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Abstract 

Purpose: The Fluid Attenuated Inversion Recovery (FLAIR) sequence is a pillar technique to detect 

brain lesions in MRI. At ultra-high field, the lengthening of T1 often advocates a T2-weighting 

preparation module to regain signal and contrast between tissues, which can be affected by transmit 

radiofrequency (RF) field inhomogeneity. In this note, we report an extension of a previous FLAIR 

study that now incorporates the T2-preparation with parallel transmission calibration-free universal 

pulses to mitigate the problem. 

Methods: The preparation consisted of a 90°--180°--90° module to implement an effective inversion 

in the cerebral spinal fluid and a saturation in the brain tissues. Care was taken for the pulses to have the 

desired phase relationship in every voxel by appropriate pulse design. The RF pulse design made use of 

the kT-point parametrization and was based on a database of 20 B1
+ and B0 maps previously acquired 

on different subjects at 7T. Simulations and experiments on 5 volunteers, not contained in the database, 

were performed for validation.    

Results: Simulations reported very good inversion efficiency for the preparation module with 8% 

variation, with respectively four and six times less power and SAR than for the adiabatic version. 

Experiments revealed FLAIR images free of B1
+ artefacts. 

Conclusion: This work contributes further to the panel of 3D sequences validated and now available 

with universal pulses at 7T. The drop in power and SAR demand compared to adiabatic pulses in the 

T2-preparation leads to more freedom for the design of the readout train. 

  



Introduction 

The Fluid Attenuated Inversion Recovery (FLAIR) sequence is of major importance for the detection of 

cortical lesions (1), e.g. in patients with multiple sclerosis. At ultra-high field (UHF), it has been reported 

that the increased image resolution enabled by the inherent boost in Signal-to-Noise Ratio (SNR) leads 

to superior diagnostic capability (2-4). For whole-brain T2-weighted imaging compatible with clinical 

routine, the protocol often incorporates variable flip angle readouts to comply with Specific Absorption 

Rate (SAR) guidelines and power limit issues. But as shown previously (5-7), T2-weighted sequences 

at UHF are particularly sensitive to the radiofrequency (RF) field inhomogeneity, making their direct 

implementation in the Circularly Polarized (CP) mode at 7T highly problematic due to severe signal 

dropouts. Parallel transmission (pTx) provides to the user a valuable set of degrees of freedom to 

mitigate the problem but its inherent workflow has been a major obstacle to transpose all the 

developments made by the community to clinical routine. The approach typically consists of first 

measuring subject-specific B1
+ and B0 maps, post-processing the data and performing on the fly RF 

pulse design, which altogether can cumulate 10 minutes or more over an entire exam. It requires 

expertise and it is subject to human and technical errors. Moreover, it is based on field maps that are 

typically acquired at the beginning of the exam and thus are prone to change if subsequent patient motion 

occurs. To bypass the calibration procedure while being robust against intersubject/position variability, 

a calibration-free “universal pulse” (UP) approach, which consists of designing RF pulses offline on a 

database of good-quality B1
+ and B0 maps pre-acquired on different subjects, was first proposed in (8). 

The concept was successfully tested with home-made and commercial coils at 7T with the MPRAGE 

(8,9), the 2D GRE (9) and the variable Flip Angle Turbo Spin Echo (vFA-TSE) (7) sequences, yielding 

good mitigation of the RF inhomogeneity problem at a mild cost in performance compared to a subject-

based tailored approach. An inversion pulse prior to the vFA-TSE sequence was also inserted to suppress 

the Cerebral Spinal Fluid (CSF) signal and implement a 3D SPACE (Sampling Perfection with 

Application of optimized Contrasts using different flip angle Evolution)-FLAIR sequence (7). However, 

although the flip angle throughout the brain was uniform, the final images lacked contrast because of 

the lengthening of the T1 with field strength. For this reason, it is advocated to insert a T2-preparation 



module (10,11) before the readout to effectively boost the signal and the contrast between white and 

gray matter while still suppressing the CSF signal (see Fig. 1 for a Bloch simulation illustration (12)). 

