
HAL Id: hal-02103511
https://hal.science/hal-02103511

Submitted on 18 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Checking of Smart Contracts
Zeinab Nehai, Pierre-Yves Piriou, Frédéric Daumas

To cite this version:
Zeinab Nehai, Pierre-Yves Piriou, Frédéric Daumas. Model-Checking of Smart Contracts. IEEE
International Conference on Blockchain, Jul 2018, Halifax, Canada. �hal-02103511�

https://hal.science/hal-02103511
https://hal.archives-ouvertes.fr


Model-Checking of Smart Contracts

Zeinab Nehai
Ecole Supérieure d’Ingénieur

Léonard de Vinci
Paris-La Défense

Email: zeinab.nehai@devinci.com
phase

Pierre-Yves Piriou
Electricite de France R&D

78400 Chatou
Email: pierre-yves.piriou@edf.fr

Frederic Daumas
Electricite de France R&D

78400 Chatou
Email: frederic.daumas@edf.fr

Abstract—DAO attack showed that formal verification of
smart contracts is an important issue that should be addressed to
prevent irreversible consequences due to design faults activation
in Blockchain applications. This paper proposes a modeling
method of an Ethereum application based on smart contracts,
with the aim of applying a formal method, namely Model-
Checking, to verify that the application implementation complies
with its specification, formalized by a set of temporal logic
propositions. NuSMV tool has been chosen to support this first
approach. The proposed model template is shaped by three layers
capturing respectively the behavior of Ethereum blockchain, the
smart contracts themselves and the execution framework. The
approach is illustrated by a case study coming from energy
market field.

Keywords—Ethereum, model-checking, computation tree logic,
NuSMV.

I. INTRODUCTION

By Saturday, 18th June 2016, the Distributed Autonomous
Organization (DAO) has been hacked. The attacker managed
to drain more than 3.6 million ether exploiting a flaw in DAO
smart contracts source code. A Blockchain application based
on smart contracts is definitively a critical system intended
to be checked before any implementation, in order to provide
safe behavior and avoid security vulnerabilities. This attack
could have been prevented with the use of formal methods.
Model-checking [1] is a type of formal methods, it has been
used primarily in hardware and protocol verification, and now
this technique is applied to analyze specifications of software
systems with large reachable states spaces. As a result, model-
checking is now powerful enough that it is becoming widely
used in industry to aid in the verification of newly developed
designs, which is particularly desirable for critical systems.

This paper aims to establish a generic modeling method
of a Blockchain Ethereum application, in order to apply a
model-checking approach on smart contracts and its execution
environment, as described in Figure 1. The proposed model
is written in NuSMV input language [2] and the properties to
check are formalized into temporal logic CTL [3]. The model
is three-fold. Firstly the Ethereum Blockchain [4] is modeled
as a distributed system managing transactions between clients.
Secondly, modeling rules are proposed to translate the smart
contracts from Solidity (the smart contract coding language for
Ethereum) into the NuSMV input language. Finally the exe-
cution environment has to be tuned according to the intended
use case. To check whether the contracts behave as they are
supposed to do, expected properties of the application have
to be formalized into temporal logic. If a property does not

hold then model-checking provides a counter-example, thus it
is possible to determine the nature and source of the defect.
The method is quite generic and can be applied to various
Ethereum applications. The method is applied on a case study
coming from energy market field: a Blockchain Energy Market
Place.

Fig. 1: Model-Checking approach

Because of the novelty of Blockchain technology, only few
research has been undertaken on formal verification of smart
contracts. Tezos is a Blockchain that intends to run smart
contracts, while being able to formally verify the validity of the
code. Tezos white paper [5] provides interesting guidelines on
the value of formal verification applied to smart contracts, but
their concept is to integrate a proof checker within protocols.
Our approach does not rely on this restriction. A study done in
2015 [6] focused his attention on the validation of the behavior
of the stakeholders when carrying out a contract by combining
game theory and formal verification. Our approach aims to
verify that smart contracts comply with their specifications for
a given behavior of stakeholders. The paper [7] proposes a tool
for analyzing and verifying the functional accuracy of Solid-
ity contracts, both at the source level (functional correction
specifications) and bytecode level (low-level properties). This
approach is the good one to verify an appplication ready to be
deployed in the blockchain but seems to be to tedious to apply
early in the design process. The present work takes advantage
of model-checking technique to fill this lack.

