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Abstract

Purpose: Standard radiofrequency (RF) pulse design strategies focus on minimiz-

ing the deviation of the flip angle (FA) from a target value, which is sufficient but

not necessary for signal homogeneity. An alternative approach, based directly on the

signal, here is proposed for the MPRAGE sequence, and is developed in the parallel

transmission (pTx) framework with the use of the kT -points parametrization.

Methods: The FA-homogenizing and the proposed methods were investigated numer-

ically under explicit power and specific absorption rate (SAR) constraints and tested

experimentally in vivo on a 7 T pTx system enabling real time local SAR monitoring.

RF pulse performance was assessed by a careful analysis of the signal and contrast

between white and gray matter.

Results: Despite a slight reduction of the FA uniformity, an improved signal and

contrast homogeneity with a significant reduction of the SAR was achieved with the

proposed metric in comparison with standard pulse designs.

Conclusion: The proposed joint optimization of the inversion and excitation pulses

enables significant reduction of the SAR in the MPRAGE sequence while preserving

image quality. The work reported thus unveils a possible direction to increase the

potential of ultra-high field MRI and pTx.

Keywords: Ultra high field; Parallel transmission; RF pulse design; SAR; MPRAGE;

kT -points; B1 inhomogeneity mitigation.



Introduction

The magnetization prepared rapid gradient echo sequence (1), referred to as MPRAGE, is

extensively used in the neuro-imaging community and in routine neuroradiological examina-

tions to provide high-resolution anatomical images of the brain with an excellent contrast

between white matter (WM) and gray matter (GM) (2, 3). To acquire in vivo brain images

at higher resolution, it is natural to explore the possibilities offered by ultra-high magnetic

field (UHF) as the signal-to-noise ratio (SNR) capability increases at least linearly with field

strength. Unfortunately, UHF imaging over an extended field-of-view (FOV) often poses

problems due to the increasing transmit profile (B+
1 ) inhomogeneities as the wavelength of

the radio-frequency (RF) field becomes smaller (4). An inhomogeneous excitation indeed

results in regional losses of contrast, or signal voids. To mitigate this effect, the use of

short three-dimensional tailored RF pulses, known as kT -points, and parallel transmission

(pTx)(5) has been proposed for 3D acquisitions (6). This technique can be used to achieve

an homogeneous excitation in the fast low-angle shot (FLASH) readout but also to achieve

excellent inversion profiles for the magnetization preparation. Interestingly, kT -points inver-

sion pulses are also less SAR intensive than adiabatic inversion pulses (7) and require lower

peak power levels for the same inversion quality (8).

For the design of kT -points, minimizing the normalized root mean square error (NRMSE)

deviation from the uniform target FA (9) appears as the natural choice for the objective

function as it provides a robust RF pulse design method, disregarding specific features of

the sequence for which it is intended. However, as it will be shown later, by virtue of the

non-linear dependence of the MPRAGE signal with the FA (2), guaranteeing a low NRMSE

for the FA is not absolutely necessary to yield a good signal uniformity. A metric that would

take this non-linear behavior into account would probably improve pulse performance and

possibly also reduce SAR, a critical aspect at UHF. To this end, we propose an alternative

pulse design technique in which the deviation from the nominal MR signal and contrast

are involved while SAR constraints are enforced explicitly (10, 11). We first demonstrate

in simulation at 7 T that this new approach allows improving image quality as measured

by the homogeneity of the signal or contrast between WM and GM, while decreasing SAR.



Finally, we compare in vivo at 7 T a standard RF pulse design based on the minimization of

the NRMSE of the FA with the proposed optimization technique and verify experimentally

the benefit of this new approach.

Theory

Design of kT -points pulses under explicit power and SAR con-

straints

The design of non-selective kT -points pulses with homogeneous target FA αt consists in

solving the magnitude least-squares (MLS) problem (10):

min ∥|A(x)| − αt∥2 ,

x ∈ CNcNkT .
[1]

In Eq. 1, Nc and NkT denote the number of channels and kT -points respectively, x ∈ CNcNkT

is the complex vector composed of the RF coefficients applied to the different channels and

normalized to the highest voltage Vmax applicable at the coil input. Finally, A : CNcNkT →

CNv represents the tip-angle operator, i.e., the operator that returns the complex FA (12)

produced by the excitation x in each of the Nv voxels subjected to the optimization. The

latter operator is a function of the RF coefficients, the RF sub-pulse and blip durations

(assumed to be identical for each kT -point) Ts and Tb, the kT locations in k-space k1, · · · ,

kNkT
(rad/m), the voxel positions r1, · · · , rm, the RF field maps created by each transmit

channel B1,[n](rm) (1 ≤ n ≤ Nc) and the static field inhomogeneity ∆B0(rm). In the small

tip-angle regime, this operator is linear and thus can be written in matrix form (13).