This preparation can consist of an adiabatic half passage, a delay, an adiabatic full passage, another 

delay and a last adiabatic half passage (11) but can also use up to 4 adiabatic refocusing pulses to be 

more robust against B1
+ and B0 inhomogeneity (10).  However, because they are SAR and power 

intensive, adiabatic approaches can lead to sub-optimal duty cycles, sub-optimal readout trains (RF pulse 

design, flip angle evolution train) and detrimental magnetization transfer effects (10). Finally, when 

surrounded by crusher gradients their long durations can lead to flow-induced artefacts.          

 In this work, we report a whole-brain 3D FLAIR implementation at 7T in which the T2-

preparation module is built from calibration-free universal pulses to mitigate the RF inhomogeneity 

problem. The design of the pulses for the vFA-TSE readout is similar to a previous work (7) and thus 

will not be detailed here. Instead, here we report the design of RF pulses tailored to the T2-preparation, 

as well as simulations and in vivo experiments on 5 healthy volunteers to validate its design concept.  

Theory 

The T2-preparation module is shown in Fig. 2. It consists of a 90° excitation, a delay TE/2, a 180° 

refocusing pulse (dephased by 90° with respect to the excitation), same delay TE/2 and same 90° 

excitation. The overall targeted effect is to invert the CSF magnetization and saturate brain tissue 

uniformly in space, despite heterogeneous B1
+ and B0 fields. In terms of RF pulse design, one of the 

challenges associated with this task is to synthetize the correct rotation matrix at each location in the 

region of interest (the brain), not just flip angles. For the effects of the 90° and 180° pulses to be coherent 

over the whole T2 preparation module, the 90° pulses ideally should yield 90° rotation angles with 

transverse rotation axis. The latter requirement is strong given the amount of B1
+ and B0 inhomogeneity 

(6) and the peak/average power limits imposed by the hardware and the safety guidelines. This problem 

was circumvented in (7) for the vFA-TSE readout module by observing that the rotation matrix of a 

pulse could be well approximated under some circumstances by a free precession, followed by a rotation 

with purely transverse rotation axis and the same free precession. That way, the free precessions could 

be “absorbed” in the delays naturally occurring in the MRI sequence while the pulses behaved 



effectively as if they were purely transverse rotations. In principle, the leading 90° excitation of the vFA-

TSE readout could be used for the T2-preparation module while the 180° could be synthetized by 

cascading two such 90° pulses. Let us denote by R the rotation matrix characterizing the 90° pulse. 

According to the theory (7), this rotation may be rewritten as R = R୸(∆B଴)Rୄ(θ)R୸(∆B଴) where R୸ 

and Rୄ(θ)denote rotations about the z and a purely transverse axis respectively. Hence, doubling the 

waveform would yield the rotation Rଶ = R୸(∆B଴)Rୄ(θ)R୸(∆B଴)R୸(∆B଴)Rୄ(θ)R୸(∆B଴), in general 

different from the desired rotation R୸(∆B଴)Rୄ(2θ)R୸(∆B଴), except if ∆B଴=0. As a result, simply 

doubling the 90° pulse of the vFA-TSE readout would yield good results for up to moderate B0 values 

only. For the refocusing pulse of the T2 preparation module, we thus propose to design a specific B0-

robust universal kT-point inversion pulse. We observe that if a 180° flip angle is reached, then the axis 

of rotation necessarily is transverse (13), and the pulse is refocusing. Denoting by α and β the Cayley-

Klein parameters of the rotation matrix, propagating an initial magnetization along z and looking at its 

projection along –z yields: [0 1] ൤
𝛼 −𝛽∗

𝛽 𝛼∗ ൨ ቂ
1
0

ቃ = 𝛽. Thus, by unitarity of the matrix (|𝛼|ଶ + |𝛽|ଶ = 1), 

if |β| = 1 then α = 0, i.e. the axis of rotation is transverse. One convenient way to construct a phase-

coherent pair of 90° and 180° pulses hence is to design a unique refocusing 180° pulse whose internal 

structure is the cascade of two identical waveforms. By doing this, the objective function to minimize 

in this case is simply a flip angle Normalized Root Mean Square Error (NRMSE) with 180° target. 

