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Long time behavior of the NLS-Szegö equation

Introduction

We consider the NLS-Szegő equation defined on the circle S 1

i∂ t u + ∂ 2 x u = Π(|u| 2 u), u(0, •) = u 0 . (1.1)
Here Π : L 2 (S 1 ) → L 2 (S 1 ) denotes the orthogonal projector from L 2 (S 1 ) onto the space of L 2 boundary values of holomorphic functions on the unit disc, Π :

k∈Z u k e ikx -→ k≥0 u k e ikx .
We denote by L 2 + := Π(L 2 (S 1 )) ⊂ L 2 (S 1 ), H s + := H s (S 1 ) L 2 + , for all s ≥ 0, and C ∞ + := C ∞ (S 1 ) L 2 + .

Motivation

The NLS-Szegő equation can be seen as the combination of two completely integrable systems: the defocusing cubic Schrödinger equation

i∂ t u + ∂ 2 x u = |u| 2 u, (t, x) ∈ R × S 1 , (1.2) 
and the cubic Szegő equation

i∂ t V = Π(|V | 2 V ), (t, x) ∈ R × S 1 . (1.3) 
They have both a Lax Pair structure and the action-angle coordinates, which can be used to obtain their explicit formulas with the inversed spectral method(see Zakharov-Shabat [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[END_REF], Faddeev-Takhtajan [START_REF] Faddeev | Hamiltonian Methods in the Theory of Solitons[END_REF], Grébert-Kappeler [START_REF] Grébert | The Defocusing NLS Equation and Its Normal Form[END_REF], Gérard [START_REF] Gérard | On the conservation laws of the defocusing cubic NLS equation[END_REF], for the NLS equation and Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF][START_REF] Gérard | Invariant tori for the cubic Szegő equation[END_REF][START_REF] Gérard | An explicit formula for the cubic Szegö equation[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF] for the cubic Szegő equation). However, these two Lax pairs cannot be combined in order to give a Lax pair for (1.1). Moreover, the long time behaviors of these two equations are totally different.

The NLS equation (1.2) has a sequence of conservation laws controlling every Sobolev norms(see Faddeev-Takhtajan [START_REF] Faddeev | Hamiltonian Methods in the Theory of Solitons[END_REF], Grébert-Kappeler [START_REF] Grébert | The Defocusing NLS Equation and Its Normal Form[END_REF], Gérard [START_REF] Gérard | On the conservation laws of the defocusing cubic NLS equation[END_REF]), so all the solutions are uniformly bounded in every H s space. Moreover, Grébert and Kappeler [START_REF] Grébert | The Defocusing NLS Equation and Its Normal Form[END_REF] have proved the existence of the global Birkhoff coordinates for NLS equation. So the solutions of (1.2) are actually almost periodic on R valued into H s (S 1 ).

Compared to (1.2), the cubic Szegő equation, which stands for a non-dispersive model, has both the Lax pair structure and the wave turbulence phenomenon. Its long time behavior is extremely sensible according to the different initial data. P.Gérard and S.Grellier have shown that(in [START_REF] Gérard | On the growth of Sobolev norms for the cubic Szegő equation, text of a talk at IHES[END_REF][START_REF] Gérard | An explicit formula for the cubic Szegö equation[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF]) for a G δ dense subset of initial data in C ∞ + , the solutions may blow up in H s , for every s > 1 2 with super-polynomial growth on some sequence of times, while they go back to their initial data on another sequence of times tending to infinity. However, all the H 

i∂ t V = |V | 2 V, V (0, •) = V 0 .
(1.4)

Then V (t, x) = e it|V0| 2 V 0 (x) and we have V (t) H s |t| s , for all s ≥ 0, if |V 0 | is not a constant function.

Hence, the Szegő projector both accelerates the energy transfer to high frequencies, and facilitates the transition to low frequencies for (1.4).

One wonders about whether filtering the positive Fourier modes can change the long time Sobolev estimates of the cubic defocusing Schrödinger equation. So we introduce equation (1.1). On the other hand, it can also be obtained from the cubic Szegő equation by adding the dispersive term ∂ 2 x to its linear part. In order to see the gradual change of the dispersion, we add the parameter α in front of the Laplacian ∂ 2

x to get a more general model, the NLS-Szegő equation (with small dispersion):

i∂ t u + α ∂ 2 x u = Π(|u| 2 u), u(0, •) = u 0 , 0 < < 1, α ≥ 0. (1.5) 
Equation (1.1) is the special case α = 0 for (1.5).

We endow L 2 + with the canonical symplectic form ω(u, v) = Im 

E α, (u) = α 2 ∂ x u 2 L 2 + 1 4 u 4 L 4 , u ∈ H 1 + . (1.6)
Besides E α, , equation (1.5) has two other conservation laws,

Q(u) = u 2 L 2 , I(u) = Im S 1 u∂ x u = u 2 Ḣ 1 2 ,
which give the estimate of the solution for low frequencies:

sup t∈R u(t) H s ≤ u 0 1-2s L 2 u 0 2s H 1 2 , ∀s ∈ [0, 1 2 ].
Proceeding as in the case of equation (1.2), one can prove the global existence and uniqueness of the solution of the NLS-Szegő equation in high frequency Sobolev spaces, by using the Brezis-Gallouët type estimate [START_REF] Brezis | Nonlinear Schrödinger evolution equations[END_REF], the Aubin-Lions-Simon theorem (see Theorem II.5.16 in Boyer-Fabrie [START_REF] Boyer | Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models[END_REF]) and the Trudinger type inequality (see Yudovich [START_REF] Yudovich | Non-stationary flow of an ideal incompressible liquid[END_REF], Vladimirov [START_REF] Vladimirov | On the solvability of a mixed problem for a nonlinear equation of Schrödinger type[END_REF], Ogawa [START_REF] Ogawa | A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations[END_REF] and Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF]). Its well-posedness problem in low frequency Sobolev spaces can be dealt with Strichartz's inequality introduced in Bourgain [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations[END_REF]. Only the high frequency Sobolev estimates are considered in this paper.

Proposition 1.2. For every s ≥ 1 2 , given u 0 ∈ H s + , there exists a unique solution u ∈ C(R, H s + ) of (1.5) such that u(0) = u 0 . For every T > 0, the mapping

u 0 ∈ H s + → u ∈ C([-T, T ], H s + ) is continuous.

Main results

The first result concerns the long time stability around the null solution of the NLS-Szegő equation (1.5).

If the initial data u 0 is bounded by , we look for a time interval I α , in which the solution u(t) is still bounded by O( ). Now we state the first result of this paper.

Theorem 1.3. For every s > 1 2 , there exist two constants a s ∈ (0, 1) and K s > 0 such that for all 0 < 1 and u 0 ∈ H s + , if u 0 H s = and u denotes the solution of (1.5), then

sup |t|≤ as 4-α u(t) H s ≤ K s , if α ∈ [0, 2]; sup |t|≤ as 2 u(t) H s ≤ K s , if α > 2. (1.7)
Moreover, the time interval

I α = [-as 2 , as 2 ]
is maximal for the case α > 2 and s ≥ 1 in the following sense: for every 0 < 1, there exists u 0 ∈ C ∞ + such that u 0 H s and for every β > 0, we have

sup |t|≤ 1 2+β u(t) H s | ln | 1 2 , u(0) = u 0 .
Remark 1.4. In the case α ∈ [0, 2), the proof is based on the Birkhoff normal form method, similarly to Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], Grébert [START_REF] Grébert | Birkhoff Normal Form and Hamiltonian PDEs[END_REF], Gérard-Grellier [START_REF] Gérard | Effective integrable dynamics for a certain nonlinear wave equation[END_REF] and Faou-Gauckler-Lubich [START_REF] Faou | Sobolev Stability of Plane Wave Solutions to the Cubic Nonlinear Schrödinger Equation on a Torus[END_REF] for instance. However, the time interval [-as 4-α , as 4-α ] may not be optimal. The resonant term of 6 indices in the homological equation can not be cancelled by the Birkhoff normal form transform.(see subsubsection 3.2.4)

The second set of results concerns the long time H s -estimates for the solutions of (1.5), if its initial data is a perturbation of the plane wave e m : x → e imx , for some m ∈ N and s ≥ 1. Let u = u(t, x) be the solution of equation (1.5) such that u(0) -e m H s = . Its energy functional (1.6) gives the following estimate: sup

t∈R u(t) H 1 u0 H 1 -α 2 , ∀0 < < 1, α ≥ 0. (1.8)
However, no information on the stability of the plane waves e m is obtained from (1.8) during the process → 0 + . Consider the super-polynomial growth of Sobolev norms in the cubic Szegő equation case (see [START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF] and Proposition 2.4 in this paper), the occurence of wave turbulence phenomenon for (1.5) depends on the level of its dispersion. We begin with three long time stability results for the polynomial dispersion α ∂ 2

x case with 0 ≤ α ≤ 2. The following theorem indicates H 1orbital stability of the traveling waves e m for equation (1.5).

Theorem 1.5. For all ∈ (0, 1), α ∈ [0, 2] and m ∈ N, there exists C m > 0 such that if u(0)-e m H 1 = , then we have sup

t∈R inf θ∈R u(t) -e iθ e m H 1 ≤ C m 1-α 2 .
For each t ∈ R, the infimum can be attained when θ = arg u m (t). A similar result is established by Zhidkov [START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory[END_REF]Sect. 3.3] and Gallay-Haragus [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF][START_REF] Gallay | Orbital stability of periodic waves for the nonlinear Schrödinger equation[END_REF] for the 1D cubic Schrödinger equation. In small dispersion case, Theorem 1.5 gives a significant improvement of estimate (1.8). We denote by S α, the non linear evolution group defined by (1.5) on H

1 2
+ . In other words, for every φ ∈ H

1 2 + , t → S α, (t)φ is the solution u ∈ C(R, H 1 2 + ) of equation (1.5) such that u(0) = φ. Corollary 1.6. For every m ∈ N, we have sup 0< <1 0≤α≤2 sup φ-em H 1 ≤ sup t∈R S α, (t)φ H 1 < ∞.
Compared to Proposition 2.4 (see [START_REF] Gérard | Effective integrable dynamics for a certain nonlinear wave equation[END_REF][START_REF] Gérard | An explicit formula for the cubic Szegö equation[END_REF]), the dispersive term α ∂ 2

x counteracts the wave turbulence phenomenon in H 1 norm for equation (1.5), if 0 ≤ α ≤ 2. After the change of variable u(t) = e i arg um(t) (e m + 1-α 2 v(t)), we use a bootstrap argument to get long time orbital stability of the traveling waves e m with respect to higher Sobolev norms.