To take into account hardware and SAR limits, the optimization problem is solved under

explicit SAR and power constraints. The latter (peak and average power) are:

xk x
⋆
k ≤ 1, 1 ≤ k ≤ NcNkT . [2]

and

cP,n(x) =
def.

V 2
max

Z0

x†
[n]x[n] ≤

Pmax

D
, 1 ≤ n ≤ Nc , [3]



where Z0 = 50 Ω is the input impedance of each transmit channel, x[n] = (xn+(j−1)Nc)1≤j≤NkT

(RF coefficients for the nth channel) and where D denotes the duty cycle of the pulse. The

SAR constraints are global (one inequality) and local (NQ ≫ 1 inequalities) and ensure that

the power absorbed by the body does not exceed global safety, SARG,max, and local safety

limits, SAR10 g,max, calculated over 10 g contiguous tissue. These constraints can be written

as (10, 11):

cQG
(x) =

def.

V 2
max

Z0

∑
1≤j≤NkT

x(j)† QG x(j) ≤ SARG,max

D
[4]

and:

1 ≤ k ≤ NQ, cQk
(x) =

def.

V 2
max

Z0

∑
1≤j≤NkT

x(j)† Qk x(j) ≤
SAR10 g,max

D
, [5]

where x(j) = (xn+(j−1)Nc)1≤n≤Nc (RF coefficients of the jth kT -point) and where QG and

Q1, · · · , QNQ
∈ CNc×Nc represent the normalized SAR-matrices (kg−1) for the estimation of

the global and local RF power deposition (14, 15). To handle the many local constraints,

one often makes use of the virtual observation point (VOP) compression model to greatly

decrease the number of constraints (14, 16), so that here NQ refers to the size of the VOP

model, and is typically ≤ 200 for brain imaging.

In Eq. 1, the FA deviation is measured with respect to the L2 norm. This metric is

particularly convenient when the term that is evaluated (here A(x)) is linear in x because it

reduces then to the minimization of a quadratic function. However, it is not the case in the

present problem where only the magnitude of the FA is considered and where A is a linear

operator only in the limit of small FAs. Now, since ∥|A(x)| − αt∥p approaches the maximum

FA deviation over all evaluated voxels as p → ∞, it can be of interest to substitute in Eq.

1 the L2 norm by the Lp norm with p > 2 to penalize more large FA deviations. Below, the

choice of the norm coefficient p thus is left free.

Joint design of the inversion and excitation pulses in MPRAGE

The implementation of the MPRAGE sequence with a pTx system requires the design of

inversion and small FA (SFA) pulses. For the SFA pulse, where αt is typically < 10◦, the

small FA approximation can be used. For the inversion pulse however, this approximation



breaks down and a full Bloch integration is necessary. Since both pulses are applied in the

same sequence, the designs of these pulses are interconnected through the power and SAR

constraints. A possible approach to address this problem is a joint optimization where the

objective function is defined as the sum of the objective functions for the inversion and the

SFA pulses:

min

(∥∥∥ |AInv(x)|
αt,Inv

− 1
∥∥∥p
p
+
∥∥∥ |ASFAy|

αt,SFA
− 1
∥∥∥p
p

)1/p

=
def.

Uα(x,y) ,

x ∈ CNcN Inv
kT , y ∈ CNcNSFA

kT ,

s. t.



DInv cQG
(x) +DSFA cQG

(y) ≤ SARG,max ,

SAR10 g,k(x,y) = DInv cQk
(x) +DSFA cQk

(y) ≤ SAR10 g,max, 1 ≤ k ≤ NQ ,

xk x
⋆
k ≤ 1, yl y

⋆
l ≤ 1, 1 ≤ k ≤ Nc ×NSFA

kT
and 1 ≤ l ≤ Nc ×N Inv

kT
,

DInv cP,n(x) +DSFA cP,n(y) ≤ Pmax, 1 ≤ n ≤ Nc ,

[6]

where x and y denote the coefficients of the inversion and the SFA pulses respectively while

DInv and DSFA represent their duty cycles. Equation 6 expresses the FA domain optimization

problem.

