but also increases with each bounce.
Hence, in the best case, the computational complexity
is O(md). However, this drawback could be mitigated
by using sparse representations of the constraints
(Pakman and Paninski, 2014), or using other types
of designs of the knots (e.g. sparse designs).

4 COX PROCESS INFERENCE

Having introduced the model, we now establish an
inference procedure for Λ(·) using the approxima-
tion Λm(·). For readability, we only assume non-
negativeness constraints, i.e. ξ ≥ 0, but the extension
to other types of constraints can be made by construct-
ing a set of linear inequalities of the form l ≤ Aξ ≤ u,
where A is a full-rank matrix encoding the linear
operations, and l and u are the lower and upper
bounds. In that case, results for Aξ|{l ≤ Aξ ≤ u}
are similar as for ξ|{0 ≤ ξ < ∞}, and samples of
ξ can be recovered from samples of Aξ, by solving a
linear system.

Consider the non-negative Gaussian vector ξ and its
sample χ. The posterior distribution of ξ conditioned
on a point pattern (N = n,X1 = x1, · · · , Xn = xn) is

fξ|{N=n,X1=x1,···,Xn=xn}(χ) (11)

∝ f(N,X1,···,Xn)|{ξ=χ}(n, x1, · · · , xn) fξ(χ),

where the likelihood is defined in (8) and fξ(χ) is the
(truncated) Gaussian density given by

fξ(χ) =
exp

{
− 1

2χ
>Γ−1χ

}∫∞
0

exp
{
− 1

2s>Γ−1s
}

ds
, for χ ≥ 0. (12)

Since the posterior distribution (11) can be approxi-
mated using samples of ξ, it is possible to infer Λm(·)
via Metropolis-Hastings.

4.1 Metropolis-Hastings Algorithm with
Truncated Gaussian Proposals

The implementation of the Metropolis-Hastings algo-
rithm requires a proposal distribution q for the next
step in the Markov chain. In practice, Gaussian pro-
posals are often used, leading to the famous random-
walk Metropolis algorithm (Murphy, 2012). However,
since inequality constraints are not necessarily satisfied

using (non-truncated) Gaussian proposals, the stan-
dard random walk can suffer from small acceptance
rates due to constraint violations. We propose as
an alternative a constrained version of the random-
walk Metropolis algorithm where inequality conditions
are ensured when sampling from the proposal q. As
ξ is (non-negative) truncated Gaussian-distributed
(with covariance matrix Γ), we suggest the truncated
Gaussian proposal q given by

q(χk+1|χk) (13)

=
exp

{
− 1

2 [χk+1 − χk]>Σ−1[χk+1 − χk]
}∫∞

0
exp

{
− 1

2 [s− χk]>Σ−1[s− χk]
}

ds
,

where χk+1,χk ≥ 0 are samples of ξ and Σ is the
covariance matrix. Sampling from q can then be
performed via MCMC (Pakman and Paninski, 2014).
We use Σ = ηΓ, where η is a scale factor. This has
the benefit that we are sampling from a distribution
with similar structure to the true one, while η controls
the step size of the Metropolis-Hastings procedure and
can be manually tuned to obtain a trade-off between
mixing speed and acceptance rate of the algorithm.
The acceptance probability is given by

αk =
f̃ξ|{N=n,X1=x1,···,Xn=xn}(χ

k+1)

f̃ξ|{N=n,X1=x1,···,Xn=xn}(χ
k)
× βk, (14)

where βk = q(χk|χk+1)/q(χk+1|χk), and

f̃ξ|{N=n,X1=x1,···,Xn=xn}(χ) (15)

= exp
(
− 1

2
χ>Γ−1χ− c>χ

) n∏
i=1

φ>(xi)χ

is the (unnormalised) posterior distribution. φ(·) =
[φ1(·), · · · , φm(·)]> and c = [c1, · · · , cm]> are defined in
(4) and (8). We now focus on the term βk. Since the
truncated Gaussian density has the same functional
form as the non-truncated one, apart from the differing
support and normalising constants, this yields

βk =

∫∞
0

exp
{
− 1

2 [s− χk]>Σ−1[s− χk]
}

ds∫∞
0

exp
{
− 1

2 [s− χk+1]>Σ−1[s− χk+1]
}

ds
.

(16)

The orthants
∫∞

0
exp

{
− 1

2 [x− µ]>Σ−1[x− µ]
}

dx
cannot be computed in closed form, but they can
be estimated via MC (Genz, 1992; Botev, 2017).
Algorithm 1 summarises the implementation of the
Metropolis-Hastings algorithm for the Cox process
inference using the finite approximation of Section 3.
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Algorithm 1 Metropolis-Hastings algorithm for Cox
process inference with truncated Gaussian proposals

1: Input: χ(0) ∈ (Rm)+, Γ (covariance matrix of ξ),
η (scale factor).