Proposition 1.7. For all s ≥ 1 and m ∈ N, there exist two constants b m,s ∈ (0, 1) and L m,s > 0 such that if 0 ≤ α < 2 and u(0) -e m H s = ∈ (0, 1), then we have

sup |t|≤ bm,s 1-α 2 inf θ∈R u(t) -e iθ e m H s ≤ L m,s 1-α 2 .
(1.9)

We also look for a larger time interval in which the estimate (1.9) holds, by using the Birkhoff normal form transformation. But the coefficients in front of the high frequency Fourier modes in the homological equation may be arbitrarily large, if α ∈ (0, 2). For this reason, we return to the case α = 0 and consider equation (1.1).

i∂ t u + ∂ 2 x u = Π(|u| 2 u), u(0, •) = u 0 .
Then the time interval can be enlarged as [-

dm,s 2 ,
dm,s 2 ] in this case. Theorem 1.8. In the case α = 0, for all s ≥ 1 and m ∈ N, there exist three constants d m,s , m,s ∈ (0, 1) and K m,s > 0 such that if u(0) -e m H s = ∈ (0, m,s ), then we have

sup |t|≤ dm,s 2 inf θ∈R u(t) -e iθ e m H s ≤ K m,s .
A similar result is obtained in Faou-Gauckler-Lubich [START_REF] Faou | Sobolev Stability of Plane Wave Solutions to the Cubic Nonlinear Schrödinger Equation on a Torus[END_REF] for the focusing or defocusing cubic Schrödinger equation on the arbitrarily dimensional torus. (see Section 5 for the comparison between (1.1) and (1.2))

After stating the stability results, we turn to construct a large solution for (1.5) with respect to the initial data, if the level of dispersion is exponentially small with respect to the level of perturbation of the plane wave e 1 :

x → e ix . We state the last result of this paper.

Theorem 1.9. There exists a constant K > 0 such that for all 0 < δ 1, we denote by U the solution of the following NLS-Szegő equation with small dispersion

i∂ t U + ν 2 ∂ 2 x U = Π(|U | 2 U ), U (0, x) = e ix + δ, (1.10) 
where ν = e -πK 2δ 2 , then we have

U (t δ ) H 1 1 δ with t δ := π δ √ 4+δ 2 .
This H 1 -instability result indicates that the support of the energy functional of equation (1.10) is transferred to higher Fourier modes. This phenomenon is similar to the cubic Szegő equation case (see [START_REF] Gérard | An explicit formula for the cubic Szegö equation[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF]) and the 2D cubic NLS case (see Colliander-Keel-Staffilani-Takaoka-Tao [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation[END_REF]). Compared to Theorem 1.5, adding the low-level dispersion e -πK δ 2 ∂ 2 x fails to change the quality of wave turbulence phenomenon (Proposition 2.4) for the cubic Szegő equation.

The second part of Theorem 1.3 is a consequence of Theorem 1.9. Indeed, if α > 2, we rescale

u(t, x) = U ( 2 t, x) with e -πK 2δ 2 = ν = α-2
2 . Then u solves (1.5) with u(0, x) = (e ix + δ) and

u( t δ 2 ) H 1 = U (t δ ) H 1 δ (α -2)| ln | , while t δ 2 | ln | 2 1
2+β , for all β > 0. However, this method does not work in the critical case α = 2. If

u solves i∂ t u + 2 ∂ 2 x u = Π(|u| 2 u), u(0, x) = (e ix + δ),
after rescaling U (t, x) = -1 u( -2 t, x), we get equation (1.10) with ν = 1, leading to (1.1) with initial data U (0, x) = e ix + δ. Theorem 1.5 and Theorem 1.8 yield the following two estimates

sup t∈R u(t) H 1 = O( ), sup |t|≤ d 1,s 2 δ 2 u(t) H s = O( ), ∀0 < δ 1, ∀0 < < 1,
for every s > 1 2 . The problem of the optimal time interval in the case α = 2 of Theorem 1.3 remains open.

This paper is organized as follows. In Section 2, we recall some basic facts of the cubic Szegő equation and its consequences. In Section 3, we study long time behavior for (1.5) with small data and prove Theorem 1.9 and Theorem 1.3. In Section 4, we study the orbital stability of the plane waves e m for (1.5) for every m ∈ N and give the proof of Theorem 1.5, Proposition 1.7 and Theorem 1.8. We compare the NLS equation and the NLS-Szegő equation in Section 5.

The cubic Szegő equation

In this section, we recall some results of the cubic Szegő equation

i∂ t V = Π(|V | 2 V ), V (0, •) = V 0 . (2.1)
2.1 The Lax pair structure

Given V ∈ H 1 2
+ , the Hankel operator

H V : L 2 + → L 2 + is defined by H V (h) = Π(V h).
Given b ∈ L ∞ (S 1 ), the Toeplitz operator

T b : L 2 + → L 2 + is defined by T b (h) = Π(bh).
Theorem 2.1. (Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF]) Set V ∈ C(R; H s + ) for some s > 1 2 . Then V solves the cubic Szegő equation if and only if H V satisfies the following evolutive equation

∂ t H V = [B V , H V ].
(2.2) 

where B V := i 2 H 2 V -iT |V | 2 .
Tr|H V |.
Using the embedding theorem H s → B 1 1,1 → L ∞ , for any s > 1, we have the following L ∞ estimate of the Szegő flow.

Corollary 2.2. (Gérard-Grellier [START_REF] Gérard | The cubic Szegő equation[END_REF]) Assume V 0 ∈ H s + for some s > 1, then we have

sup t∈R V (t) L ∞ s V 0 H s 2.

Wave turbulence

The following theorem indicates its chaotic long time behavior with turbulence phenomenon for general initial data.

Theorem 2.3. (Gérard-Grellier [START_REF] Gérard | On the growth of Sobolev norms for the cubic Szegő equation, text of a talk at IHES[END_REF][START_REF] Gérard | The cubic Szegő equation and Hankel operators[END_REF]) 1.There exists a G δ -dense set U ⊂ C ∞ (S 1 ) L 2 + such that if V 0 ∈ U , then there exist two sequences (t n ) n∈N and (t n ) n∈N tending to infinity such that

lim n→+∞ V (tn) H s |tn| p = +∞, ∀s > 1 2 , ∀p ≥ 1, lim n→+∞ V (t n ) = V 0 . 2.For every V 0 ∈ H 1 2 + , the mapping t ∈ R → V (t) ∈ H 1 2
+ is almost periodic.

A special case

In order to prove the optimality of the case α > 2 of Theorem 1.3, we compare the solution u of the NLS-Szegő with small dispersion to the solution of the cubic Szegő equation with some special initial data. Set V 0 = V δ 0 := δ + e ix , we denote V δ the solution of (2.1). Refering to Gérard-Grellier [12 Sect. 6.1, 6.2; 13 Sect. 3; 16 Sect. 4], we have the following explicit formula

V δ (t, x) = a δ (t)e ix + b δ (t) 1 -p δ (t)e ix , (2.3) 
where

a δ (t) = e -it(1+δ 2 ) , b δ (t) = e -it(1+ δ 2 2 ) (δ cos(ωt) -i 2 + δ 2 √ 4 + δ 2 sin(ωt)), p δ (t) = - 2i √ 4 + δ 2 sin(ωt)e -itδ 2 2 , ω = δ 1 + δ 2 4 . Proposition 2.4. (Gérard-Grellier [12, 13, 16]) For 0 < δ 1, set t δ := π 2ω = π δ √ 4+δ 2 ∼ π 2δ
. Let V δ be the solution of (2.1) with V δ (0, x) = e ix + δ, then we have the following estimate

V δ (t) H s s V δ (t δ ) H s s 1 δ 2s-1 , ∀t ∈ [0, t δ ].
for every s > 1 2 .

Proof. Expanding formula (2.3) as Fourier series, we have

V δ (t) 2 H s s |a δ (t) + b δ (t)p δ (t)| 2 (1 -|p δ (t)| 2 ) 2s+1 = V δ (t) 2 Ḣ 1 2 (1 -|p δ (t)| 2 ) 2s-1 with V δ (t) 2 Ḣ 1 2 = |a δ (t) + b δ (t)p δ (t)| 2 (1 -|p δ (t)| 2 ) 2 = V δ (0) 2 Ḣ 1 2 = 1.
By the explicit formula of p δ , we have

V δ (t) 2 H s s 4 + δ 2 4 cos 2 (ωt) + δ 2 2s-1 ≤ V δ (t δ ) 2 H s C s δ 4s-2 with t δ := π 2ω = π δ √ 4+δ 2 .
3 Long time behavior for small data

The case α ≥ 2

For all s > 1 2 , consider the NLS-Szegő equation with small dispersion and small data.

i∂ t u + α ∂ 2 x u = Π(|u| 2 u), u(0) H s = , 0 < < 1, α ≥ 0. ( 3.1) 
At first, we give the proof of the time interval I α = [-as 2 , as 2 ] in the case α ≥ 2 of Theorem 1.3, which is based on a bootstrap argument. Then we prove the maximality of I α . 

The bootstrap argument

M (τ ) ≤ a + bM (τ ) m , for all τ ∈ [0, T ] Assume that (mb) 1 m-1 M (0) ≤ 1 and (mb) 1 m-1 a ≤ m-1 m . Then M (τ ) ≤ m m -1 a for all τ ∈ [0, T ]. Proof. The function f m : z ∈ R + -→ z -bz m attains its maximum at the critical point z c = (mb) -1 m-1 . f m (z c ) = m-1 m (mb) -1 m-1 . Since a ≤ max z≥0 f m (z) = f m (z c ), there exists z -≤ z c ≤ z + such that {z ≥ 0 : f m (z) ≤ a} = [0, z -] ∪ [z + , +∞[ and f m (z ± ) = a. Since f m (M (τ )) ≤ a, ∀0 ≤ τ ≤ T and M (0) ≤ z c , we have M ([0, T ]) ⊂ [0, z -]. By the concavity of f m on [0, +∞[, we have f m (z) ≥ fm(zc) zc z for all z ∈ [0, z c ]. Consequently, M (t) ≤ z -≤ m m-1 a, for all 0 ≤ t ≤ T .
Proof of of estimate (1.7) in the case α > 2 . For all α ≥ 0 and ∈ (0, 1) fixed, we rescale u as u = µ, equation (3.1) becomes

i∂ t µ + α ∂ 2 x µ = 2 Π(|µ| 2 µ), µ(0) H s = 1. (3.2)
Duhamel's formula of equation (3.2) gives the following estimate:

sup 0≤τ ≤t µ(τ ) H s ≤ µ(0) H s + C s 2 t sup 0≤τ ≤t µ(τ ) 3 H s (3.3)
Here C s denotes the Sobolev constant in the inequality |µ| 2 µ H s ≤ C s µ 3 H s . We choose a s = 4 27Cs and the following estimate holds sup

|t|≤ as 2 u(t) H s ≤ 3 2 , ∀α ≥ 0, (3.4) 
by using Lemma 3.