Joint design targeting homogeneous MPRAGE signal and contrast

The MPRAGE signal for the central echo of the FLASH module can be expressed as a

function of T1, αInv, αSFA, TR, TI, the echo spacing (ES) and the echo train length (ETL)

(2). Let ŝ(T1) denote the nominal MPRAGE signal, i.e. the signal that would be obtained

if the inversion and the SFA pulse were perfect. Instead of measuring the deviation from the

nominal angles αInv and αSFA, it is possible, for assessing the overall pulse performance, to

calculate instead the distance between the actual and the nominal signals, s(T1) and ŝ(T1),

over a T1 interval of interest I:

fs =

(∫
I
|s(T1)− ŝ(T1)|p dT1∫

I
ŝ(T1)p dT1

)1/p

. [7]

With brain imaging, the interval I may be chosen to encompass the T1 values of WM (T1WM)

and GM (T1GM). By construction, fs vanishes for s = ŝ in the interval I. This measure of

signal deviation, fs, is referred below as the signal fidelity.



Likewise a complementary criterion for evaluating pulse performance lies on the MPRAGE

contrast:

cs(T1,T1
′) =

s(T1)− s(T1
′)

s(T1) + s(T1
′)
. [8]

It is referred as the contrast fidelity fc and is defined as the distance between the actual (cs)

and nominal contrast (cŝ):

fc =

(∫
I×I

|cs(T1,T1
′)− cŝ(T1,T1

′)|p dT1dT1
′∫

I×I
cŝ(T1,T1

′)p dT1dT1
′

)1/p

. [9]

By construction, fc vanishes if s/ŝ is constant over I. In Eqs. 7 and 9, all T1 values have

implicitly the same contribution in the fidelity measure. Now, given that the distribution of

T1 in brain tissue is not uniform but rather bimodal, a more realistic definition of the fidelity

would be to incorporate the probability density function for T1 and to integrate from 0 to

+∞. However, to stay general and for simplicity, the latter refinement is not yet included.

In Fig. 1, the FA deviation (i.e. the objective function in Eq. 6), the signal fidelity

and the contrast fidelity are mapped as a function of αInv and αSFA for p = 2 and for

I = [T1WM− 200ms,T1GM+200ms], assuming T1WM/T1GM = 1.3/2 s, i.e., typical T1 values

at 7 T (17). It appears that all metrics are minimized for αInv/αSFA = 180◦/9◦, which

are indeed the nominal FA values. But interestingly, Fig. 1.b shows that if αSFA < 9◦,

then the optimal choice for αInv to minimize fs is different than 180◦. This criterion is

therefore fundamentally different from the FA deviation criterion which does not introduce

any dependence between the inversion and the SFA pulses. In a similar manner, the contrast

fidelity (Fig. 1.c) appears to be conserved in a valley in the (αInv, αSFA) space but differs

from the one of the signal fidelity. Thus, combining both the signal and contrast fidelity,

e.g. by taking (f 2
s + f 2

c )
1/2 (Fig. 1.d), allows driving the desired inter-play between both RF

pulses while penalizing large excursions of αSFA or αInv.

A combination of both metrics can be used to define the following class of objective

functions :

Uf,λ(x,y) =
(
∥Fs,J(x,y)∥pp + λ ∥Fc,J(x,y)∥pp

)1/p
, [10]

where λ ≥ 0 is a scalar parameter that sets the relative importance of the signal and contrast

terms, where the Nv×1 vectors Fs,J(x,y) and Fc,J(x,y) are the estimated signal fidelity and



contrast fidelity maps and where J is a set of T1 values distributed in I so as to approximate

the integrals in Eqs. (7) and (9). These vectors are defined as:

Fs,J(x,y) =
∥SJ(x,y)− ŜJ∥p

∥ŜJ∥p
[11]

and:

Fc,J(x,y) =
∥cSJ

(x,y)− cŜJ
∥p

∥cŜJ
∥p

, [12]

where SJ(x,y), ŜJ, cSJ
(x,y) and cŜJ

are the discrete versions of s, ŝ, cs and cŝ respectively.

The aim is now to verify that the signal domain optimization, expressed as Uf,λ, improves

pulse performance.