The paper is organized as follows. Section 2 introduces
basic notions of Model-Checking. The modeling method is de-
scribed in section 3, and the case study is addressed in section
4. Finally section 5 provides conclusion remarks and suggests
perspectives. For information, the paper uses a Blockchain
Ethereum vocabulary, it will be assumed that the reader will



be familiar with this jargon.

II. RECALL ON MODEL-CHECKING

A. Overall description

Model checking is an automatic formal verification tech-
nique based on a description of the behavior under study into
a state machine [8]. This technique consists in performing an
efficient systematic inspection of all possible state sequences
described by the model in order to prove it satisfies some
behavioral properties. The semantics of a state machine is
given by a system of transitions what can be more or less
complex, ranging from finite state machines (finite automata)
to real programs (Turing machines). Thus, the main chal-
lenge in model checking is the combinatory explosion of the
model. Nevertheless, this technique is relevant to check partial
specifications early in the design process [8]. If the model
does not satisfy a property under consideration, the model
checker provides a counter-example of sequence that violates
the property. This information can be advantageously used to
adapt the design (or the specification). Indeed, the wide number
of successful industrial applications witnesses the performance
of model checking tools [9]. Among other existing tools, SPIN
[10], ProB [11], UPPAAL [12] and NuSMV [2] can be cited
to represent three kind of model-checkers based on different
modelling techniques [13]. This paper proposes a method to
build a NuSMV model of a Blockchain application based on
smart contracts. NuSMV is widely used for academic research
thus is well suited for a first approach.

B. Temporal logic

Properties to be checked on transition system can be
various kinds [14]:

• reachability: "is it possible to end up in a given state?"

• safety "something bad never happens"

• liveness "something good will eventually happen"

• fairness "does, under certain conditions, an event
occur repeatedly?"

• functional correctness: "does the system do what it is
supposed to do?"

• real-time properties "is the system acting in time?"

These properties can be formalized by temporal logic proposi-
tions. Such logic define temporal operators1 in top of classical
logic operator (conjonction ∧, disjonction ∨, negation !, im-
plication →, equivalence ↔). In this paper, we will focus on
a temporal logic called Computation Tree Logic (CTL) [3],
which is accepted by NuSMV. CTL formulas describe prop-
erties of a computation tree, which represents all the possible
executions starting from the initial state of the behavior under
study. A CTL formula connects atomic properties (evaluable by
Booleans) with usual logic operators, two path quantifiers and
four temporal operators (three unary and one binary). Given
a property p, a path quantifier specifies if p is verified for

1The word "temporal" in this context does not necessary refer to physical
time but logic time: only the order of events occurrence are considered.

all paths (Ap) or for at least one (Ep). Temporal operators
describes in what states of a path a property is verified:

• Xp (next): p holds in the second state of the path.

• Fp (eventually): p holds in at least one state of the
path.

• Gp (always): p holds in every state of the path.

• p Ug (until): g holds in at least one state of the path
and p holds in every previous states.

III. MODELING A BLOCKCHAIN APPLICATION INTO
NUSMV INPUT LANGUAGE

This section sketches a methodology to build a NuSMV
model of a Blockchain application based on Ethereum Smart
Contracts. The proposed model is three-fold: the kernel layer
capture the (Ethereum) Blockchain behavior, the application
layer models the smart contracts themselves and the envi-
ronment layer determines an execution framework for the
application. NuSMV input language allows a modulary and
hierarchical modelling process. A module can be instantiated
into another one and the top module is called main (NuSMV
syntax and semantics are detailed in [2]). In the proposed
model, the kernel layer is a set of modules among them one is a
template model of a Blockchain client behavior. An Ethereum
smart contract is a particular case of Blockchain client, then the
application layer is a set of refinements of the client module.
Finally, the environment layer is the module main itself.

A. A minimalist model of Blockchain

For this first approach, we limit the Blockchain appre-
hension to its very basics: a distributed system managing
transactions between clients.

1) MODULE client: An Ethereum Blockchain client, iden-
tified by an address, can be either a BC user (an external client)
or a smart contract (an internal client). Its state is characterized
in our model by two variables (see the code below):

• balance (type integer) is the number of wei (subdi-
vision of the ETHER token) owned by the client.
Its maximum value may have a significant impact
on analysis calculus time then should be thoroughly
chosen in main module (refered in the model by the
parameter env).

• data (type word[64]2) is an arbitrary data stored by
the client.