1 with m = 3, T = as 2 , a = M (0) = 1, b = C s 2 T and M (t) = sup 0≤τ ≤t µ(τ ) H s .

Optimality of the time interval if α > 2

In order to prove the optimality of I α in which estimate (3.4) holds, we set u(0, x) = (e ix + δ) and rescale u(t, x) = U ( 2 t, x). Then, we have

i∂ t U + ν 2 ∂ 2 x U = Π(|U | 2 U ), U (0, x) = e ix + δ,
where ν := α-2

2 . Since the optimality is a consequence of Theorem 1.9, we prove at first Theorem 1.9 by comparing U to the solution of the cubic Szegő equation with the same initial data,

i∂ t V = Π(|V | 2 V ), V (0, x) = e ix + δ.
Proof of Theorem 1.9. We shall estimate their difference r(t, x) := U (t, x) -V (t, x), which satisfies the following equation

i∂ t r + ν 2 ∂ 2 x r = -ν 2 ∂ 2 x V + Π(V 2 r + 2|V | 2 r) + Q(r), r(0) = 0, (3.5) 
with

Q(r) := Π(V r 2 + 2V |r| 2 + |r| 2 r). Thus, we can calculate the derivative of r(t) 2 H 1 , ∂ t r(t) 2 H 1 =∂ t r(t) 2 L 2 + ∂ t ∂ x r(t) 2 L 2 =2Im i∂ t r(t), r(t) L 2 + 2Im ∂ x (i∂ t r(t)), ∂ x r(t) L 2 =2Im S 1 ν 2 ∂ x V ∂ x r + V 2 r 2 -V |r| 2 r + 2Im S 1 -ν 2 ∂ 3 x V ∂ x r + V 2 (∂ x r) 2 + 2V ∂ x V r∂ x r + 4Re(V ∂ x V )r∂ x r + 2Im S 1 ∂ x V r 2 ∂ x r + 2V r|∂ x r| 2 + 2∂ x V |r| 2 ∂ x r + 4V Re(r∂ x r)∂ x r + r 2 (∂ x r) 2 .
Then, we have

∂ t r(t) 2 H 1 ≤2ν 2 ∂ x r L 2 ( ∂ x V L 2 + ∂ 3 x V L 2 ) + 2 V 2 L ∞ r 2 H 1 + 2 V L ∞ r L ∞ r 2 L 2 + 12 V L ∞ r L ∞ ∂ x V L 2 ∂ x r L 2 + 6 r 2 L ∞ ∂ x V L 2 ∂ x r L 2 + 12 V L ∞ r L ∞ ∂ x r 2 L 2 + 2 r 2 L ∞ ∂ x r 2 L 2 ≤ν 2 (2 ∂ x r 2 L 2 + ∂ x V 2 L 2 + ∂ 3 x V 2 L 2 ) + 2 V 2 L ∞ r 2 H 1 + 12 V L ∞ ∂ x V L 2 r L ∞ ∂ x r L 2 + O( r 3 H 1 )
. The L ∞ estimate of V is given by Corollary 2.2 and the H s estimate of V is given by Proposition 2.4, for all s > 1 2 . Thus, we have

M ∞ := sup 0<δ<1 sup t∈R V (t) L ∞ < +∞,
and there exist C 1 , C 3 > 0 such that

∂ x V (t) L 2 ≤ C 1 δ , ∂ 3 x V (t) L 2 ≤ C 3 δ 5 , for all 0 ≤ t ≤ t δ = π δ √ 4+δ 2 .
We use a bootstrap argument to deal with the term O( r 3 H 1 ). Set

T := sup{t > 0 : sup 0≤τ ≤t r(τ ) H 1 ≤ 1}, then we have sup 0≤t≤T r(t) L ∞ ≤ C sup 0≤t≤T r(t) H 1 ≤ C,
where C denotes the Sobolev constant. Consequently, for all 0 ≤ t ≤ min(T, t δ ), we have

∂ t r(t) 2 H 1 ≤ν 2 ( ∂ x V 2 L 2 + ∂ 3 x V 2 L 2 ) + r 2 H 1 (2ν 2 + 2 V 2 L ∞ + 12C V L ∞ ∂ x V L 2 + 6C r L ∞ ∂ x V L 2 + 12 V L ∞ r L ∞ + 2 r 2 L ∞ ) ≤ν 2 ( C 2 1 δ 2 + C 2 3 δ 10 ) + (2 + 2M 2 ∞ + 12CM ∞ + 2C 2 + (12CM ∞ + 6C 2 ) C 1 δ ) r 2 H 1 ≤K( ν 2 δ 10 + r(t) 2 H 1 δ ), ∀0 < δ, ν < 1, with K := max(C 2 1 + C 2 3 , 2 + 2M 2 ∞ + 12CM ∞ + 2C 2 + (12CM ∞ + 6C 2 )C 1 ). We set ν = α-2 2 = e -πK 2δ 2 ⇐⇒ δ = πK (α-2)| ln | .
Using Grönwall's inequality, we deduce that

r(t) 2 H 1 ≤ ν 2 δ 9 e πK 2δ 2 = δ -9 e -πK 2δ 2 1 δ -2 , ∀0 ≤ t ≤ t δ , ∀0 < δ 1. Since V (t δ ) H 1 1 δ by Theorem 2.4, we have U (t δ ) H 1 = V (t δ ) + r(t δ ) H 1 1 δ .
Fix α > 2, for every 0 < 1, we set

δ = δ α, := πK (α-2)| ln | 1, T α, := t δ 2 = π 2 2 δ 1+ δ 2 4 √ (α-2)| ln | 2 .
Then we have u(T α, ) H 1 (α -2)| ln | , while u(0, x) = (e ix + δ). Then the optimality of

I α = [-as 2 , as 2 ] is obtained. 3.2 The case 0 ≤ α < 2
We assume at first that u(0) ∈ C ∞ + so that the energy functional of (3.1)

E α, (u) = α 2 ∂ x u 2 L 2 + 1 4 u 4 L 4
is well defined. For general initial data u(0

) ∈ H s + , if s ∈ ( 1 2 , 1), we use the density argument C ∞ + = H s + .
We rescale u(t, x) → -α 2 u(-α t, x), then the equation (3.1) is reduced to the case α = 0. It suffices to prove the following estimate sup

|t|≤ as 4 u(t) H s = O( ) if u solves i∂ t u + ∂ 2 x u = Π(|u| 2 u) with u(0) H s = .

Identifying the resonances

The study of the resonant set of the NLS-Szegő equation is necessary before Birkhoff normal form transformation. We refer to Eliasson-Kuksin [START_REF] Eliasson | KAM for the nonlinear Schrödinger equation[END_REF] to see the analysis of the resonances for a more general non linear term and KAM theorem for the NLS equation.

We use again the change of variable u = µ and we rewrite Duhamel's formula of µ with η(t) = k≥0 η k (t)e ikx := e -it∂ 2 x µ(t). Then we have

η k (t) = µ 0 (t) -i 2 k1-k2+k3-k=0 t 0 e -iτ (k 2 1 -k 2 2 +k 2 3 -k 2 ) η k1 (τ )η k2 (τ )η k3 (τ )dτ,
for all k ≥ 0. Recall the classical identification of the resonant set

k 1 -k 2 + k 3 -k 4 = 0 k 2 1 -k 2 2 + k 2 3 -k 2 4 = 0. ⇐⇒ k 1 = k 2 k 3 = k 4 or k 1 = k 4 k 2 = k 3 .
In order to cancel all the resonances, we apply the transformation v(t)

:= e 2it 2 µ(0) 2 L 2 µ(t). As µ L 2 is a conservation law, we have i∂ t v(t) + ∂ 2 x v(t) = 2 Π(|v(t)| 2 v(t)) -2 v(t) 2 L 2 v(t) , ∀t ∈ R. (3.6)
The equation (3.6) can be seen as the Hamiltonian system with respect to the energy function

H (v) = 1 2 ∂ x v 2 L 2 + 2 4 v 4 L 4 -2 v 4 L 2 =: H 0 (v) + 2 R(v). (3.7) Then we have R(v) = 1 4 k1-k2+k3-k4=0 k 2 1 -k 2 2 +k 2 3 -k 2 4 =0 v k1 v k2 v k3 v k4 -k≥0 |v k | 4 .

The Birkhoff normal form

Equation (3.6) is transferred to another Hamiltonian equation which is closer to the linear Schrödinger equation by Birkhoff normal form method. We try to find a symplectomorphism Ψ such that the energy functional H is reduced to the Hamiltonian

H • Ψ (v) = H 0 (v) + 2 R(v) + O( 4-α ), where R(v) = -1 4 k≥0 |v k | 4 .
Ψ is chosen as the value at time 1 of the Hamiltonian flow of some energy 2 F .

We fix the value s > 1 2 . Recall that, given a smooth real valued function H, we denote X H the Hamiltonian vector field, i.e, dH(v

)(h) = ω(h, X H (v)).
Given two smooth real-valued functions F and G on H s + , their Poisson bracket {F, G} is defined by

{F, G}(v) := ω(X F (v), X G (v)) = 2 i k≥0 (∂ v k F ∂ v k G -∂ v k G∂ v k F ) (v), (3.8) 
for all v = k≥0 v k e ikx ∈ H s + . In particular, if F and G are respectively homogeneous of order p and q, then their Poisson bracket is homogeneous of order p + q -2.

Lemma 3.2. Set F (v) := k1-k2+k3-k4=0 f k1,k2,k3,k4 v k1 v k2 v k3 v k4 , with the coefficients f k1,k2,k3,k4 = i 4(k 2 1 -k 2 2 +k 2 3 -k 2 4 ) , if k 2 1 -k 2 2 + k 2 3 -k 2 4 = 0, 0, otherwise.
Thus, F is real-valued and its Hamiltonian field X F is smooth on H s + such that {F, H 0 } + R = R and the following estimates hold.