2: for k = 0, 1, 2, · · · do
3: Sample χ′ ∼ N

(
χ(k), ηΓ

)
such that χ′ ∈ C+.

4: Compute αk as in (14).
5: Sample uk ∼ uniform(0, 1).
6: Set new sample to

7: χ(k+1) =

{
χ′, if αk ≥ uk
χ(k), if αk < uk

.

8: Compute λ
(k)
m (x) =

∑m
j=1 φj(x)χ

(k)
j at location x

with φj(·) defined in (4).

4.2 Inference with Multiple Observations

For No independent observations (Xν,1, · · · , Xν,nν )
with ν = 1, · · · , No, the acceptance probability follows

αk =

∏No
ν=1 fξ|{Nν=nν ,···,Xν,nν=xν,nν }(χ

k+1)∏No
ν=1 fξ|{Nν=nν ,···,Xν,nν=xν,nν }(χ

k)
βk, (17)

with posterior fξ|{Nν=nν ,Xν,1=xν,1,···,Xν,nν=xν,nν } and
βk given by (11) and (16). Then, Algorithm 1 can
be used with (17).

5 EMPIRICAL RESULTS

We test the performance of the finite approximation
of GP-modulated Cox process on 1D and 2D applica-
tions. In the following, we use the squared-exponential
covariance for the Gaussian vector ξ so that we can
compare to Lloyd et al. (2015). We estimate the
covariance parameters θ = (σ2, `) by maximising the
likelihood (8). For all numerical experiments, we fix
m such that we obtain accurate resolutions of the
finite representations while minimising the cost of
MCMC (see Bay et al., 2016; Maatouk and Bay, 2017,
for discussion about the convergence of the finite-
dimensional approximation of GPs).2 For simulating
ξ, we use the exact HMC sampler proposed by Pakman
and Paninski (2014). To approximate the Gaussian
orthant probabilities from (16), we use the estimator
proposed by Botev (2017) using 200 MC samples. We
run Algorithm 1 with a scale factor η between 10−3

and 10−4 for a good trade-off between the mixing
speed and the acceptance rate for each experiment.3

The number of discarded burn-in samples until the

2We tested our model for various values of m, observing
that, after a certain value, inference results are unchanged.

3We observed convergence of Algorithm 1 for a wide
range of values of η ∈ [10−5, 10−2]. Fine-tuning of η can
help the experiment run faster by gradually increasing η
until the sampling mixes well.

Markov chains became stationary varied between 103

and 104 samples. The code was implemented in
the R programming language based on the package
lineqGPR (López-Lopera, 2018).

5.1 Examples with Multiple Observations

Here, we test our approach using the three toy exam-
ples proposed by Adams et al. (2009),

λ1(x) = 2 exp{−x/15}+ exp{−[(x− 25)/10]2},
λ2(x) = 5 sin(x2) + 6,

λ3(x) = piecewise linear through (0, 2), (25, 3), (50, 1),

(75, 2.5) and (100, 3).

The domains for λ1, λ2 and λ3 are S1 = [0, 50], S2 =
[0, 5] and S3 = [0, 100], respectively.

Figure 2 shows the inference results using No =
1, 10, 100 observations sampled from the ground truth.
With increasing number of observations the inferred
intensity converges to the ground truth. Here, we fixed
m = 100 and η = 10−3.

In Table 1, we assess the performance of our approach
under non-negativeness constraints (cGP-C+). We
compare our inference results to the ones obtained
with a log-Gaussian process (log-GP) modulated Cox
process (Møller et al., 2001) and Variational Bayes
for Point Processes (VBPP) (Lloyd et al., 2015) using
the Q2 criterion. This criterion is defined as Q2 =
1− SMSE(λ(·), λ̂(·)), where SMSE is the standardised
mean squared error (Rasmussen and Williams, 2005).

Q2 is equal to one if the inferred λ̂(·) is exactly equal
to the true λ(·), zero if it is equal to the average
intensity λ, and negative if it performs worse than λ.
We compute the Q2 indicator on a regular grid of 1000
locations in S. Then, we compute the mean µ and
one standard deviation σ of the Q2 results across 20
different replicates. Table 1 shows that our approach
outperforms its competitors, with consistently higher
means of the Q2 results and lesser dispersion σ.

We assess the computational cost of our approach
using the third toy example λ3 for No = 100 (which
has the largest number of events with on average 22500
events in total). Obtaining one sample using our
approach takes around 60 milliseconds, and generating
all 104 samples takes 10 minutes in total (in contrast to
the 18 minutes required by VBPP).4 The multivariate
effective sample size (ESS) (Flegal et al., 2017) was es-
timated at 322, corresponding to an effective sampling
rate of 0.536 s−1.