Methods

Pulse design performance simulations

In order to compare the objective functions Uf,λ and Uα, we propose to simulate the L-curves

of the respective optimization problems with respect to the peak local SAR constraint, which

was recognized as the factor that mostly constraints the RF pulse optimization. For the

performance metric, we propose to evaluate i) the RMS of the signal and contrast fidelity

maps fs/c,RMS =< f 2
s/c >

1/2 (obtained by numerical integration of Eqs. (7) and (9)); ii) the

normalized standard deviation of the WM (J = T1WM) and GM (J = T1GM) signals:

σWM,GM =
Var(SJ)

1/2

ŜJ

, [13]

and iii) the standard deviation of the contrast between WM and GM (WM-GM contrast),

where the respective signals are scaled with the proton density (PD) for WM (ρWM ≃ 0.7)

and GM (ρGM ≃ 0.8) (18):

σc(ρ) =
Var(c(ρ))1/2

ĉ(ρ)
, [14]

where c(ρ) and ĉ(ρ) are defined as:

c(ρ) =
ρWM SWM − ρGM SGM

ρGM SWM + ρGM SGM

[15]



and:

ĉ(ρ) =
ρWM ŜWM − ρGM ŜGM

ρGM ŜWM + ρGM ŜGM

, [16]

where the WM and GM signals and their corresponding nominal values are denoted by

SWM/GM and ŜWM/GM.

Besides performance considerations, it is important also to test the robustness of the

signal domain optimization which relies on a given choice for the T1 interval I. An adverse

effect would be for example that the optimization of Uf,λ generates pulses with strongly

degraded properties outside the interval I. Such a scenario can be tested by evaluating the

standard deviation of the contrast map cs(T1,T1
′) in the following two cases: a) T1/T1

′ =

1300/500 ms and b) T1/T1
′ = 1300/3000 ms. These tests thus determine the contrast cs,hyper

between an hyper-intense region (case a) or an hypo-intense (case b) region and WM. The

robustness of the signal domain optimization is thus assessed with the following metrics:

σc,hypo/hyper =
Var

(
cs,hypo/hyper

)1/2
cŝ,hypo/hyper

. [17]

The last theoretical aspect treated in this work concerns the analysis of the influence of

the norm coefficient p on the pulse optimization results. We concentrate in particular on the

tail of the distribution of the WM signal (SWM) and the WM-GM contrast c(ρ) and analyze

to which extent the L3- and L5-norms allow reducing the 5 % quantile of the distribution of

SWM and c(ρ).

Numerical field maps

The head model used for the RF field simulations is representative of an adult male head

and was constructed from 1.5 T anatomical images, acquired with 1 mm isotropic resolution.

Details on the construction of this model can be found in (19, 20). The RF simulations dis-

tinguish 10 types of tissue on the basis of the respective density, conductivity and relative

permittivity values. The coil model represents a 12 channel pTx head coil designed in the

laboratory. Full-wave simulations with the loaded coil were performed with HFSS (Ansys,

Pittsburgh, PA, USA) for an operation at 297 MHz (7 T). The calculated electric and mag-

netic field distributions were then exported onto a Cartesian grid of 5 mm isotropic resolution.



In order to feed the twelve channels of the head coil with eight RF power amplifiers (transmit-

ters), a singular value decomposition (SVD) of the matrix B+
1 = (B1,[n](rm)

+)m,n ∈ CNv×12

was performed (21). The eigenvectors corresponding to the eight largest singular values were

then taken as an input basis. The simulated electric fields were then exploited to compute

the Q-matrices averaged over 10 g contiguous tissue, on which the virtual observation point

compression scheme (16) was applied with an overestimation parameter ϵG of 2 to reduce

the number of local SAR constraints from 3.73× 104 down to ∼200.

For the simulations to be more realistic, the static field offset ∆B0 was also taken into

account and was obtained by a first-order perturbation approach to Maxwell’s equations

(22) and by assuming the uniform magnetic field susceptibility of water over the whole

model.First and second order spherical harmonics variations were removed by fitting, again

to mimic typical experimental conditions.

kT -points pulse design

The number of kT -points was set to 5 for the SFA and 7 for the inversion pulse. Based on

previous work (6, 10), their respective RF sub-pulse durations were 80 and 650 µs while the

blip durations were 60 µs, which resulted in total pulse durations of 700 µs and 5 ms. For

the inversion pulse, we used for the kT -points placement a star-shaped trajectory centered

at the origin of the k-space and with the six vertexes located at 4 m−1 from the center, so

that the distance between kT points roughly matches the wavelength of the electromagnetic

field inside the brain, as recommended in (23). For the excitation pulse, a star-shaped

trajectory, this time contained in the ky-kz plane, was used. For simplicity, the placement of

the kT points in k-space thus was not optimized. Intelligent placement or joint optimization

methods could be used to yield more optimal solutions (24–26).