X F (v) H s s v 3 H s , dX F (v) B(H s ) s v 2 H s , for all v ∈ H s + .
Proof. F well defined because sup (k1,k2,k3,k4)∈Z 4 |f k1,k2,k3,k4 | ≤ 1 4 , the Sobolev embedding yields that

|F (v)| ≤ 1 4 k≥0 |û(k)| 4 s u 4 H s . The Young's convolution inequality l 1 * l 1 * l 2 → l 2 implies that X F (v) H s s v 3 H s and dX F (v) B(H s ) s v 2 H s . Using (3.8
) and the definition of f k1,k2,k3,k4 , we have

{F, H 0 }(v) =i k1-k2+k3-k4=0 (k 2 1 -k 2 2 + k 2 3 -k 2 4 )f k1,k2,k3,k4 v k1 v k2 v k3 v k4 = - 1 4 k1-k2+k3-k4=0 k 2 1 -k 2 2 +k 2 3 -k 2 4 =0 v k1 v k2 v k3 v k4 = -R(v) + R(v).
Set χ σ := exp( 2 σX F ) the Hamiltonian flow of 2 F , i.e.,

d dσ χ σ (u) = 2 X F (χ σ (u)), χ 0 (u) = u.
We perform the canonical transformation Ψ := χ 1 = exp( 2 X F ). The next lemma will prove the local existence of χ σ , for |σ| ≤ 1 and give the estimate of the difference between v and Ψ -1 (v) Lemma 3.3. For s > 1 2 , there exist two constants ρ s , C s > 0 such that for all v ∈ H s + , if v H s ≤ ρ s , then χ σ (v) is well defined on the interval [-1, 1] and the following estimates hold:

sup σ∈[-1,1] χ σ (v) H s ≤ 3 2 v H s , sup σ∈[-1,1] χ σ (v) -v H s ≤ C s 2 v 3 H s , dχ σ (v) B(H s ) ≤ exp(C s 2 v 2 H s |σ|), ∀σ ∈ [-1, 1].
Proof. The inequality dX

F (v) B(H s ) ≤ C s v 2 H s implies that the Lipschitz coefficient of the mapping v -→ 2 X F (v) is bounded by C s 2 v 2 H s ≤ C s ρ 2 s .
If ρ s is sufficiently small, then the Hamiltionian flow (σ, v) → χ σ (v) exists on the maximal interval (-σ * , σ * ), by the Picard-Lindelöf theorem. Assume that σ * < 1, then Lemma 3.2 and the following integral formula

χ σ (v) = v + 2 σ 0 X F (χ τ (v))dτ, ∀0 ≤ σ < σ * . (3.9) 
yield that sup

0≤τ ≤σ χ τ (v) H s ≤ v H s + C s σ 2 sup 0≤τ ≤σ χ τ (v) 3 H s , ∀0 ≤ σ < σ * < 1. By Lemma 3.1 with M (t) = sup 0≤τ ≤t χ τ (v) H s , m = 3, a = M (0) = v H s and b = C s 2 , we have sup |σ|≤σ * χ σ (v) H s ≤ 3 2 v H s , if v H s ≤ 2 3 √
3Cs . This is a contradiction to the blow-up criterion. Hence σ * ≥ 1, and we have sup

|σ|≤1 χ σ (v) H s ≤ 3 2 v H s , if v H s ≤ ρ s := 2 3 √ 3Cs . Since X F (v) H s ≤ C s v 3 H s , for all σ ∈ [-1, 1], we have χ σ (v) -v H s ≤ |σ| 2 sup 0≤t≤|σ| X F (χ t (v)) H s ≤ C s 2 sup 0≤t≤|σ| χ t (v) 3 H s ≤ C s 2 v 3 H s . if v H s ≤ ρ s .
We differentiate equation (3.9) and use again Lemma 3.2 to obtain

dχ σ (u) B(H s ) = Id H s + 2 σ 0 dX F (χ t (u))dχ t (u)dt B(H s ) ≤1 + 2 σ 0 dX F (χ t (v)) B(H s ) dχ t (v) B(H s ) dt ≤1 + C s 2 v 2 H s σ 0 dχ t (v) B(H s ) dt ≤e Cs 2 |σ| v 2 H s , ∀σ ∈ [-1, 1].
Here we use the Gronwall inequality in the last step.

Recall that Ψ = χ 1 . The normal form of the energy H is given below.

Lemma 3.4. For s > 1 2 , there exists a smooth mapping Y :

H s + -→ H s + and a constant C s > 0 such that X H •Ψ = X H0 + 2 X R + 4 Y, Y (v) H s ≤ C s v 5 H s , for all v ∈ H s + such that v H s ≤ ρ s . Let us set w(t) := Ψ -1 (v(t)
), then we have

d dt w(t) 2 H s ≤ C s 4 w(t) 6 H s , (3.10 
)

if w(t) H s ≤ ρ s .
Proof. We expand the energy H • Ψ = H • χ 1 with Taylor's formula at time σ = 1 around 0. Since χ 0 = Id H s + , one gets

H • χ 1 =H 0 • χ 1 + 2 R • χ 1 = H 0 + d dσ [H 0 • χ σ ]| σ=0 + 1 0 (1 -σ) d 2 dσ 2 [H 0 • χ σ ]dσ + 2 R + 2 1 0 d dσ [R • χ σ ]dσ =H 0 + 2 [{F, H 0 } + R] + 4 1 0 (1 -σ){F, {F, H 0 }} • χ σ + {F, R} • χ σ dσ =H 0 + 2 R + 4 1 0 (1 -σ){F, R} + σ{F, R} • χ σ dσ
We set G(σ) := (1 -σ){F, R} + σ{F, R}, ∀σ ∈ [0, 1]. Since X {F,R} and X {F, R} (u) are homogeneous of degree 5 with uniformly bounded coefficients, we have

X G(σ) (v) H s ≤ (1 -σ) X {F, R} (v) H s + σ X {F,R} (v) H s s v 5 H s , ∀v ∈ H s + ,
By the chain rule of Hamiltonian vector fields:

X G(σ)•χσ (v) = dχ -σ (χ σ (v)) • X G(σ) (χ σ (v)), ∀v ∈ H s + , ∀σ ∈ [0, 1], (3.11) 
and Lemma 3.3, we have

X G(σ)•χσ (v) H s ≤ dχ -σ (χ σ (v)) B(H s ) X G(σ) (χ σ (v)) H s s e Cs 2 v 2 H s χ σ (v) 5 H s s v 5 H s , for all v ∈ H s + such that v H s ≤ ρ s . Thus we define Y := 1 0 X G(σ)
•χσ dσ and we have

X H •Ψ = X H0 + 2 X R + 4 Y. If v H s ≤ ρ s , then Y (v) H s s v 5 H s . Since X R(w)(k) = -i|w k | 2 w k , ∀k ≥ 0 and w(t) = Ψ -1 (v(t)
), we have the following infinite dimensional Hamiltonian system on the Fourier modes:

i∂ t w k (t) -k 2 w k (t) -2 |w k (t)| 2 w k (t) = i 4 Y (w(t))(k), ∀k ≥ 0. (3.12)
If w(t) H s ≤ ρ s , then we have

∂ t w(t) 2 H s ≤ 2 4 Y (w(t)) H s w(t) H s s 4 w(t) 6 H s . 3.2.3 End of the proof of the case 0 ≤ α < 2 Proof. Recall that w(t) = χ -1 (v(t)) and v(0) H s = 1. Lemma 3.3 yields that v(0) -w(0) H s = v(0) -χ -1 (v(0)) H s ≤ C s 2 v(0) 3 H s ≤ C s .
Set K s := 3(C s + 1). Then w(0) H s ≤ Ks 3 . We define

s := min m s 3K s , 8C s K 2 s and T := sup{t ≥ 0 : sup 0≤τ ≤t v(τ ) H s ≤ 2K s }.
For all ∈ (0, s ) and t ∈ [0, T ], we have v(t) H s ≤ m s . Hence Lemma 3.3 gives the following estimate 

w(t) H s ≤ v(t) H s + χ -1 (v(t)) -v(t) H s ≤ v(t) H s + C s 2 v(t)
w(t) 2 H s ≤ w(0) 2 H s + C s |t| 4 w(t) 6 H s ≤ K 2 s 9 + 3 6 C s K 6 s |t| 4 ≤ 4K 2 s 9 ,
for all 0 ≤ t ≤ min(T, as 4 ). Then we have

v(t) H s ≤ w(t) H s + χ 1 (w(t)) -w(t) H s ≤ w(t) H s + C s 2 w(t) 3 H s ≤ K s for all t ∈ [0, as 4 ]
. Consequently, we have sup

0≤t≤ as 4 u(t) H s = sup 0≤t≤ as 4 v(t) H s ≤ K s .
In the case t < 0, we use the same procedure and we replace t by -t.

The open problem of optimality

Let u be the solution of the NLS-Szegő equation

i∂ t u + ∂ 2 x u = Π(|u| 2 u), u(0, •) H s = . (3.13) 
Recall that H = H 0 + 2 R is the energy functional of the equation (3.13) with

H 0 (v) = 1 2 ∂ x v 2 L 2 , R(v) = 1 4 ( v 4 L 4 -v 4 L 2 ). χ σ = exp( 2 σX F ), with F (v) := k1-k2+k3-k4=0 f k1,k2,k3,k4 v k1 v k2 v k3 v k4 , with the coefficients f k1,k2,k3,k4 = i 4(k 2 1 -k 2 2 +k 2 3 -k 2 4 ) , if k 2 1 -k 2 2 + k 2 3 -k 2 4 = 0, 0, otherwise.
We recall also that R

(v) = {F, H 0 }(v) + R(v) = -1 4 k≥0 |v k | 4 .
In order to get a longer time interval in which the solution is uniformly bounded by O( ), we expand the Hamiltonian H • χ 1 by using the Taylor expansion of higher order to see whether the resonances can be cancelled by the Birkhoff normal form method.

H • χ 1 =H 0 • χ 1 + 2 R • χ 1 =H 0 + ∂ σ (H 0 • χ σ ) σ=0 + 1 2 ∂ 2 σ (H 0 • χ σ ) σ=0 + 1 2 1 0 (1 -σ) 2 ∂ 3 σ (H 0 • χ σ )dσ + 2 R + ∂ σ (R • χ σ ) σ=0 + 1 0 (1 -σ)∂ 2 σ (H 0 • χ σ )dσ =H 0 + 2 R + 4 2 {F, R + R} + 6 2 1 0 (1 -σ){F, {F, (1 -σ) R + (1 + σ)R}} • χ σ dσ
We try to cancel the term 4 2 {F, R + R} by using a canonical transform to

H 1 = H •χ 1 with the following functional G(v) = k1-k2+k3-k4+k5-k6=0 g k1,k2,k3,k4,k5,k6 v k1 v k2 v k3 v k4 v k5 v k6 .
We want to solve the homological equation {G, H 0 } + 1 2 {F, R + R} = 0. We can calculate that

1 2 {F, R + R}(v) =2Im k1-k2+k3-k4+k5-k6=0 ki,k:=k1-k2+k3≥0 f k1,k2,k3,k v k1 v k2 v k3 v k4 v k5 v k6 -4Im k1-k2+k3-k4+k5-k6=0 ki,k:=k1-k2+k3≥0,k5=k6 f k1,k2,k3,k v k1 v k2 v k3 v k4 v k5 v k6 -2Im k1-k2+k3-k4+k5-k6=0 ki,k:=k1-k2+k3≥0,k4=k5=k6 f k1,k2,k3,k v k1 v k2 v k3 v k4 v k5 v k6
In the first term of the preceding formula, there is a resonance set k

2 1 -k 2 2 + k 2 3 -k 2 4 + k 2 5 -k 2 6
= 0 that cannot be cancelled by the other two terms. We can see Grébert-Thomann [START_REF] Grébert | Resonant dynamics for the quintic nonlinear Schrödinger equation[END_REF] and Haus-Procesi [START_REF] Haus | KAM for beating solutions of the quintic NLS[END_REF] for instance to analyse the resonant set for 6 indices for the quintic NLS equation.