Taking the first half of the gradient and RF waveforms then leads to the desired result: a rotation angle 

halved (90°) and the same, transverse, rotation axis. The proposed approach thus remains in essence as 

simple as a conventional flip angle NRMSE minimization problem while it inherently promotes more 

phase coherent solutions compared to the approach consisting of designing a 90° pulse and doubling it.  

  

Methods 

The 180° rotation of the T2-preparation module was designed using the kT-point parametrization (14), 

under explicit power and SAR constraints (15) and with simultaneous optimization of the k-space 

trajectory (16). According to the theory above, it consisted of 5 kT-point pulses applied twice back to 



back, leading to a total of 10 kT-points and a duration of 2 ms (160 µs per sub-pulse and 40 µs gradient 

blips). The first half of the waveform was extracted to yield the phase coherent 90° pulse. The  UPs were 

designed on a database of 20 subjects whose field maps were acquired in a previous study (age 40 ± 15 

years old, 50 % women) as an attempt to cover significant intersubject variability yet with a reasonable 

number of scans (9). The flip angle NRMSE averaged over the database subjects was the cost function 

to minimize. The vFA-TSE readout flip angle train was synthetized using Mugler’s approach (17) and 

was built from a single, scalable, refocusing UP (7). The designed pulses were integrated in the T2-

preparation module of the sequence and were implemented on a Magnetom 7T scanner (Siemens 

Healthcare, Erlangen, Germany) equipped with the Nova 8TX-32RX (Nova Medical, Wilmington, MA, 

USA) head coil and a SC72 whole body gradient insert (40 mT/m nominal amplitude and 200 T/m/s 

maximum slew rate). Neither tailored pTx calibration nor online pulse design were performed, just as 

in single channel mode. The scans were conducted on 5 adult volunteers in the “protected mode” 

supervision (Siemens step 2.3) with average power limits of 1.5 W per channel and 8 W total at the coil 

plug. The study was approved by the local ethics committee and the 5 volunteers gave written informed 

consent. The sequence parameters were the following: TR = 7 s, TI = 2100 ms, TE = 100 ms, 1×1×1 

mm3 resolution, matrix size = 256×208×144, GRAPPA (R = 22), total scan time = 9 min 48 s. To 

demonstrate the gain in contrast brought by the preparation, an additional scan was performed on 2 of 

the volunteers with the T2 preparation module replaced by a single UP inversion (3.7 ms duration). Brain 

images were segmented by using the FSL FMRIB Automated Segmentation Tool (FAST) (18) to 

confirm contrast quality. After measuring their respective B1 and B0 maps, Bloch simulations of the 

action of the T2 preparation module were performed for the scanned subjects to verify good inversion 

and saturation properties for CSF (T1 = 4.4 s, T2 = 2 s) and brain tissue (T1 = 2 s, T2 = 0.06 s) respectively. 

For comparison, a similar simulation was performed for the preparation consisting of one hard tip-down 

90° pulse, 4-hyperbolic secant adiabatic refocusing pulses (duration = 9 ms, maximum frequency 

modulation = 706 Hz), one hard tip-up 90° pulse and a final inversion adiabatic pulse (duration = 17.1 

ms, maximum frequency modulation = 700 Hz), as proposed in (10) and implemented in (19) with pTx. 

Analysis of the longitudinal magnetization homogeneity was performed just after the T2-preparation and 

just before the vFA-TSE readout, i.e. after magnetization recovery. To gain insight into the importance 



of magnetization transfer effects for the UP and the adiabatic-based T2 preparation modules, the same 

simulation was performed for the macromolecular protons of the brain tissues with T1=1.6 s and T2=10 

µs (20). The saturation of the macromolecular pool (21), i.e. the ratio of the longitudinal magnetization 

at the end of the preparation to the one prior to it, hereby was obtained for the two T2 preparation 

techniques. For simplicity, the exchange between the free and macromolecular protons was ignored 

during the preparation due to its relatively low rate (2.4 s-1 and 4.3 s-1 for gray and white matter 

respectively (22)) at the time scale of interest (the duration of the T2 preparation module , i.e. 100 ms). 