4These experiments were executed on a single core of
an IntelR© CoreTM i7-6700HQ CPU.
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Figure 2: Inference results with multiple observations (No = 1, 10, 100) using the toy examples from Adams
et al. (2009). Each panel shows the point patterns (black crosses), the true intensity λ (red dashed lines) and the
intensity inferred by the finite approximation of GP-modulated Cox processes (blue solid lines). The estimated
90% confidence intervals of the finite approximation are shown in grey.

Table 1: Q2 results for the toy examples of Figure 2,
averaged over 20 (†10) replicates. Our results (cGP-
C+) are compared to results for Møller et al. (2001)
(log-GP) and Lloyd et al. (2015) (VBPP).

Toy No
Q2 (µ± σ) [%]

log-GP VBPP cGP-C+

λ1

1 51.2±30.1 51.9±26.1 65.7±14.3
10 95.1± 3.9 94.6± 3.7 95.4± 2.3
100 99.5±0.2 99.5± 0.3 99.5± 0.3

λ2

1 -35.2±43.4 -1.1±28.8 0.7±24.0
10 72.6± 9.1 71.7±10.4 81.9± 7.4
100 95.4± 0.7 92.1± 3.9 97.8± 0.6

λ3

1 49.2±22.6 49.5±29.9 58.1±21.4
10 91.7± 4.4 93.8± 2.8 94.3± 2.5
100 98.4± 0.4 98.9±0.3† 98.8± 0.3

5.2 Modelling Hazard Rates in Renewal
Processes

Poisson processes have been extended to model re-
newal processes where intensity functions are seen as
hazard rates defining the probability that an operating
object fails (Serfozo, 2009; Cha and Finkelstein, 2018).
However, in many application, e.g. reliability engineer-
ing and survival analysis, hazard rates exhibit mono-
tonic behaviours describing the degradation of items
or lifetime of organisms. For example, the hazard
functions for the failure of many mechanistic devices
and the mortality of adult humans tend to exhibit
monotonic behaviours. Thus, taking monotonicity

constraints into account in renewal processes is crucial
for the study of many applications. Moreover, it is
known that introducing monotonicity information in
GPs can lead to more realistic uncertainties (Riihimäki
and Vehtari, 2010; Maatouk and Bay, 2017).

As discussed in Section 2, some renewal processes can
be seen as Cox processes under certain conditions.
In order to demonstrate that we can model other
types of point patterns, here we use two toy examples
where hazard rates are known to be monotonic. Both
examples are inspired by two classical renewal process:
Weibull process and Gamma process.

For the first class, the Weibull hazard function is

λW (x) = αβxβ−1 for x ≥ 0, (18)

where α and β are the scale and shape parameters,
respectively. Depending on β, λW can be either non-
increasing (0 < β < 1), constant (β = 1), or non-
decreasing (β > 1). Moreover, for β ∈ (0, 1], the
Weibull renewal process can be seen as a Cox process
(Yannaros, 1988). For numerical experiments, we
consider the case of non-increasing conditions in the
domain S = [0, 100] by fixing α = 1 and β = 0.7 (see
Figure 3). We test our framework using No = 100 ob-
servations from λW , and we consider non-negativeness
conditions, with (cGP-C↓+) or without (cGP-C+) taking
into account the non-increasing constraint. We also
consider the case where λW is non-increasing and
convex (cGP-C

↓̂
+ ).

For the Gamma class, the hazard function is given by

λG(x) =
α xβ−1e−x

Γ(β)− Γx(β)
, for x ≥ 0, (19)
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Figure 3: Renewal inference examples under different inequality constraints using No = 100 and m = 100.
Inference results are shown for (top row) a Weibull renewal process with α = 1 and β = 0.7, and (bottom row)
a Gamma renewal process with α = 5 and β = 1.7. The panel description is the same as in Figure 2.

where Γ(·) and Γx(·) are the Gamma function and the
incomplete Gamma function, respectively (Cha and
Finkelstein, 2018), and α and β are the scale and
shape parameters. As for the Weibull process, different
behaviours can be obtained using different values of β.
Since similar profiles are obtained for β ∈ (0, 1], here
we are interested in the case where λG exhibits non-
decreasing constraints (β > 1). We fix S = [0, 5],
α = 5 and β = 1.7 obtaining a non-decreasing profile
as shown in Figure 3. Here, we consider non-decreasing
(cGP-C↑+), and non-decreasing and concave (cGP-C

↑
_
+ )

constraints. Since λG(x) < α for x ∈ S, we add the
constraint λG ∈ [0, α].