A transition relation states that if the client is not involved
in a transaction in current state, then its balance will remain
unchanged in next state and its data is reinitiated. This condi-
tion is translated by the boolean will_move whose expression
depends on the analysed scenario then has to be defined in
main module.

MODULE client(env,init_balance)
VAR

balance : 0..env.INT_MAX;

2The length of data variable is limited to 64 bit here but arbitrary length
data could be considered through the type array of word[64].



data : word[64];

ASSIGN
init(balance) := init_balance;
init(data) := 0uh64_0;

TRANS !will_move -> conserve ;

DEFINE
conserve := (next(balance) = balance)

& (next(data) = 0h64_0);

2) MODULE transaction: A client (the snder) can send
an amount of wei and some data to another client (the
rcver). Such transaction occurs when a parametrable condition
becomes true (!fired & cond) if the sender owns enough wei
(an additional condition on receiver’s balance ensures this
variable will not overflow). If these conditions are verified
(alias trigger), the sender and receiver balance and data will
be updated in next state.

MODULE transaction(env,cond,snder,rcver,
amount,data)

VAR fired : boolean;

ASSIGN
init(fired) := FALSE;
next(fired) := case
trigger : TRUE;
! next(cond) : FALSE;
TRUE : fired;
esac;

TRANS trigger -> (next(snder.data)=0h64_0)
& (next(snder.balance) = snder.balance-amount)
& (next(rcver.data) = resize(data,64))
& (next(rcver.balance) = rcver.balance+amount);

DEFINE trigger := (!fired & cond
& (snder.balance >= amount)
& (env.INT_MAX - amount >= rcver.balance));

In order to illustrate a basic use of this kernel layer, module
main hereinbelow depicts a simple scenario involving two
clients (c1 and c2) who make transactions with an arbitrary
amount and data. Both starts with a balance of 10 weis,
and we can for instance check that the sum of their balance
always equals 20 (which is clearly true). Let us remark that
the booleans will_move of each instantiated clients are defined
in a systematic way: logical OR of all transactions’ trigger
attributes whose the client is either the sender or the receiver.

MODULE main
VAR
_amount : 0..INT_MAX;
_data : word[64];
_cond1 : boolean;
_cond2 : boolean;
c1 : client(self,10);
c2 : client(self,10);
tx1 : transaction(self,_cond1 &

!_cond2,c1,c2,_amount,_data);
tx2 : transaction(self,_cond2 &

!_cond1,c2,c1,_amount,_data);

DEFINE

INT_MAX := 10;
c1.will_move := tx1.trigger | tx2.trigger;
c2.will_move := tx1.trigger | tx2.trigger;

SPEC AG (c1.balance + c2.balance = 20);

This minimalist model is sufficient to check the smart
contracts implementation. To address more ambitious prop-
erties on the behavior of an application over time, it would
be necessary to refine the model and in particular develop the
notions of blocks, ledger, miner, gas consumption...

B. Smart Contract modeling

A smart contract is a particular case of programmable
client that automatically reacts when it receives a transaction
carrying the appropriate data. Solidity is the mostly used
language to develop smart contracts for Ethereum Blockchains
[15]. It is a kind of Object-Oriented language where contracts
are objects. Thus a contract is defined with a set of typed
variables (or attributes) and a set of functions (or methods).
A contract instance stores in the BC its attributes values
what may be changed when its methods are called. A Solidty
developer can also define some events to log information on the
contract state when a method is executed. This information is
logged into the transaction’s receipt calling the method what is
really convenient for the contract monitoring, but such feature
is secundary and is not taken into account in the current
approach. To call a contract’s method, a client has to send
(through a transaction) a specific data to the contract, which
is the concatenation of (see the section Application Binary
Interface Specification in Solidity documentation [15] for full
details):

• the function selector: first four bytes of the Keccak256
hash of the function signature;

• the argument encoding: a code determined from the
arguments values (see [15]), here simplified as an
hexadecimal conversion of arguments.

Let us now consider a toy example of Solidity contract:

contract Toy_example {
uint a = 0;
function foo(bool b) returns (uint) {
if (b) {

a=42;
}
else {

a=0;
}

}
}

The function selector of function foo is "45557578" (first
four bytes of keccak256("foo(bool)")) and the argument pos-
sible values false and true can respectively be encoded by "0"
and "1". Once deployed in the Blockchain, a client can call the
method foo with a boolean value by sending to the contract
address the data "455575780" or "455575781".