{G, H 0 }(v) =i k1-k2+k3-k4+k5-k6=0 (k 2 1 -k 2 2 + k 2 3 -k 2 4 + k 2 5 -k 2 6 )g k1,k2,k3,k4,k5,k6 v k1 v k2 v k3 v k4 v k5 v k6 .
Thus the resonant subset

k 1 -k 2 + k 3 -k 4 + k 5 -k 6 = 0 k 2 1 -k 2 2 + k 2 3 -k 2 4 + k 2 5 -k 2 6 = 0
should be cancelled before the Birkhoff normal form transform, just like the step µ → v = e 2it 2 µ(0) 2 L 2 µ(t), which can cancel all the resonances

k 1 -k 2 + k 3 -k 4 = 0 k 2 1 -k 2 2 + k 2 3 -k 2 4 = 0 before we do the canonical transformation H •χ 1 . We only know that f k1,k2,k3,k1-k2+k3 = f k4,k5,k6,k4-k5+k6 if k 1 -k 2 + k 3 -k 4 + k 5 -k 6 = 0 k 2 1 -k 2 2 + k 2 3 -k 2 4 + k 2 5 -k 2 6
= 0. This resonant subset contains the case k 5 = k 6 . The optimality of the time interval for the case 0 ≤ α < 2 remains open.

Orbital stability of the traveling plane wave e m

Consider the following NLS-Szegő equation

i∂ t u + α ∂ 2 x u = Π(|u| 2 u), 0 < < 1, 0 ≤ α ≤ 2. ( 4.1) 
We shall prove at first H 1 -orbital stability of the traveling waves e m , for all m ∈ N. Then, we study their long time H s -stability, for all s ≥ 1.

The proof of Theorem 1.5

We follow the idea of using conserved quantities mentioned in Gallay-Haragus [START_REF] Gallay | Stability of small periodic waves for the nonlinear Schrödinger equation[END_REF] for equation (4.1).

Proof. For all m ∈ N, 0 < < 1 and 0 ≤ α ≤ 2, we denote u(0, x) = e imx + f (x) with f H 1 ≤ 1. The NLS-Szegő equation has three conservation laws:

     Q(u(t)) := u(t) 2 L 2 = u(0) 2 L 2 ; P (u(t)) := (Du(t), u(t)) = P (u(0)); E α, (u(t)) := α 2 ∂ x u(t) 2 L 2 + 1 4 u(t) 4 L 4 = E α, (u(0)),
with D = -i∂ x and (u, v) := Re S 1 ūv. Thus the following quantity is conserved,

α 2 Du(t) -mu(t) 2 L 2 + 1 4 |u(t)| 2 -1 2 L 2 =E α, (u(t)) -α mP (u(t)) + |m| 2 α -1 2 Q(u(t)) + 1 4 = 2 S 1 |Ref (x)e -imx | 2 dx + 2+α 2 Df -mf 2 L 2 + 3 S 1 |f (x)| 2 Re(f (x)e -imx )dx + 4 f 4 L 4 m 2 .
Then, we have sup t∈R Du(t)-mu(t

) L 2 m 1-α 2 .
Recall that e m (x) = e imx , then the following estimate holds,

u(t) -u m (t)e m 2 H 1 = n =m (1 + n 2 )|u n (t)| 2 m Du(t) -mu(t) 2 L 2 m 2-α .
We have

inf θ∈R u(t) -u m (0)e iθ e m 2 H 1 = u(t) -u m (0)e i(arg um(t)-arg um(0)) e m 2 H 1 =(1 + m 2 ) |u m (t)| -|u m (0)| 2 + u(t) -u m (t)e m 2 H 1
and by the conservation of u(t) L 2 , we have

|u m (t)| -|u m (0)| 2 ≤ |u m (t)| 2 -|u m (0)| 2 = n =m |u n (0)| 2 - n =m |u n (t)| 2 = max( u(0) -u m (0)e m 2 L 2 , u(t) -u m (t)e m 2 L 2 ) m 2-α .
Thus sup t∈R u(t) -u m (0)e i(arg um(t)-arg um(0)) e m H 1 m 1-α 2 . The proof can be finished by u m (0

) = 1 + f m = 1 + O( ).
The preceding theorem also holds for the defocusing NLS equation on T d , for d = 1, 2, 3 (in the energy sub-critical case) with T = R/Z S 1 .(see [START_REF] Gallay | Orbital stability of periodic waves for the nonlinear Schrödinger equation[END_REF]) We refer to Zhidkov [29 Sect. 3.3] for a detailed analysis of the stability of plane waves. Remark 4.1. Obtaining the estimate sup t∈R u(t) -u m (t)e m L ∞ m 1-α 2 by the Sobolev embedding H 1 (S 1 ) → L ∞ , we can also proceed by using the following estimate, which is uniform on x and t,

|u(t, x)| 2 -1 = |u m (t)| 2 -1 + O m ( 1-α 2 ).
Integrating the preceding term with respect to x, we have

||u m (t)| 2 -1| ≤ |u(t)| 2 -1 L 2 + O m ( 1-α 2 ) L 2 m 1-α 2 Thus sup t∈R |u m (t)| = 1 + O m ( 1-α 2 ) and u m (t) = e i arg um(t) + O m ( 1-α 2
). Then we have

sup t∈R u(t) -e i arg um(t) e m 2 H 1 m 2-α .
Recall that if z = 1 + O( ) then e i arg z = 1 + O( ).

Long time H s -stability

For every s ≥ 1, we suppose that u(0) -e m H s ≤ . Thanks to the estimate

sup t∈R u(t) -e i arg um(t) e m H 1 m 1-α 2 , we change the variable u → v = v m,α, (t, x) = n≥0 v n (t)e inx ∈ C ∞ (R × S 1 ) such that u(t, x) = e i arg um(t) (e imx + 1-α 2 v(t, x)) (4.2)
to study H s -stability of plane waves e m and we have

I m := sup 0≤α≤2 sup 0< <1 sup t∈R v(t) H 1 < +∞. (4.3)
Proposition 4.2. For every s ≥ 1, m ∈ N, ∈ (0, 1) and α ∈ [0, 2), if u is smooth and solves (4.1) with u(0, x) = e imx + f (x) and f H s ≤ 1, v is defined by formula (4.2), then we have

         v m (t) ∈ R, ∀t ∈ R, sup t∈R |v m (t)| m min( α 2 ,1-α 2 ) , sup t∈R |∂ t v m (t)| m 1-α 2 , v(0) H s m,s α 2 .
Moreover, there exists a smooth function ϕ = ϕ m : R → R/2πZ S 1 and * m ∈ (0, 1) such that for every

1 < 2 -< 2, we have arg u m (t) = -(1 + m 2 α )t + min(1,2-α) ϕ(t), sup 0≤α≤2 -sup 0< < * m sup t∈R |ϕ (t)| < +∞.
The parameter v satisfies the following equation

i∂ t v + α ∂ 2 x v -H e 2imx (v) -(1 -m 2 α + min(1,2-α) ϕ (t))v = min( α 2 ,1-α 2 ) ϕ (t)e imx + 1-α 2 Π(e -imx v 2 + 2e imx |v| 2 ) + 2-α Π(|v| 2 v), (4.4) 
where H e 2imx (v) := Π[e 2imx v] denotes the Hankel operator.

Proof. Since u m (t) = e i arg um(t) (1

+ 1-α 2 v m (t)), we have 1 + 1-α 2 v m (t) = |u m (t)| ∈ R. So v m (t) ∈ R
, for all t ∈ R. By using the conservation law • L 2 and estimate (4.3), we have

1 + 2 Ref m + 2 = u(0) 2 L 2 = u(t) 2 L 2 = 1 + 2 1-α 2 v m (t) + 2-α v(t) 2 L 2 , which yields that sup t∈R |v m (t)| m min( α 2 ,1-α 2 ) . Recall that u(0, x) = n≥0 u n (0)e inx = e imx + f (x).
Then we have u m (0) = 1 + f m = 1 + O( ) and |e i arg um(0) -1| . Thus we have

1-α 2 v(0) H s (1 + m 2 ) s 2 |e i arg um(0) -1| + f H s m,s .
We define θ(t) := arg(u m (t)). Combing the following two formulas

i∂ t u + α ∂ 2 x u = e iθ(t) 1-α 2 (i∂ t v + α ∂ 2 x v -θ (t)v) -(m 2 α + θ (t))e imx Π[|u| 2 u] = e iθ(t) e imx + 1-α 2 (2v + Π(e 2imx v)) + 2-α Π(e -imx v 2 + 2e imx |v| 2 ) + 3(1-α 2 ) Π(|v| 2 v)
we obtain that

1-α 2 [i∂ t v + α ∂ 2 x v -H e 2imx (v) -(2 + θ (t))v] =(1 + m 2 α + θ (t))e imx + 2-α Π(e -imx v 2 + 2e imx |v| 2 ) + 3(1-α 2 ) Π(|v| 2 v), (4.5) 
where H e 2imx (v) := Π[e 2imx v] denotes the Hankel operator. The Fourier mode v m (t) satisfies the following equation

1-α 2 i∂ t v m (t) -m 2 α v m (t) -v m (t) -(2 + θ (t))v m (t) =1 + m 2 α + θ (t) + 2-α Π(e -imx v 2 + 2e imx |v| 2 ) m (t) + 3(1-α 2 ) Π(|v| 2 v) m (t). Estimate (4.3) yields that sup t∈R | 2-α Π(e -imx v 2 + 2e imx |v| 2 ) m (t) + 3(1-α 2 ) Π(|v| 2 v) m (t)| m 2-α .
Thus, we have

1-α 2 i∂ t v m (t) -(3 + m 2 α + θ (t))v m (t) = 1 + m 2 α + θ (t) + O m ( 2-α ). (4.6)
The imaginary part and the real part of (4.6) give respectively the two following estimates:

sup t∈R |∂ t v m (t)| m 1-α 2 ; 1 + m 2 α + θ (t) = -2 1-α 2 v m (t) + O m ( 2-α ) 1 + 1-α 2 v m (t) = O m ( min(1,2-α) ) 1 + O m ( min(1,2-α) ) = O m ( min(1,2-α) ).
for all 0 < 1. Then we define ϕ(t) := (1+m 2 α )t+θ(

. Consequently, there exists * m ∈ (0, 1) such that

arg u m (t) = -(1 + m 2 α )t + min(1,2-α) ϕ(t) sup 0≤α≤2 -sup 0< < * m sup t∈R |ϕ (t)| < +∞.
We replace θ (t) by -1 -m 2 α + min(1,2-α) ϕ (t) in (4.5) and we obtain (4.4).