Search algorithm

The minimization of the objective functions Uα and Uf,λ involves non-convex optimization

problems. A convergence to the global optimum is thus not guaranteed, but a local optimum

can still be satisfying, if the solution in question yields good performances. In Ref. (10),

it was found that an initialization of the RF coefficients with the variable-exchange (VE)



method (9) yields a robust descent and that the returned performance was close to that of

the global optimum. We thus tackled the minimization of Uα as follows:

Step 1 Solve the MLS problem separately for the inversion and the SFA pulses using the SFA

approximation the VE method and with no constraint; denote by x̂(VE) and ŷ(VE) the

respective solutions;

Step 2 Solve the joint problem (Eq. 6) using the active-set (A-S) algorithm of Matlab (Math-

works, Natick, MA, USA) and the initial point (x̂(VE), ŷ(VE)) until convergence; denote

by (x̂(Uα), ŷ(Uα)) the solution;

In Step 2, the A-S algorithm was provided with the constraints (1 constraint for the global

SAR, 190 constraints for the 10 g local SAR, (5+7)× 8 = 96 constraints for the peak power

and 8 constraints for the average power) and the gradient of the constraints in analytic

form (10). The gradient of the objective function, calculated by finite differences, was also

provided. The alternative signal domain optimization problem was then solved by simply

adding to the FA domain optimization the following step:

Step 3 Run the A-S algorithm on the new problem obtained from Eq. 6 by replacing the

objective function Uα by Uf,λ until convergence, and using (x̂(Uα), ŷ(Uα)) as initialization

value; denote by (x̂(Uf ), ŷ(Uf )) the solution.

In practice, for the signal domain optimization, Step 2 can be run with only a few A-

S iterations without affecting the convergence in Step 3. It is recommended however to

maintain this step in the case λ = 0 (i.e. without contrast term in the cost function) as there

is a risk otherwise to converge towards another worse local minimum, characterized by an

FA distribution for the SFA pulse on average greater than the Ernst angle. For the case of

λ > 0, the approach seems more robust and Step 2 could be skipped.

To speed up the calculation, the objective function value and its derivatives were com-

puted on a GPU device (Nvidia, Santa Clara, CA, Tesla K20c) with single (32 bit) precision,

combined with two processors E5-2670 and 128 GB of RAM. With this implementation, an

evaluation of the objective function Uα and its gradient with 12000 voxels took less than

80 ms of computation time, while returning the optimized pulses (x̂(Uα), ŷ(Uα)) required less



than 30 s. The additional computation time for obtaining (x̂(Uf ), ŷ(Uf )) was of the order of

40 to 80 s depending on the choice of λ and J .

L-curve construction

The L-curves were constructed for the objective functions Uα and Uf,λ with λ = 0, 1, 2 and 5

and, for each value of λ, with J = J1 ≡ (T1WM,T1GM) and J ≡ J2 composed of 4 T1 values

distributed evenly in the interval [T1WM − 200ms,T1GM + 200ms], where T1 values of 1.3

and 2 s were assumed for WM and GM respectively (17). The maximum local SAR value

considered in the simulation was 10 W/kg, which corresponds to the limit recommended

by the IEC for a head scan (27). Additionally, three norms were used for computing the

L-curves: L2, L3 and L5-norms. For computing the objective function Uf,λ, the following

parameters were used for the MPRAGE pulse sequence: TR/TI/ES/TE = 2600/1100/6.5/3

ms and nominal FA = 9◦. The inversion pulse naturally targeted 180◦ throughout.

Experimental validation in vivo

The RF pulse design strategies were applied to human brain imaging on a 7 T Magnetom

Scanner (Siemens Healthcare, Erlangen, Germany) equipped with an 8 channel transmit ar-

ray (1 kW peak power per channel) and an AC84 head gradient system (50 mT/m maximum

amplitude and 333 T/m/s maximum slew rate). Sequence parameters for the MPRAGE were

chosen consistently with the simulation parameters. Other parameters were readout band-

width of 240 Hz, ETL = 160, 1 mm isotropic resolution with a 256 × 208 × 160 matrix in

sagittal acquisition and a total acquisition time (TA) of 9 min. For the pulse optimization,

the peak and average power limits were set at the coil input to 450 W and 8 W per channel

respectively. The global SAR limit was set to 3.2 W/kg (27). The RF sub-pulse durations,

blip durations and number of kT -points were identical to those used in the simulations. With

these settings, three RF pulse designs were performed, according to the following criteria

and local SAR limits i) minimization of Uα with 3 W/kg ii) Uf,λ with 3 W/kg and iii) Uα

with 6 W/kg. The study was approved by our institutional review board. Measurements

were performed on five adult volunteers who provided informed consent.