To model a smart contract in a NuSMV module, we
propose to apply following rules:



1) To instantiate the client module such as the contract
module inherits from a basic client behavior (a con-
tract is a particular case of client).

2) To translate the contract attributes into NuSMV vari-
ables according to the table of types equivalences (cf.
Table I).

3) To define, for each function f , an alias call_f for
the test: does the stored data begins by the function
selector corresponding to f? When the function has
arguments, their values also have to be captured into
aliases. When the function returns a value, another
alias f_return may be created to translate it.

4) To describe with assignments the evolution of vari-
ables when functions are executed.

5) To define a transaction when an external function (i.e.
a function located in another contract) is called in a
local function. The condition to trigger the transaction
must capture the calling context.

This list of rules is sufficient to capture the behavior of
simple smart contracts and should be refined to address
more complex ones. Nevertheless, the limitations of NuSMV
language prevent to propose a systematic set of rules, thus
subtile constructions should be modelled by specific tricks.
The proposed list of rules has the advantage to be fully
automatizable.

Solidity NuSMV
Unsigned integer Integer [min integer..max integer]

Address Unsigned word[N] (N: natural number)
Boolean Boolean
Mapping Decompose the mapping
Structure Decompose the structure

Array of <type> array[min array size]..[max array size] of [type with size]
Enumeration enumeration type

TABLE I: Type translation from Solidity to NuSMV

The NuSMV code here in below shows the result of the
application of these rules to the contract given in example
above:

MODULE Toy_example(env)
VAR

c: client(env,0);
a: 0..env.INT_MAX;

ASSIGN
init(a) := 0;
next(a) := case
next(call_foo & b) : 42;
next(call_foo & !b) : 0;
TRUE : a;
esac;

DEFINE
call_foo := (c.data[32:1]=0h_45557578);
b := bool(c.data[0:0]);

A possible test case is an oracle that reacts on the updating
of a particular boolean _b by calling the method foo. On this
scenario, we can check that the property "whenever _b is true,
the attribute a stored in the smart contract is equal to 42."
holds for all paths. This test case is modeled by the following
main module:

MODULE main
VAR

_b : boolean;
toy : Toy_example(self);
oracle : client(self,0);
tx : transaction(self,_cond, oracle,

toy.c,0,foo_selector::word1(_b));

ASSIGN init(_b):=FALSE;
TRANS tx.fired -> _b=next(_b);

DEFINE
INT_MAX := 100;
oracle.will_move := tx.trigger;
toy.c.will_move := tx.trigger;
foo_selector := 0h_45557578;
_cond := (_b != next(_b));

SPEC AG (_b -> (toy.a=42));

IV. THE BLOCKCHAIN ENERGY MARKET PLACE (BEMP)
USE CASE

This section illustrates the approach with a case study: the
Blockchain Energy Market Place (BEMP). This Blockchain
use case based on smart contracts, popularized by the Brook-
lyn microgrid [16], aims at managing peer-to-peer energy
exchanges between prosumers (productor/consumer) in a mi-
crogrid.

A. Description of a BEMP implementation

EDF R&D has developped a proof-of-work implementation
of the BEMP use case. Figure 2 depicts an energy trade
between two users of the BEMP. In this Figure, transfers 1 and
2 are performed continuously and independently of the market,
whereas transfers 3,4 and 5 are performed regularly by smart
contracts according to transfer 1 and 2 (an oracle connected
to users’ smart meters feeds the BEMP with production and
consumption data):

1) Alice produces energy and supplies its excess pro-
duction to the grid.

2) Bob consumes a certain amount of energy pulling
from the grid.

3) Alice’s production is capitalized as "crypto-
kilowatthours" (crypto-kWh) sent to the BEMP.

4) Bob pays Alice with ETHER currency for her energy
(the amount to transfer is determined by the BEMP
according to her production and his consumption).

5) Bob receives crypto-kWh in proportion of its payment
as bill.

The considered implementation is composed of four smart
contracts coding into Solidity language:

• Account which stores the properties of an account
(user location, sales and purchasing capacity...) and
performs the ETHER payment (one such instance is
created for each user).

• Market which receives all sales and orders and ensure
the transit of crypto-kWh.

• Algorithm which determines the best way to satisfy
sales and orders.