Given that TI ≫ T2, it was also neglected during the recovery of the brain tissues to follow the 

longitudinal magnetization of the same macromolecular protons considered during the T2 preparation, 

in the limit that the two proton pools have similar T1 relaxation times.    

Results 

The returned average power per channel with the kT-point UPs was 0.13 W for the whole T2-

preparation, thus requiring 4 times less power than the adiabatic version1 (19). Electromagnetic field 

simulations provided by the coil manufacturer on a head model and validated in the laboratory also 

returned 6 times less peak 10-g SAR than for the adiabatic approach. The saturation coefficient of the 

macromolecular pool averaged over the whole-brain amounted to 0.16 and 0.68 for the adiabatic and 

UP approaches respectively, just at the end of the preparation module, and 0.77 and 0.91 just before the 

vFA-TSE readout. Intersubject variability was found to be not more than 10%. The flip angle NRMSEs 

of the 90° and 180° UPs of the preparation module were 7.5 ± 1.5 % and 10.1 ± 1.2 % when evaluated 

over the 20 database subjects, so better than the 13 % NRMSE obtained at 3T in single channel CP mode 

(23). The simulated longitudinal magnetization is reported in Fig. 3 for the 5 scanned subjects, for the 

adiabatic and UP implementations. The preparation effectively results into a saturation for brain tissues 

while maintaining an inversion for the CSF. Just after the preparation, standard deviations in units of 

M0 are 0.10 and 0.23 for the brain tissue and CSF respectively with the adiabatic approach, versus 0.02 

and 0.07 with UPs. As shown in (19), and confirmed by our simulations, remaining inhomogeneities at 

the end of the T2 preparation largely disappear with the regrowth of the longitudinal magnetization 
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౐భ)), making the readout in fact far more critical for signal and contrast 

homogeneity. After recovery, the numbers above become 0.03 and 0.14 for the adiabatic case, versus 

0.01 and 0.04 for the UPs, yielding good homogeneity in both cases. 

Fig. 4.a reports the in vivo results on the 5 volunteers. Good contrast was obtained consistently 

throughout the tests with no apparent B1
+ artefact. As a reference, for comparison, the result obtained 

with a single UP inversion instead of the T2 preparation is provided in Fig. 4.b for volunteer #5. It 

demonstrates a lack of contrast if a T2 preparation module is not incorporated. The gain in contrast 

brought by the preparation translates directly into better segmentation results (see Fig. 5). 

Discussion 

We have reported the design and implementation of a T2-preparation module with parallel 

transmit kT-point UPs. The phase coherence between the 180° and the 90° excitation pulses was enforced 

by parametrizing the former with two successive identical waveforms, the first (or second) half 

constituting the excitation. Smaller, phase coherent, rotations incidentally could be synthetized this way 

by extrapolating the method. We showed in (9) that universal inversion pulses could reach flip angle 

NRMSEs less than 5 %. Here the NRMSE obtained across the database subjects for the refocusing pulse 

was 10.1 ± 1.2 %, thus indicating a small price to pay to achieve phase coherence with this pulse 

construction. Alternatively, the doubling of the waveforms to achieve 180° could be abandoned, but 

then at the expense of a more involved and complicated pulse design for the excitation where the phase 

in each voxel would need to be tracked (6).     