The MPRAGE protocol was applied following a preparation protocol dedicated to the

characterization of the ∆B0 and B1 field distributions. This protocol was composed of a 3D

multiple echo gradient echo (GRE) (2.5 mm isotropic resolution, matrix size 128× 96× 64,

TR = 25 ms, TE = 5/6.5/8 ms) for estimating the static field offset, and a multi-slice

interferometric XFL acquisition (28–30) (5 mm resolution) for estimating the 8 complex

transmit B1 fields in 3D for each channel. The 3D GRE served also for computing the brain

mask using FSL BET (31).

In previous examinations, an MPRAGE image of the same volunteers was also acquired

at 3 T on a Magnetom Tim Trio (Siemens Healthcare, Erlangen, Germany) equipped with a

whole body transmit RF coil and a 32-channel receive head coil. The sequence parameters

were TI = 900 ms, TR = 2300 ms, TE = 3 ms, FA = 9◦, readout bandwidth of 240 Hz, ETL

= 160, 1× 1× 1.1 mm resolution with a 256× 240× 160 matrix in sagittal acquisition and

TA = 7.8 min.

The obtained MPRAGE images were analyzed with SPM12 for simultaneous bias field

correction and segmentation (32), and for realignment of the different acquisitions.

SAR management

The entire MRI protocol at 7 T was applied under real-time local SAR monitoring (Tim Tx

Array Step 2) which, in accordance with internal regulations, was based on two collections

of VOPs, a male (the same model as the one used in the simulation study) and a female

subject, pooled together. To account for additional anatomical variability, an overestimation

factor of 1.4 was included (33). An error propagation factor was also included in the Q-

matrix calculation to account for uncertainties in the coil model (34), created in HFSS,

which increases the SAR by roughly a factor of 1.25. Finally, an overestimation factor of

1.55 was applied to overcome measurement errors in the scanner’s monitoring hardware

(35), thus yielding a total overestimation factor of ≃ 2.8 compared to the raw SAR. By

taking the phase of the RF waveforms into account, this security margin for the moment

appears necessary to ensure patient safety; yet it remains by far less conservative than other

approaches where only the amplitude or average power is used in SAR calculations (15, 36).

Prior to each measurement in vivo, a test sequence was run on a phantom under local



SAR management in order to verify that the maximum local SAR calculated by the scanner’s

monitor, based on the measured RF waveforms, matched the theoretical value, based on

the ideal RF pulse shapes. The results, shown in Fig. 2, provide a last verification of

the consistency between the VOPs used for RF pulse design and the ones used for real-

time monitoring, thereby preventing the scanner from stopping unnecessarily and reinforcing

patient safety.

Results

L-curve simulations

The L-curve simulation results obtained for the L2 norm are displayed in Fig. 3 for the

objective functions Uα and Uf,λ for two choices of J (J = J1, 2 T1 values, and J = J2, 4 T1

values), and for 3 values of λ (λ = 0, 2, 5). This result shows that the objective function Uf,λ

often outperforms Uα not only with regards to the metrics fs,RMS and fc,RMS (Figures 3a-b),

but also in terms of the WM signal, the GM signal and the WM-GM contrast standard

deviations (Figs. 3c-e). It also appears that the number of T1 values (J1 versus J2) used for

computing Uf,λ influences only moderately the result of the optimization. Since in practice,

using large sets is computationally demanding, we therefore recommend to use the minimal

set J1 = (T1WM,T1GM) for the definition of Uf,λ. Regarding the influence of the weighting

factor λ, as expected, the case λ = 0 is clearly optimal with regard to the signal fidelity

but gives slightly poorer contrast fidelity than Uα. Now, taking λ ≥ 2 improves the contrast

fidelity but degrades slightly the signal fidelity. Furthermore, taking λ = 5 leads only to a

very small contrast improvement compared to the case λ = 2, so that the latter weighting

appears to us roughly as the best choice.

The elbow of the L-curves associated with the objective function Uα, i.e. the point

where the curvature of the L-curve is maximized, is reached for 2 ≤ SAR10g,max ≤ 3 W/kg.