Fig. 2: Operation of an energy and token transaction of
BEMP

• Registry that logs any events occuring in BEMP (ac-
count creation, sales and orders, actual transactions).

Once deployed in an Ethereum Blockchain, the calling of these
contracts’ functions is performed by a JavaScript oracle that
is running regularly. In practice, the oracle is connected to the
Blockchain as a casual client and sends regularly the same
sequence of transaction to smart contracts:

1) Opening the market (transaction sending to Market);
2) Recording production and consumption amounts of

each user (transactions sending to Registry contract
that triggers three automatic transactions between
Registry, Account and Market);

3) Running the algorithm (transaction sending to Algo-
rithm that triggers four internal transactions between
Algorithm, Registry, two instances of Account and
Market);

4) Closing the market (transaction sending to Market).

B. Modelling the BEMP in NuSMV

Our approch is now applied to check that the presented
BEMP implementation verifies some required properties. First
the minimalist model of Blockchain introduced in subsection
III-A is reused without modification. Then, modeling rules
described in subsection III-B have been applied (with some
local specific adaptations) to translate the four Solidity smart
contracts into NuSMV modules. Finally, the sequence of
transactions sending by the oracle has been reproduced into
the main module (the scope of the analysis is limited to a
single execution of the sequence).

For practical reasons we cannot report here the Solidity
code, neither the complete NuSMV model. Only an extract
is reported below. This extract show the part of the model
concerned by the third step of the sequence performed by the
oracle. To illustrates how to use this partial model, we propose
a main module that describes a context involving three users:
one producer (Alice) and two consumers (Bob and Claude).

MODULE main
FROZENVAR

Alice_meter : word[64];
Bob_meter : word[64];
Claude_meter : word[64];
export_Alice : word[4] ;

import_Bob : word[4] ;
import_Claude : word[4] ;

VAR
-- instantiation of clients:
market : Market(self);
registry : Registry(self);
algo : Algorithm(self);
Alice : Account(self,AliceInitBalance);
Bob : Account(self,BobInitBalance);
Claude : Account(self,ClaudeInitBalance);
oracle : client(self,0); -- external client

stepper : {s1,s2a,s2b,s2c,s3,s4,end} ;

-- instantiation of initiator transactions:
-- calling of method ’openMarket’
step1 : transaction(self, stepper=s1,

oracle, market.cl, 0, 0uh64_35caf43f);
-- calling of ’recordImportsAndExports’
-- method with its parameters: ’meterId’,
-- ’imports’ and ’exports’ (3 times)
step2a : transaction(self, stepper=s2a,

oracle, registry.cl, 0, 0uh32_35c768a1::
Alice_meter::0uh8_0::extend(export_Alice,64));

step2b : transaction(self, stepper=s2b,
oracle, registry.cl, 0, 0uh32_35c768a1::
Bob_meter::extend(import_Bob,64)::0uh8_0);

step2c : transaction(self, stepper=s2c,
oracle, registry.cl, 0, 0uh32_35c768a1::
Claude_meter::extend(import_Claude,64)::0uh8_0);

-- calling of ’run’ method
step3 : transaction(self, stepper=s3,

oracle,algo.cl,0,0uh64_83628047);
-- calling of ’closeMarket’ method
step4 : transaction(self, stepper=s4,

oracle, market.cl, 0, 0uh64_6e155755);

ASSIGN
init(stepper) := s1;
next(stepper) := case

step1.trigger : s2a ;
market.transferToMarket.trigger : s2b ;
Bob.buy.trigger : s2c ;
Claude.buy.trigger : s3 ;
market.transferFromMarket.trigger : s4;
step4.trigger : end ;
TRUE : stepper ;
esac ;

DEFINE
INT_MAX := toint(0uh_ff);

AliceInitBalance := 0;
BobInitBalance := 100;
ClaudeInitBalance := 100;
pricePerEnergyUnit := 0d8_10;

-- Definition of will_move variables
-- just necessary for this illustration:
market.cl.will_move :=

step1.trigger |
step5.trigger |
market.transferFromMarket.trigger |
algo.complete1.trigger |
algo.complete2.trigger |
market.completeBob.trigger |
market.completeClaude.trigger;

registry.cl.will_move :=



step3a.trigger |
step3b.trigger |
step3c.trigger |
market.transferFromMarket.trigger |

algo.cl.will_move :=
step4.trigger |
algo.complete1.trigger |
algo.complete2.trigger ;