Proof of Proposition 1.7

For every n ∈ N, we define the projector

P n : L 2 + → L 2 + such that P n ( k≥0 v k e ikx ) = n j=0 v k e ikx .
Now we prove Proposition 1.7 by using a bootstrap argument.

Proof. At the beginning, we suppose that u(0) ∈ C ∞ + . In the general case u(0) ∈ H s + , the proof can be completed by using the continuity of the flow u(0

) → u from H s + to C([- bs,m 1-α 2 , bs,m 1-α 2 ], H s + ).
We use the same transformation u → v as (4.2). Proposition 4.2 yields that there exists A m,s ≥ 1 such that v(0) H s m,s α 2 ≤ A m,s . By using estimate (4.3), we have sup ∈(0,1)

sup t∈R P 2m (v(t)) H s ≤ (1 + 4m 2 ) s 2 I m
We define that L m,s := max(2(1 + 4m 2 )

s 2 I m , 2A m,s + 1)
and

T := sup{t > 0 : sup 0≤τ ≤t v(τ ) H s ≤ 2L m,s }.
Rewrite equation (4.4) on Fourier modes and we have

i∂ t v n -(1 + (n 2 -m 2 ) α + min(1,2-α) ϕ (t))v n = 1-α 2 [Z(v(t))] n , ∀n ≥ 2m + 1, with Z(v) = n≥0 [Z(v)] n e inx = Π(e -imx v 2 + 2e imx |v| 2 ) + 1-α 2 Π(|v| 2 v). Then we have Z(v) -P 2m (Z(v)) H s s v 2 H s + 1-α 2 v 3 H s . (4.7) 
Then we have

|∂ t v(t) -P 2m (v(t)) 2 H s | ≤2 1-α 2 n≥2m+1 (1 + n 2 ) s |v n (t)||[Z(v(t))] n | ≤2 1-α 2 v(t) H s Z(v(t)) -P 2m (Z(v(t)) H s s 1-α 2 v(t) 3 H s + 2-α v(t) 4 H s . For all t ∈ [0, T ], we have v(t) 2 H s = P 2m v(t) 2 H s + v(t) -P 2m (v(t)) 2 H s ≤(1 + 4m 2 ) s I 2 m + C s ( 1-α 2 v(t) 3 H s + 2-α v(t) 4 H s )t + v(0) 2 H s ≤ 1 4 L 2 m,s + 32C s L 4 m,s 1-α 2 t + A 2 m,s . Define b m,s = 1 64CsL 2 m,s and we have v(t) H s ≤ L m,s , for all t ∈ [0, bs,m 1-α 2 ]
. The case t < 0 is similar.

Homological equation

We try to improve Proposition 1.7 and get a longer time interval in which the solution v is still bounded by O(1), by using The Birkhoff normal form method. Recall the symplectic form ω(u, v) = Im S 1 uv dθ 2π on the energy space H 1 + and the Poisson bracket for two smooth real-valued functionals F, G :

C ∞ + → R {F, G}(v) = 2 i k≥0 (∂ v k F ∂ v k G -∂ v k G∂ v k F ) (v), for all v = k≥0 v k e ikx ∈ C ∞ + .
For all 0 ≤ α < 2 and 0 < 1, equation (4.4) has also the Hamiltonian formalism, which is non autonomous. Its energy functional is

H m,α, (t, v) =H m,α, 0 (v) + 1-α 2 H m 1 (v) + 2-α 4 N 4 (t, v) + min( α 2 ,1-α 2 ) ϕ (t)(L m (v) + 1-α 2 2 N 2 (v)), with          H m,α, 0 (v) = α 2 ∂ x v 2 L 2 + 1-m 2 α 2 v 2 L 2 + 1 2 S 1 Re(e 2imx v 2 ), H m 1 (v) = Re( S 1 e -imx |v| 2 v), N p (v) = v p L p , p = 2 or 4, L m (v) = Rev m .
We want to cancel all the high frequencies in the term H m 1 (v) by composing H m,α, and the Hamiltonian flow of some auxiliary functional F m . In order to get the appropriate F m , we need to solve the homological system {F m , H m,α, 0

}(v) + H m 1 (v) = R m (v) {F m , L m }(v) = -Ñ2 (v) := -n≥2m+1 |v n | 2
such that R m depends only on finitely many Fourier modes of v. The remaining coefficient in front of

1-α 2 would be R m + ϕ (t) min( α 2 ,1-α 2 ) (-Ñ2 + N2
2 ). One can prove the following proposition.(see also Proposition 4.4 and Appendix for the proof in the special case α = 0) Proposition 4.3. For every m ∈ N, we define the following homogenous functional F m of degree 3:

F m (v) = j-l+k=m j,k,l∈N Re(a j,l,k v j v l v k ), ∀v ∈ n≥0 P n (C ∞ + ),
for some a k,l,j = a j,l,k ∈ C. Then we have the following formula

{F m , H m,α, 0 }(v) + H m 1 (v) = Re Reson low (v) + Reson ≥2m+1 (v) ,
where

Reson low (v) = 0≤j,k≤2m c j,j+k-m,k v j v j+k-m v k - j-l+k=m j,l,k∈N,l≤2m ia j,l,k v j v k (1 + (l 2 -m 2 ) α )v l + v 2m-l , for some c j,j+k-m,k = c k,j+k-m,j ∈ C and Reson ≥2m+1 (v) = k≥2m+1 m-1 j=0 2 (-ia 2m-j,m+k-j,k + (1 + 2(m -j)(k -j) α )ia j,k,k+m-j + 1) v j v k v k+m-j + k≥2m+1 m-1 j=0 2((1 -2(k -m)(m -j) α )ia 2m-j,m+k-j,k -ia j,k,k+m-j + 1)v 2m-j v m+k-j v k + k≥2m+1 2(ia m,k,k -ia m,k,k + 1)v m |v k | 2 + ((1 -2(k -m) 2 α )ia k,2k-m,k + 1)v 2 k v 2k-m + k≥2m+1 j≥k+1 2((1 -2(j -m)(k -m) α )ia k,j+k-m,j + 1)v k v j+k-m v j .
The term Reson low depends only on the small Fourier modes v 1 , v 2 , • • • , v 3m . We try to find a bounded sequence (a j,l,k ) j-l+k=m such that Reson ≥2m+1 = 0 in order to cancel the term H m 1 . However, the coefficient (1 -2(j -m)(k -m) α ) in front of the parameter a k,j+k-m,j may have an arbitrarily small absolute value if α > 0. Such sequence does not exist if -α ∈ 2N [2(m + 1) 2 , +∞).

We suppose that -α / ∈ Q, then Reson ≥2m+1 = 0 is equivalent to a linear system, which has a unique solution

           a 2m-j,m+k-j,k = a k,m+k-j,2m-j = i(k-j) (m-j)(1-2(k-m)(k-j) α ) , ∀0 ≤ j ≤ m -1, a j,k,k+m-j = a k+m-j,k,j = i(m-k) (m-j)(1-2(k-m)(k-j) α ) , ∀0 ≤ j ≤ m -1, a m,k,k = a k,k,m = i 2 , a k,k+j-m,j = a j,k+j-m,k = i 1-2(j-m)(k-m) α , ∀j ≥ 2m + 1, (4.8)
for all k ≥ 2m + 1. In the case m = 0, (4.8) has only the last two formulas. When α > 0, the sequence (a j,l,k ) j-l+k=m can be arbitrarily large, for 0 < 1. We suppose that α is an irrational algebraic number of degree d ≥ 2. Then we have the Liouville estimate [START_REF] Liouville | Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algébriques[END_REF] 

|a j,j+k-m,k | ≤ 1 c ,α (2(j -m)(k -m)) d-1 , ∀j, k ≥ 2m + 1,
which loses the regularity of v in the estimate of X Fm (v). It is difficult to find the same kind of estimate for the transcendental numbers, which can preserve the regularity. So we return to the case α = 0.

4.3 Long time H s -stability in the case α = 0

For α = 0 and every m ∈ N and s ≥ 1, assume that u is the smooth solution of the NLS-Szegő equation

i∂ t u + ∂ 2 x u = Π(|u| 2 u), u(0, x) = e imx + f (x), f H s ≤ 1,
and u(t, x) = e i arg um(t) (e imx + v(t, x)). Then v is the solution of the following Hamiltonian equation

i∂ t v + ∂ 2 x v -H e 2imx (v) -(1 -m 2 + ϕ (t))v =ϕ (t)e imx + Π(e -imx v 2 + 2e imx |v| 2 ) + 2 Π(|v| 2 v).