A whole-brain FLAIR study with a T2-preparation module and with pTx was also reported in 

(19). The pulse design was based on a direct signal control model where each RF pulse in the vFA-TSE 

readout train made use of a different RF shim setting to target a prescribed signal evolution for a given 

T1 and T2 pair. A UP version, still making use of RF shim pulses, was also successfully implemented, 

albeit with some moderate loss of performance compared to the subject-based tailored approach. To be 

more robust against the RF field inhomogeneity inherent to 90° hard pulses, the T2 preparation used 4 

hyperbolic secant refocusing and one inversion, also adiabatic, pulses. Our simulations confirm their 



results by showing that the vFA-TSE readout indeed is far more critical for the signal and contrast 

homogeneity than the T2-preparation, as imperfections in the preparation largely disappear with 

magnetization recovery. The main benefit of the proposed kT-point universal pulse approach hence is 

the reduced power (×4) and SAR (×6) demands, leading most importantly to more freedom to optimize 

the readout train. Incidentally, we could also show in simulation significant reduction of the saturation 

of the macromolecular protons caused by the preparation. Those differences yet again fade after 

magnetization recovery and do not likely lead to big effects in this particular application. Finally, the 

shorter duration of the refocusing universal pulses (2 ms versus 9 ms) can be beneficial to limit flow 

artefacts in the presence of crusher gradients occurring in the T2-preparation.  

Conclusion 

We have reported the design and implementation of a T2-preparation module with pTx universal pulses 

in the 3D FLAIR sequence at 7T. Simulations and measurements validated the approach, which yields 

comparable signal homogeneity to the adiabatic version but with significantly less power, SAR and 

pulse duration. This complements the toolbox of universal pulses already available in 3D sequences and 

widens the applicability of the technique in general for use in clinical routine. The solutions have also 

been shown to be robust with respect to inter-site variability (24). They are available upon reasonable 

request with the appropriate sequences.  
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Footnote 

1The 0.34 W indicated in ref (19) is for TR=8 s, and thus becomes 0.39 W for TR=7 s. A private 

communication with one of the authors revealed that this number did not include the final inversion 

pulse, necessary to invert the CSF longitudinal magnetization. Given the information provided about 

that pulse, the overall total power was estimated as 0.58 W.   
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Figure 1. Bloch equation simulation results for the FLAIR. The simulations took literature values for 

T1 and T2 at 3T and at 7T. The simulation results are provided for 3T (a) and 7T (b) with just inversion 

recovery, c) for 7T with a T2 preparation module. The lengthening of T1 from 3T to 7T attenuates the 

signal and contrast between brain tissues. Inserting the T2 preparation boosts the contrast between gray 

and white matter while suppressing the CSF signal. 

 

 

 

Figure 2. Sequence diagram of the implemented FLAIR sequence with magnetization preparation. The 

turbo spin echo (TSE) readout train uses variable flip angle refocusing universal pulses (UPs). The T2-

preparation module inverts the CSF signal while saturating brain tissue to regain signal and contrast 

between grey and white matter. For more optimality, in the proposed work the design of the pulses in 

the T2-preparation is independent from the design of the pulses in the readout train. 

 

 



 

Figure 3. Bloch simulation results of the T2-preparation module. Assuming perfect spoiling, the result 

is represented as the longitudinal magnetization (units of M0) for the brain tissue (top) and CSF (bottom). 

The distributions are plotted on sagittal slices for the 5 scanned subjects. Comparisons are provided 

between the UP and the adiabatic pulse implementations, just after the preparation module and just prior 

to the vFA-TSE readout (i.e. after Inversion Recovery (IR)).  Both methods return good homogeneity at 

the end of the recovery with perhaps little imperfections at the bottom of the brain for the CSF with the 

adiabatic approach (see also Figure 4 in (19)).  



 

Figure 4. In-vivo FLAIR imaging results at 7T with no bias field correction. a) Sagittal, axial and 

coronal views obtained with pTx universal pulses on 5 volunteers. The CSF is effectively suppressed 

throughout the brain while good contrast between white matter and grey matter is obtained. b) Same 

views for volunteer #5 obtained with a single UP inversion replacing the preparation. Comparison 

between the two illustrates the contrast gain achieved by means of the T2 preparation module.  



 

Figure 5. Segmentation results with FSL on volunteer #5. Top: results with the UP inversion only. 

Bottom: results with the UP T2-preparation approach. Three tissue-segmentation (three colors) was 

specified for white matter, gray matter and CSF. In-vivo images were bias-field corrected with FSL. 