Alice.cl.will_move :=
Bob.pay.trigger |
Claude.pay.trigger ;

Bob.cl.will_move :=
market.completeBob.trigger |
Bob.pay.trigger ;

Claude.cl.will_move :=
market.completeClaude.trigger |
Claude.pay.trigger ;

oracle.will_move :=
step1.trigger |
step3a.trigger |
step3b.trigger |
step3c.trigger |
step4.trigger |
step5.trigger ;

This module declares 6 frozen variables to set at ini-
tialization a 64 bits word encoding the users’ smart meters
identifiers, and a 4-bits word encoding the amount of energy
they export (for Alice) or import (for Bob and Claude) to/from
the microgrid3. This data is sent by the users’ smart meters.
Then the models of smart contracts are instantiated (Account
is instantiated three times: one for each user). The oracle
is also instantiated as a standard blockchain’s client. Then
6 transactions are declared that corresponds to the initiator
of the four steps of the sequence executed by the oracle
(these transactions are therefore sent by the oracle). The step
2 is repeated 3 times because there are three users for this
case. The conditions to trigger each of these transactions are
managed by the variable stepper whose value change when a
step is finished. First and last steps consist in sending a unique
transaction, then they are finished as soon as this transaction
has been triggered (in the next state). But the other steps trigger
a sequence of transactions then they are finished as soon as the
last transaction has been triggered. Finally, aliases are declared.
In particular, the will_move aliases of each client are defined
here (cf. subsection III-A).

The initiator transaction of third step aims to call the run
method of algo smart contract. Let us now see how this method
is modeled into the module Algorithm.

MODULE Algorithm(env)
VAR

cl : client(env,0);
buyAmount1 : word[8];
buyAmount2 : word[8];
sellAmount : word[8];
complete1 : transaction(env,cond_complete1,

self.cl,env.market.cl,0,
0uh32_70ea0793::0h8_1::0h8_1::to_buy1::price1);

complete2 : transaction(env,cond_complete2,
self.cl,env.market.cl,0,
0uh32_70ea0793::0h8_1::0h8_2::to_buy2::price2);

3To simplify the code, we assume that these values are always strictly
positive. This is possible to specify this constraint at simulation stage.

ASSIGN
init(buyAmount1) := 0h8_0;
next(buyAmount1) := case

next(call_run) : next(env.market.buyOrder[1]) ;
TRUE : buyAmount1 ;
esac ;

init(buyAmount2) := 0h8_0;
next(buyAmount2) := case

next(call_run) : next(env.market.buyOrder[2]) ;
TRUE : buyAmount2 ;
esac ;

init(sellAmount) := 0h8_0;
next(sellAmount) := case

next(call_run) : next(env.market.sellOrder[1]) ;
TRUE : sellAmount ;
esac ;

DEFINE
call_run := (cl.data = 0h64_83628047) ;
to_buy1 :=

buyAmount1 + buyAmount2 >= sellAmount ?
(sellAmount*buyAmount1)/(buyAmount1+buyAmount2):
buyAmount1 ;

to_buy2 :=
buyAmount1 + buyAmount2 >= sellAmount ?
(sellAmount*buyAmount2)/(buyAmount1+buyAmount2):
buyAmount2 ;

price1 := to_buy1*env.pricePerEnergyUnit;
price2 := to_buy2*env.pricePerEnergyUnit;
cond_complete1 := call_run;
cond_complete2 := complete1.fired;

We can see that when the method run is called, two
transactions are sequentially sent to market for completing
the orders stored in the market, calling the method complete.
The implemented algorithm consists in satisfying the users in
proportion of their importation/exportation. In our case, that
means that if Bob and Claude has consumed more energy
than Alice has produced, they share her energy in proportion
of their own consumption (of course, if Alice has produced
enough for supplying both Bob and Claude, they pay only for
their own consumption). The energy price is simply determined
by multiplicating the amount of energy bought by a constant
factor. The method complete has 4 arguments: the sell order
id, the buy order id, the amount of energy bought and its price.
Let us now see how this method is modeled into the module
Market.