Under the constraint SAR10g,max ≤ 3 W/kg, we have at the optimum of Uα: σWM = 11 %,

σGM = 24 % and σc(ρ) = 13% whereas we obtain the values 6 %, 13 % and 14 % with the

minimization of Uf,0 and 7 %, 14 % and 11 % with Uf,2. To illustrate the associated difference



in MR images, the MPRAGE signal was simulated using simplified T1 and PD distributions

(T1 = 1.3/1.8/2/4 s and PD = 0.7/0.75/0.8/1 respectively for WM, cerebellum, cortical

GM and CSF) and the actual FA distributions returned by the different optimizations. A

comparison is provided in Fig. 4 for different slices and orientations and shows qualitatively

the importance of the contrast fidelity and thus the superiority of the objective Uf,2 over

Uf,0.

In Table 1, the five metrics used for the construction of the L-curves but also the FA

standard deviation as well as the standard deviation of the contrast maps for a hyper-signal

and a hypo-signal are reported for the three settings discussed above.

The influence of the norm (L2, L3 or L5) on image quality is shown in Table 2 where the

standard deviation and 5 %-quantile are reported for the WM signal the WM-GM contrast.

Interestingly, for the function Uα, the L3 norm is successful in reducing both the standard

deviations and the 5 %-quantiles while this does not apply for Uf,λ.

In vivo results

The MPRAGE images obtained in one of the volunteers are shown in Fig. 5, after bias field

correction. The first row corresponds to the 3 T MPRAGE image whereas rows 2-4 show

the MPRAGE images obtained at 7 T with the various RF pulse optimization strategies

(objective function and local SAR limit): i) Uα and 3 W/kg (row 2), ii) Uf,2 and 3 W/kg

(the proposed approach, row 3), and iii) Uα and 6 W/kg (row 4). Increasing the local SAR

limit to 6 W/kg (row 4) allows recovering many regions but to the expense of a higher SAR

deposition. The four boxes in Fig. 5, magnified in Fig. 6 for rows 2 and 3, indicate regions

in the brain where the WM-GM contrast is enhanced with the proposed RF pulse design in

comparison with the standard FA optimization.

To verify that the improvements shown in Fig. 5 have globally a positive impact on the

WM-GM contrast and on image segmentation, we evaluated for each subject and for each

MPRAGE acquisition i) the similarity between the segmentation of the brain at 3 T and at 7

T and ii) the separation of the WM and GM signal distributions. The similarity between the

3 T and 7 T segmentations was defined as the number of voxel with identical classification

divided by the total number of voxels, whereby the classification was obtained by taking the



tissue type displaying the highest probability. The separation was defined as the quantity

(SWM − SGM)/(SWM + SGM) where SWM and SGM represent the modes of the histograms

for the WM and GM signals respectively, calculated from the signal distributions at 7 T

observed within the 3 T WM and GM masks. The results of this analysis are presented as

bar plots in Fig. 7. In all cases, the similarity with the 3 T segmentation and the global

WM-GM contrast signal was slightly improved by using the signal domain optimization.

Discussion

The RF pulse design simulations have shown that under identical power and SAR constraints,

the signal domain optimization (objective function Uf,λ) improved significantly the WM

signal, the GM signal and the WM-GM contrast homogeneity compared to the FA domain

optimization (7). In the proposed optimization, the presence of the contrast term Fc was

important furthermore to drive the optimization to a solution with a better contrast fidelity

than the FA domain optimization, while guaranteeing also higher signal uniformity. In the

FA domain optimization, given that the homogeneity of the excitation and inversion profiles

have different impacts on the signal and contrast homogeneity, introducing different weights

for the inversion pulses relatively to the SFA pulse could yield better pulse performance

than taking equal weights, as imposed by Eq. 6. However, this refinement would not exploit

the interplay between the SFA and the inversion pulse to optimize the signal and contrast

fidelity. The performance metrics reported in Table 1 also indicate that the contrast for

a hyper- or a hypo-intense region in the MPRAGE image is not degraded by minimizing

Uf,λ, although the T1 values assumed for the hyper- and hypo-intensity (e.g. characteristic

of the presence of an edema or a tumor) lie outside the interval I used in the definition of

fs and fc. In Table 1, it can also be seen that the FA deviation is in fact increased at the

optimum of Uf,0 or Uf,2 compared to Uα. However, this result is not in contradiction with

an improvement of the other metrics and only reflects the fact that the SFA and inversion

pulses are optimized in the signal domain rather than in the FA domain.