Figure 3 shows the inferred intensities of λW and λG

under the different conditions previously discussed. In
both experiments, we fixed m = 100 and η = 10−4.
For the Weibull class λW , the performance of all three
models, cGP-C+, cGP-C↓+ and cGP-C

↓̂
+ , tends to be

similar. However, the model without monotonicity
constraint exhibits undesired oscillations, whereas the
other two approaches provide more realistic decreasing
profiles and more accurate inference results for x > 50.
We can also observe that the three models cannot learn
the singularity at x = 0. Note that the proposed
methodology does not make any assumption on the
kernel, and it would be possible to consider a covari-
ance function such as k(x, y)/(xy) in order to improve
the model behaviour for small and large values of x.
For the Gamma hazard function λG, one may clearly
observe the benefits of adding the non-decreasing and
concave constraints, obtaining absolute improvements
between 0.8% and 3.5% of the Q2 indicator. Both

examples of Figure 3 show that the monotonicity and
convexity conditions found in certain point processes
can be difficult to learn directly from the data. This
suggests that including those constraints in the GP
prior is necessary to get accurate models with more
realistic uncertainties.

5.3 2D Redwoods Data

We now assess the performance of the proposed
approach for a 2D spatial problem. We use the
dataset provided by Ripley (1977) which describes
the locations of redwood trees. The dataset contains
n = 195 events scaled to the unit square (see Figure
4). Here we choose m = 15, obtaining 225 knots in
total, to obtain a good trade-off between resolution
and computational cost. We use the product of two
SE kernels with covariance parameters θ = (σ2, `1, `2)
as the covariance function of the Gaussian vector ξ,
and we choose η = 10−4 in Algorithm 1. Following the
burn-in step, we keep 105 samples for the inference of
λ(·), yielding a total running time of 7.6 hours (i.e. a
sampling rate of approximately 4 s−1).

Figure 4 shows the normalised inference results for the
redwood dataset for different values of the lengthscale
parameters. Since in our approach we directly impose
the inequality conditions on the Gaussian vector ξ
instead of using a link function, the interpretation of
the lengthscale parameters (`1, `2) are the same as
for standard GPs: one can find a trade-off between
fidelity and regularity by tuning `. One can note,
from Figures 4(a) and 4(b), that both profiles tend to
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1 = 0.055, ̂̀2 = 0.084

Figure 4: Inference results of the redwoods data from
Ripley (1977); Baddeley et al. (2015). Each panel
shows the point pattern (white dots) and the estimated
intensity λ(·).

properly learn the point patterns but more regularity is
exhibited when `1 = `2 = 10−1. For the case `1 = `2 =
10−2, although the model follows the point patterns,
one may observe noisy behaviour in regions without
points, e.g. around (x1, x2) = (0.30, 0.85), as small
values of ` lead to more oscillatory Gaussian random

fields. Finally, we infer λ(·) when the covariance
parameters θ are estimated via maximum likelihood
using (10). According to the estimated lengthscales

(̂̀1 = 0.055, ̂̀2 = 0.084), one can conclude that the
estimated intensity λ(·) is smoother along the second
dimension x2. This is in agreement with the inference
results by Adams et al. (2009), where more variations
of λ(·) were exhibited across x1.

6 CONCLUSIONS

The proposed model for GP-modulated Cox processes
is based on a finite-dimensional approximation of a
GP that is constrained to be positive. This approach
shows several advantages. First of all, it is based on
general linear inequality constraints so it allows us to
incorporate more information, such as monotonicity
and convexity, in the prior. As seen in the experiments,
this appears to be particularly helpful when few data
are available. Second, imposing directly the positivity
constraint on the GP makes the use of a link function
unnecessary. Both the likelihood and the intensity
measure can be computed analytically, which is not
always the case when using a link function. Finally,
the fact that our model is based on a finite-dimensional
representation ensures that the computational burden
grows linearly with the number of observations.

There are two key elements that make the method
work: (a) the finite-dimensional representation of the
GP that ensures that the constraints are satisfied
everywhere, and (b) the dedicated MCMC proposal
distribution based on a truncated normal distribution
which allows us to have high acceptance rates com-
pared to a naive multivariate Gaussian proposal.

The main limitation regarding the scaling of the pro-
posed method lies in the dimension of the input space.
This is due to the construction by tensorisation of the
basis functions used to obtain the finite-dimensional
representation. Moreover, our model is also sensitive
to three parameters: the dimensionality of the space
in which we perform HMC, the number of constraints,
and the number of times the HMC particles violate a
constraint. However, we believe that these limitations
are not inherent to the proposed model and that other
types of designs of the knots (e.g. sparse designs) could
be used in high dimensions.
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