MODULE ETP_Market(env)
VAR
cl : account(env,0);
completeBob : transaction(env,

cond_completeBob, self.cl, env.Bob.cl,
0, 0uh40_70ea0793::seller_meter::price);

completeClaude : transaction(env,
cond_completeClaude, self.cl, env.Claude.cl,
0, 0uh40_70ea0793::seller_meter::price);

transferFromMarket : transaction(env,
cond_transferFrom, self.cl, env.registry.cl,
0, 0uh40_16c5407d::buyer_meter::amount);

DEFINE
call_complete := marketOpen &

(cl.data[63:32] = 0h_70ea0793);
seller := call_complete ?



cl.data[31:24] : 0h8_0;
buyer := call_complete ?

cl.data[23:16] : 0h8_0;
amount := call_complete ?

cl.data[15:8] : 0h8_0;
price := call_complete ?

cl.data[7:0] : 0h8_0;
seller_meter := env.Alice_meter;
buyer_meter := case

cond_completeBob.fired : env.Bob_meter;
cond_completeClaude.fired : env.Claude_meter;
TRUE : 0h16_0;
esac;

cond_completeBob := call_complete &
buyer = 0h8_1;

cond_completeClaude := call_complete &
buyer = 0h8_2;

cond_transferFrom :=
env.Bob.payAlice.trigger |
env.Claude.payAlice.trigger ;

Aliases seller, buyer, amount and price refer to the four
parameters of method complete. Parameter buyer is used to
determine who is the current buyer (Bob is the first registered
buyer and Claude is the second one)4. When the method
complete is called, the market send a transaction to either
Bob or Claude account (the concerned buyer) calling its
method complete that trigger the payment. This method has
two parameters: the seller identifier and the price to pay. If
the buyer actually pay, the market send another transaction to
the registry calling its method transferFromMarket that edits
the buyer’s bill. This second method has also two parameters:
the buyer identifier and the amount of energy bought. Let us
now see how the method complete is modeled into the module
Account.

MODULE Account(env,init_balance)
VAR

cl : client(env,init_balance);
payAlice : transaction(env,cond_payAlice,

self.cl, env.Alice.cl,_price,0uh64_0);

DEFINE
call_complete:=(cl.data[55:24]=0h_70ea0793);
sellerId := call_complete ?

cl.data[15:0] : 0h16_0;
price := call_complete ?

cl.data[23:16] : 0h8_0;
_price := toint(price);
cond_payAlice := call_complete &

(sellerId = env.Alice_meter);

When the method complete is called, if the seller is Alice,
the account send a transaction to Alice with no data but an
amount of wei (_price). This transaction will succeed only if
the account owns enough weis in its balance. Finally, let us
see how the method transferFromMarket is modeled into the
module Registry.

MODULE ETP_Registry(env)
VAR

ac : account(env,0);
billOfBob : 0..env.INT_MAX;

4In our case, Alice is the unique seller

billOfClaude : 0..env.INT_MAX;

ASSIGN
init(billOfBob) := 0;
next(billOfBob) := case

next((buyer_meter = env.Bob_meter)) &
(billOfBob + next(_amount) <= env.INT_MAX) :
billOfBob + next(_amount);
TRUE : billOfBob;
esac;
-- similar assignments here for billOfClaude

DEFINE
call_transferFromMarket :=

(ac.data[39:8] = 0h_16c5407d);
buyer_meter := call_transferFromMarket ?

ac.data[23:8] : 0h16_0;
amount := call_transferFromMarket ?

ac.data[7:0] : 0h8_0;
_amount := toint(amount);

When the method transferFromMarket is called, the bill of
either Bob or Claude is updated with the amount of energy
bought.

C. Formalizing the BEMP specifications

In this subsection, we introduce five examples of proper-
ties that illustrates possible requirements of a BEMP. Such
properties are formalized into CTL logic.

Property 1: If Bob’s payment has been achieved, then his
bill is edited before the market closure.

AG (Bob.pay.fired −→
A [market.marketOpen U (registry.billOfBob > 0)]) ;

Property 2: Alice cannot sell more energy that the amount
she has supplied to the grid.

AG (Alice.cl.balance ≤ AliceInitBalance +
toint(export_Alice*pricePerEnergyUnit)) ;

Property 3: Once opened, the market will eventually be
closed (underlying: the algorithm always find a solution).

AG (Market.marketOpen −→ AF !Market.marketOpen);

Property 4: The algorithm implements a proportional
repartition of energy.

AG (step3.trigger −→ AX ((algo.to_buy1 * buy_amount2)
/ (algo.to_buy2 * buy_amount1) ≤ 1));

Property 5: The algorithm implements an equal repartition
of energy: if both consumers consume more than the half of
the energy produces, then they share it equally.