Its energy functional is

H m, (t, v) = H m 0 (v) + ϕ (t)L m (v) + (H m 1 (v) + ϕ (t) 2 N 2 (v)) + 2 4 N 4 (v), with          H m 0 (v) = 1 2 ∂ x v 2 L 2 + 1-m 2 2 v 2 L 2 + 1 2 S 1 Re(e 2imx v 2 )dx, L m (v) = Rev m , H m 1 (v) = Re( S 1 e -imx |v| 2 v)dx, N p (v) = v p L p , p = 2 or 4.
We define Ñ2 (v) := v -P 2m v 2 L 2 = n≥2m+1 |v n | 2 and the following proposition holds. Proposition 4.4. For every s > 1 2 and m ∈ N, there exists a sequence (a j,l,k ) j-l+k=m such that a j,l,k = a k,l,j , sup m≥1 sup j-l+k=m |a j,l,k | = 1 2 and the functional F m : H s + → R, defined by

F m (v) = j-l+k=m j,k,l∈N Re(a j,l,k v j v l v k ), ∀v ∈ C ∞ + , satisfy that {F m , L m } = -Ñ2 and R m := {F m , H m 0 } + H m 1 is a finite sum of the Fourier modes v 1 , • • • , v 3m . Moreover, for all v, h ∈ H s + , we have X Fm (v) H s m,s v 2 H s , dX Fm (v)h H s m,s v H s h H s .
Proof. For the convenience of the reader, the detailed calculus for R m = {F m , H m 0 } + H m 1 and formula (4.8) in the case α = 0 are given in Appendix. We define a j,j+k-m,k = 0, for all 0 ≤ j, k ≤ 2m and a n,m+1+n,2m+1 = a 2m+1,m+1+n,n = 0, for all 0 ≤ n ≤ m -1. Combing Proposition 4.3 and (4.8) with α = 0, we have

Reson ≥2m+1 (v) α=0 = 0, Re Reson low (v) α=0 = R m (v), {F m , L m }(v) = 2Im( k≥0 a m,k,k |v k | 2 + 1 2 j+k=2m a j,m,k v j v k ) = -n≥2m+1 |v n | 2 .
By (4.8) with α = 0, we have |a j,j+k-m,k | ≤ 1 2 , for all j, k ≥ 0. By the definition of F m , we have

[X Fm (v)](n) = -2i k-l+n=m a k,l,n v k v l -i k-n+l=m a k,n,l v k v l [dX Fm (v)h](n) = -2i k-l+n=m a k,l,n (v k h l + v l h k ) -2i k-n+l=m a k,n,l v k h l , , ∀n ≥ 0.
The last two estimates are obtained by Young's convolution inequality for l 1 * l 2 → l 2 .

The Birkhoff normal form

Set χ m σ := exp( σX Fm ) the Hamiltonian flow of F m , i.e., d dσ

χ m σ (v) = X Fm (χ m σ (v)), χ m 0 (v) = v.
We perform the canonical transformation Ψ m, := χ m 1 = exp( X Fm ). We want to reduce the energy functional H m, to the following norm

H m, (t) • Ψ m, = H m 0 + ϕ (t)L m (v) + R m + ϕ (t)(-Ñ2 + N 2 2 ) + O( 2 ).
Since R m depends only on low frequency Fourier modes v 1 , • • • , v 3m , the high-frequency filtering H s norm of the solution of ∂ t w(t) = X H m, (t)•Ψm, (w(t)) is handled by the Birkhoff normal form transformation. The estimate of P 3m (v) H s is given by (4.3). The next lemma will give the local existence of χ m σ , for |σ| ≤ 1 and estimate the difference between v and Ψ -1 m, (v).

Lemma 4.5. For every s > 1 2 and m ∈ N, there exist two constants γ m,s , C m,s > 0 such that for all v ∈ H s + , if v H s ≤ γ m,s , then χ m σ (v) is well defined on the interval [-1, 1] and the following estimates hold:

sup σ∈[-1,1] χ m σ (v) H s ≤ 2 v H s , sup σ∈[-1,1] χ m σ (v) -v H s ≤ C m,s v 2 H s , dχ m σ (v) B(H s ) ≤ exp(C m,s v H s |σ|), ∀σ ∈ [-1, 1].
The proof is based on a bootstrap argument, which is similar to Lemma 3.3, given by Lemma 3.1 with m = 2. We shall perform the canonical transform below. Recall that Ψ m, = χ m 1 .

Lemma 4.6. For all s > 1 2 , m ∈ N and 0 < < * m , there exists a smooth mapping Y m : R×H s + -→ H s + and a constant C m,s > 0 such that for all t ∈ R, we have

X H m, (t)•Ψm, = X H m 0 + ϕ (t)X Lm + X Rm + ϕ (t)(-X Ñ2 + 1 2 X N2 ) + 2 Y m (t),
and 

sup t∈R Y m (t, v) H s ≤ C m,s v 2 H s (1 + v H s ), for all v ∈ H s + such that v H s ≤ γ m,s . Set w(t) := Ψ -1 m, (v(t)),
(H m 0 + ϕ (t)L m ) • χ m 1 =H m 0 + ϕ (t)L m + d dσ [(H m 0 + ϕ (t)L m ) • χ m σ ]| σ=0 + 1 0 (1 -σ) d 2 dσ 2 [(H m 0 + ϕ (t)L m ) • χ m σ ]dσ =H m 0 + ϕ (t)L m + {F m , H m 0 + ϕ (t)L m } + 2 1 0 (1 -σ){F m , {F m , H m 0 + ϕ (t)L m }} • χ m σ dσ and H m 1 + ϕ (t) 2 N 2 • χ m 1 =H m 1 + ϕ (t) 2 N 2 + 1 0 d dσ [(H m 1 + ϕ (t) 2 N 2 ) • χ m σ ]dσ =H m 1 + ϕ (t) 2 N 2 + 1 0 {F m , H m 1 + ϕ (t) 2 N 2 } • χ m σ dσ.
Since we have the homological system

{F m , H m 0 } + H m 1 = R m {F m , L m } + Ñ2 = 0 in Proposition 4.4, we have H m, (t) • χ m 1 =H m 0 + ϕ (t)L m + {F m , H m 0 } + H m 1 + ϕ (t)({F m , L m } + 1 2 N 2 ) + 2 1 0 {F m , (1 -σ){F m , H m 0 + ϕ (t)L m } + H m 1 + ϕ (t) 2 N 2 } • χ m σ dσ + N 4 • χ m 1 4 =H m 0 + ϕ (t)L m + R m + ϕ (t)(-Ñ2 + 1 2 N 2 ) + 2 1 0 G m (t, σ) • χ m σ dσ + N 4 • χ m 1 4 , where G m (t, σ) = {F m , (1 -σ)R m + σH m 1 + ϕ (t)((σ -1) Ñ2 + 1 2 N 2 )}. We set Y m (t, v) := 1 0 X Gm(t,σ)•χ m σ (v)dσ + 1 4 X N4•χ m 1 (v), then we get X H m, (t)•χ m 1 = X H m 0 + ϕ (t)X Lm + X Rm + ϕ (t)(-X Ñ2 + 1 2 X N2 ) + 2 Y m (t).
Since F m , H 1 m and R m are homogeneous series of order 3 with uniformly bounded coefficients, N 2 and Ñ2 are homogeneous series of order 2 with uniformly bounded coefficients, we have

X {Fm,H 1 m } (v) H s + X {Fm,Rm} (v) H s s v 3 H s , X {Fm,N2} (v) H s + X {Fm, Ñ2} (v) H s s v 2 H s , because for J m (v) = j-l+k=m Re(b j,l,k v j v l v k ) with sup j-l+k=m |b j,l,k | < +∞, we have {F m , J m }(v) =4Im n≥0 ∂ vn F m (v)∂ vn J m (v) = k1+k2=l1+l2 Im(4a k1,l1,m+l1-k1 b l2,k2,m+k2-l2 + a l1,l1+l2-m,l2 b k1,k1+k2-m,k2 )v k1 v k2 v l1 v l2 + k1+k2+l1-l2=2m 2Im(a k1,k1+l1-m,l1 b k2,l2,m+l2-k2 -a k1,l2,m+l2-k2 b k2,l1+k2-m,l1 )v k1 v k2 v l1 v l2 and {F m , N 2 }(v) = -2Im( j-l+k=m a j,l,k v j v l v k ). Recall that sup 0< < * m sup t∈R |ϕ (t)| < +∞ and X N4 (v) = -4iΠ(|v| 2 v), then we have sup 0≤σ≤1 sup t∈R X Gm(t,σ) (v) H s + X N4 (v) H s m,s v 2 H s (1 + v H s ).
By using Lemma 4.5 and (3.11), for all v ∈ H s + such that v H s ≤ γ m,s , we have

sup 0≤σ≤1 sup t∈R X Gm(t,σ)•χ m σ (v) H s ≤ sup 0≤σ≤1 sup t∈R dχ m -σ (χ m σ (v)) B(H s ) X Gm(t,σ) (χ m σ (v)) H s m,s sup 0≤σ≤1 e Cm,s χ m σ (v) H s χ m σ (v) 2 H s (1 + χ m σ (v) H s ) m,s v 2 H s (1 + v H s ) and sup t∈R X N4•χ m 1 (v) H s m,s v 2 H s (1 + v H s ).
Then we obtain the estimate of Y m .

Since w(t) = χ m -1 (v(t)), we have the following infinite dimensional Hamiltonian system on the Fourier modes:

i∂ t w n (t) = (1 + n 2 -m 2 -ϕ (t))w n (t) + i 2 Y m (t, w(t))(n), ∀n ≥ 3m + 1.
because for all n ≥ 3m + 1, we have

H e 2imx (w(t))(n) = X Rm (w(t))(n) = X Lm (w(t))(n) = 0, X N2 (w(t))(n) = X Ñ2 (w(t))(n) = -2iw n (t).
Consequently, if w(t) H s ≤ γ m,s , then we have

∂ t w(t) -P 3m (w(t)) 2 H s ≤2 2 n≥3m+1 (1 + n 2 ) s | Y m (t, w(t))(n)||w n (t)| ≤2 2 Y m (t, w(t)) H s w(t) H s m,s 2 w(t) 3 H s (1 + w(t) H s ).

End of the proof of Theorem 1.8

The proof is completed by a bootstrap argument and estimate (4.9), obtained by the Birkhoff normal form transformation. It suffices to prove the case u(0) ∈ C ∞ + by the same density argument in the proof of Proposition 1.7.

Proof. For all m ∈ N and s ≥ 1, we recall that u(t, x) = e i arg um(t) (e imx + v(t, x)), ∂ t v(t) = X H m, (t) (v(t)) and w(t) = χ m -1 (v(t)). In Proposition 4.2, we have shown that there exists A m,s ≥ 1 such that sup 0< <1 v(0) H s ≤ A m,s . By using (4.3), we have sup 

0< <1 sup t∈R P 3m (v(t)) H s ≤ (1 + 9m 2 ) s 2 I m . Set K m,s := max(6A m,s , 6(1 + 9m 2 ) s 2 I m ), m,s := min( * m , γm,s 3Km,s , 1 48Cm,sKm,s ) and T m,s := sup{t ≥ 0 : sup 0≤τ ≤t v(τ ) H s ≤ 2K m,s }. We choose ∈ (0, m,s ). Since = v(0) H s ≤ A m,s ≤ γ m,s , Lemma 4.5 yields that v(0) -w(0) H s = v(0) -χ m -1 (v(0)) H s ≤ A 2 m,s C m,s ≤ A m,
w(t) H s ≤ v(t) H s + χ m -1 (v(t)) -v(t) H s ≤ v(t) H s + C m,s v(t) 2 H s ≤2K m,s + 4C m,s K 2 m,s ≤3K m,
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 2 solutions are almost periodic. (see also Theorem 2.3). Remark 1.1. Consider the following equation without the Szegő projector Π on S 1 :

S 1 uv

 1 2π . Equation (1.5) has the Hamiltonian formalism with the energy functional

Lemma 3 . 1 .