AG ((step3.trigger & (import_Bob > export_Alice/2) &
(import_Claude > export_Alice/2)) −→
AX (algo.to_buy1 = algo.to_buy2));

Model-checking can be applied on our model to verify that
the considered implementation satisfies the first four properties.
However the last one is not satisfied (actually property 4
and 5 are incompatibles in the general case). Model-checking
provides a counter example that is shown by Figure 3. We can
see that in state 12: algo.to_buy1 6= algo.to_buy2.



Fig. 3: Counter example showing that the considered
implementation does not satisfy property 5

V. CONCLUSION

This paper present a way of applying model-checking to
a Blockchain Ethereum application based on smart contracts.
The corner stone of the approach is to build up a model
according to a three-fold modeling process, namely the ker-
nel layer, the application layer and the environment layer.
Translation rules from Solidity to NuSMV language have been
provided to build the application layer. This approach has been
applied to a case study coming from the energy market field:
the Blockchain Energy Market Place. Finally Model-Checking
technique has been exercised on the resulted NuSMV model
to assess some properties of interest formalized in CTL logic.

To address more ambitious verification and validation
issues, a more precise modelling of an actual Blockchain
application is desirable. Such precision cannot be reached by a
NuSMV model because of the limitations of its input language.
Moreover, the presented approach is limited to application
developped into the Ethereum paradigm. Thus we are looking
for a higher level formalism to build a more abstract model
of a Blockchain, independant from its main implementation
technologies. Such simulable model of a Blockchain and its
applicative smart contracts would serve two main complemen-
tary purposes:

• functionnal validation of smart contracts at their re-
quirements specification development phase.

• reference for end-verification towards the specifica-
tions when integrating their implementations at final
system validation phase.

REFERENCES

[1] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the
art and future directions. ACM Computing Surveys (CSUR), 28(4):626–
643, 1996.

[2] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin
Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri, and Andrei
Tchaltsev. Nusmv 2.4 user manual. CMU and ITC-irst, 2005.

[3] M.C. Browne, E.M. Clarke, and O. Grümberg. Characterizing finite
kripke structures in propositional temporal logic. Theoretical Computer
Science, 59(1):115 – 131, 1988.

[4] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 2014.

[5] LM Goodman. Tezos—a self-amending crypto-ledger white paper,
2014.

[6] Giancarlo Bigi, Andrea Bracciali, Giovanni Meacci, and Emilio Tuosto.
Validation of decentralised smart contracts through game theory and
formal methods. In Programming Languages with Applications to
Biology and Security, pages 142–161. Springer, 2015.

[7] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.
Short paper: Formal verification of smart contracts.

[8] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

[9] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Prin-
ciples of model checking. MIT press, 2008.

[10] Gerard Holzmann. Spin Model Checker, the: Primer and Reference
Manual. Addison-Wesley Professional, first edition, 2003.

[11] Michael Leuschel, Michael Butler, et al. Prob: A model checker for b.
In FME, volume 2805, pages 855–874. Springer, 2003.

[12] Kim Guldstrand Larsen, Paul Pettersson, and Wang yi. Uppaal in a
nutshell. 1:134–152, 12 1997.

[13] Marc Frappier, Benoît Fraikin, Romain Chossart, Raphaël Chane-
Yack-Fa, and Mohammed Ouenzar. Comparison of model checking
tools for information systems. In International Conference on Formal
Engineering Methods, pages 581–596. Springer, 2010.

[14] Amir Pnueli. The temporal logic of programs. In Foundations of
Computer Science, 1977., 18th Annual Symposium on, pages 46–57.
IEEE, 1977.

[15] Ethereum. Solidity documentation, release 0.4.17, 2017.
[16] Esther Mengelkamp, Johannes Gärttner, Kerstin Rock, Scott Kessler,

Lawrence Orsini, and Christof Weinhardt. Designing microgrid energy
markets: a case study: the brooklyn microgrid. Applied Energy, 2017.


	Introduction
	Recall on Model-Checking
	Overall description
	Temporal logic

	Modeling a Blockchain application into NuSMV input language
	A minimalist model of Blockchain
	MODULE client
	MODULE transaction

	Smart Contract modeling

	The Blockchain Energy Market Place (BEMP) use case
	Description of a BEMP implementation
	Modelling the BEMP in NuSMV
	Formalizing the BEMP specifications

	Conclusion
	References