 31 Let a, b, T > 0, m > 1 and M : [0, T ] -→ R + be a continuous function satisfying

( 1 + 1 + A ≥2m+1 1 ,A low 1 consists) 2 ( 2 + j 2 + k 2 -- 2 ( 2 +k= m+1 2 2( 1 + k 2 -j 2 + k 2 -j≥k+1 2 ( 2 + k 2 + j 2 - 2 ( 1 + k 2 - 2 + A ≥2m+1 2 . A low 2 consists of all 29 the( 1 +k= 3m 2 +1( 1 + 2 plays the same role as A ≥2m+1 1 .( 1 += -i(A low 1 + A low 2 + A low 3 += -i(A ≥2m+1 1 + A ≥2m+1 2 + A ≥2m+1 3 )j=m+1 2 ( 2 (

 11112222222122222222122222912121112312322 n 2 -m 2 )a k,n,l v k v n v l ) + Im( k-l+n=m k,l,n∈N,n≤2m 2a k,l,n v l v k v 2m-n + k-n+l=m k,l,n∈N,n≤2m a k,n,l v k v l v 2m-n ) =Im(A 1 + A 2 + A 3 + A 4 ).The term A 4 = k-n+l=m k,l,n∈N,n≤2m a k,n,l v k v l v 2m-n has only finite term depending on low frequency Fouriermodes v 1 , • • • , v 3m . We divide A 1 , A 2 , A 3 intotwo parts. The first part consists of only low frequency resonances, the second part consists of high frequency resonances.A 1 =k-l+n=m k,l,n∈N 2(1 + n 2 -m 2 )a k,l,n v k v l v n = A lowwhere of all the resonancesv j v l v k such that j, k ≤ 2m, 2m 2 )a j,j+k-m,k v j v j+k-m v k j 2 + (k + m -j) 2 -2m 2 )a j,k,k+m-j v j v k v k+m-j -2m m 2 )a k,2k-m,k v 2 k v 2k-m ,and A ≥2m+11 contain other resonances v j v l v k such that at least one of j, k is strictly larger than 2m.j 2 + (k + m -j) 2 -2m 2 )a j,k,k+m-j v j v k v k+m-j -2m 2 )a j,j+k-m,k v j v j+k-m v k -k≥2m+1 2m 2 )a k,k+j-m,j v k v k+j-m v j -k≥2m+1 m 2 )a k,2k-m,k v 2 k v 2k-m .Then, we calculateA 2 = k-n+l=m k,l,n∈N (1 + n 2 -m 2 )a k,n,l v k v n v l = A low resonances v k v l v n such that k, n ≤ 2m or l ≤ 2m. l 2 -m 2 )a j,l,k v j v l v k + l 2 -m 2 )a j,l,k v j v l v k + 2m (2k -m) 2 -m 2 )a k,2k-m,k v 2 k v 2k-m ; A ≥2m+1 k 2 -m 2 )a j,k,m+k-j v j v k v m+k-j j + k -m) 2 -m 2 )a j,j+k-m,k v j v j+k-m v k + k≥2m+1 j≥k+1 2(1 + (k + j -m) 2 -m 2 )a k,k+j-m,n v k v k+j-m v j + k≥2m+1 (2k -m) 2 -m 2 )a k,2k-m,k v 2 k v 2k-m . At last, A 3 = k-l+n=m k,l,n∈N,n≤2m 2a k,l,n v l v k v 2m-n = j-l+k=m j,k,l,n∈N,j≤2m2a l,k,2m-j v k v l v j . Using the same idea,we have A 3 = A low 3 j,m+k-j,k v j v k v m+k-j + 2m j=m+1 2m k=0 2a 2m-j,k,k+j-m v j v k+j-m v k ; j,m+k-j,k v j v k v m+k-j + 2m j=m+1 k≥2m+1 2a 2m-j,k,k+j-m v j v k+j-m v k . Recall that H m 1 (v) = Re( S 1 e -imx |v| 2 v) = k-l+n=m Re(v k v l v n ). A similar calculus as in the case of A 1 shows that H m 1 (v) = Re(B low + B ≥2m+1 ) with k v k+m-j + 2m j=m+1 2v j v j+k-m v k + v 2 k v 2k-m + j≥k+1 2v k v k+j-m v j   .At last we define Reson low (v)α=0 A 4 ) + B low and Reson ≥2m+1 (v) α=0 + B ≥2m+1 . Then we have {F m , H m 0 }(v)+H m 1 (v) = Re(Reson low (v) α=0 +Reson ≥2m+1 (v)α=0). Since Reson low (v) α=0 contains only finite terms and depends only onv 1 , • • • , v 3m , so is R m = Re(Reson low (v)α=0). For high frequency resonances, we computeReson ≥2m+1 (v) ia 2m-j,m+k-j,k + (1 + 2(m -j)(k -j))ia j,k,k+m-j + 1) v j v k v k+m-j + k≥2m+1 2m (1 -2(k -m)(j -m))ia j,j+k-m,k -ia 2m-j,k,k+j-m + 1)v j v j+k-m v k + k≥2m+1 ia m,k,k -ia m,k,k + 1)v m |v k | 2 + ((1 -2(k -m) 2 )ia k,2k-m,k + 1)v 2 k v 2k-m + k≥2m+1 j≥k+12((1 -2(j -m)(k -m))ia k,j+k-m,j + 1)v k v j+k-m v j .After replacing j by 2m-j in the sum m+1 ≤ j ≤ 2m, we have the equivalence between Reson ≥2m+1 α=0 = 0 and (4.8) in the case α = 0.

  In other words, (L V , B V ) is a Lax pair for the cubic Szegő equation.

	The equation (2.2) yields that the spectrum of the Hankel operator H V is invariant under the flow of the
	cubic Szegő equation. Thus the quantity Tr|H v | is conserved. A theorem of Peller ([25] Theorem 2 p.
	454) states that
	V B 1 1,1

  then we have ∂ t w(t) = X H m, (t)•Ψm, (w(t)) and H s ≤ γ m,s .Proof. For every t ∈ R, we expand the energy H m, (t)• Ψ m, = H m, (t) • χ m1 with Taylor's formula at time σ = 1 around 0. Since χ m 0 = Id H s + , we have

	d dt	w(t) -P 3m (w(t)) 2 H s ≤ C m,s	2 w(t) 3 H s (1 + w(t) H s ),	(4.9)
	if w(t)			

  s .

	So we have w(0) H s ≤	Km,s

3 . For all t ∈ [0, T m,s ], we have v(t) H s ≤ γ m,s . Hence Lemma 4.5 gives the following estimate

  s . ). We use Lemma 4.5 again to obtain that v(t)H s ≤2 w(t) -v(t) H s + w(t) -P 3m (w(t)) H s + P 3m (v(t)) H s Combing (3.8), we have the Poisson bracket of F m and H m 0 , vn F m ∂ vn H m 0 -∂ vn H m 0 ∂ vn F m ) (v) -m 2 )a k,l,n v k v l v n +

	{F m , H m 0 }(v)
	= -2i		
	=Im(	k-l+n=m	2(1 + n 2 k-n+l=m
		k,l,n∈N		k,l,n∈N
	So we have sup 0≤t≤Tm,s w(t) H s ≤ γ m,s , which implies that
			d dt	w(t) -P 3m (w(t)) 2 H s ≤ C m,s H 1 2 w(t) 3 486K 2 m,s C m,s . We can obtain the following estimate:
			w(t) -P 3m (w(t)) 2 H s
		≤ w(0) 2 H s + C m,s |t| 2 sup 0≤τ ≤Tm,s	w(τ ) 3 H s (1 + sup 0≤τ ≤Tm,s	w(τ ) H s )
		≤	K 2 m,s 9	+ 162C m,s K 4 m,s |t| 2
		≤	4K 2 m,s 9	,
	for all 0 ≤ t ≤ min(T m,s ,	dm,s
					≤2C m,s v(t) 2 H s +	2K m,s 3	+	K m,s 6
					≤8C m,s K 2 m,s +	5K m,s 6
					≤K m,s ,

s (1 + w(t) H s ), in Lemma 4.6. Set d m,s := 2 n≥0 (∂
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for all t ∈ [0, dm,s 2 ]. In the case t < 0, we use the same procedure and we replace t by -t. Consequently, we have sup

u(t) -e i(•+arg um(t)) H s = sup

Comparison to NLS equation

Although we have some similar results for the NLS equation, there are still some differences between the NLS equation and the NLS-Szegő equation. We denote by u = u(t, x) = n≥0 u n (t)e inx the solution of the NLS equation

In Fourier modes, we have i∂ t u n = n 2 u n + k1-k2+k3=n u k1 u k2 u k3 . Fix m ∈ Z, for every n ∈ Z, we define v n := u n+m e i(m 2 +2nm)t . Then v(t) L 2 = u(t) L 2 and we have

If u is localized in the m-th Fourier mode, then v is localized on the zero mode. Thus the orbital stability of the traveling wave e m can be reduced to the case m = 0. In Faou-Gauckler-Lubich [START_REF] Faou | Sobolev Stability of Plane Wave Solutions to the Cubic Nonlinear Schrödinger Equation on a Torus[END_REF], H s -orbital stability of plane wave solutions is established by limiting the mass of the initial data u 0 H s to a certain full measure subset of (0, +∞) for the defocusing cubic Schrödinger equation with the time interval [--N , -N ], for all N ≥ 1 and s 1. However, this above transformation u → v does not preserve the L 2 norm for the NLS-Szegő equation and formula (5.2) fails too.

On the other hand, the approach that we use to prove Theorem 1.8 does not work for (5.1). In fact, the negative high frequency Fourier modes in the term H m 1 (v) = Re S 1 e -imx |v| 2 v can not be cancelled by the homological equation. The energy functional of the equation of v can not be reduced as H m 0 + O( 2 ) by using the same method in this paper. The Szegő filtering to (5.1) makes it possible to cancel all the high frequency resonances in the term

Then we use a bootstrap argument to deal with the equation ∂ t w(t) = X H m, (t)•χ m 1 (w(t)) after the Birkhoff normal form transformation.

Appendix

We give the details of the homological equation in Proposition 4.4 and prove (4.8) and Proposition 4.3 in the case α = 0.

Re(a j,l,k v j v l v k ). With the convention v n = 0, for all n < 0, we have