The potential of the Lp norm with p > 2 to further improve RF pulse performance has

also been shown with the L3 norm applied to Uα, with a reduction of the 5 % quantile and



the standard deviation of the WM signal and the WM-GM contrast, but still with a lower

performance than for Uf,2 and the norm L2. Surprisingly, increasing further p to 5 did not

reduce further the 5 % quantile. Hence, the norm coefficient was kept equal to the standard

value p = 2 for the in vivo validation. Larger p values normally tend to penalize further

large errors, but also increases sensitivity to experimental errors and outliers.

The FA domain and the signal-domain optimization metrics were implemented in the

MPRAGE acquisition in vivo whereby a comparison was performed between both RF pulse

design strategies under identical SAR constraints, namely SAR10g ≤ 3 W/kg. Direct visual

inspection of the MPRAGE images confirms that the optimization of the signal and contrast

homogeneity improves image quality. The improvement was most obvious in the occipital

lobe where a signal drop (in Fig. 5, second row, axial and coronal view) was suppressed. A

clear enhancement was also seen in the temporal lobes with a significant reduction of the

hyper-signal in the vicinity of the ear canal. Such a hyper-signal is most likely caused by an

incomplete inversion of the magnetization which results in a signal increase and a severe loss

of contrast. The second and third MPRAGE acquisitions (i.e., third and fourth row in Fig.

5) indicate on the other hand that the RF pulse design performed in the FA domain with

the less stringent local SAR limit SAR10g ≤ 6 W/kg does not seem to provide a better image

quality than the signal domain optimization with 3 W/kg local SAR limit. Thus we verified

that the proposed new RF pulse design allows for a significant reduction of the local SAR

while maintaining homogeneous signal and contrast, leaving room for a possible additional

safety factor without image degradation.

Conclusion

In this work, an alternative RF pulse design for the MPRAGE sequence has been developed

which uses the signal as a surrogate of the FA in the optimization of the RF pulses. The

method exploits the possibilities of a joint optimization of the SFA and inversion pulses and

takes into account the non-linear dependence of the MPRAGE signal with the FAs. The

results obtained show two possible applications of the method: an improvement in image

quality or a significant reduction of the SAR at equivalent image quality. Our investigation



targeted exclusively the MPRAGE sequence but since many sequences exhibit a non-linear

signal dependence with the FA, it unveils a possible direction for further improvements in

other sequences.
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List of Figures

Figure 1 Maps of a) the FA deviation fα =

((
αInv

αt,Inv
− 1
)2

+
(

αSFA

αt,SFA
− 1
)2)1/2

as used in Eq. 6, b) the signal fidelity fs (Eq. 7), c) the contrast fidelity fc (Eq.

9) and c) the mixed fidelity map (f 2
s +f 2

c )
1/2 as a function of αInv (x-axis) and

αSFA (y-axis). These are computed for p = 2 and for the following MPRAGE

sequence parameters: TR/TI/ES/TE = 2600/1100/6.5/3 ms, nominal FA

180◦/9◦ respectively for the inversion and FLASH pulses. There is an inter-

play between the two different angles for f 2
s and f 2

c , in the sense that they

are not additively separable in αSFA and αInv. The FA deviation on the other

hand is the sum of two quadratic terms in the αSFA and αInv directions.

Figure 2 Comparison of the local SAR calculation performed by the scanner’s

SAR monitor (based on the RF waveforms measured in real time via direc-

tional couplers) for each VOP with the theoretical calculation (based on ideal

RF pulse shapes). Both calculations include the same local SAR overestima-

tion factor (≃ 2.8), the latter being included in the Q-matrix of each VOP.

Figure 3 L-curve simulations at 7 T showing the trade-off between local SAR

and a) signal fidelity b) contrast fidelity c) WM signal standard deviation d)

GM signal standard deviation and e) WM-GM contrast standard deviation

for different pulse optimization methods: Uα (blue), Uf,λ with λ = 0 (red),

λ = 2 (black) and λ = 5 (green). For the objective function Uf,λ, two sets

of T1 values were taken: J = J1, i.e. two T1 values (solid line) and J = J2,

i.e. four T1 values (dashed lines). This analysis shows in particular that the

number of T1 values (J1 versus J2) used to probe the T1 interval does not

have a strong impact.
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Figure 4 Simulated 7 T MPRAGE images of the head obtained with the nom-

inal excitation (9◦ and 180◦), and with the minimization of the objective

functions Uα (second row), Uf,0 (third row) and Uf,2 (fourth row) and with

a local SAR limit of 3 W/kg. The latter two objective functions yield bet-

ter fidelity to the reference image than the FA optimization. The red arrows

also indicate two locations where adding the contrast term in the signal do-

main optimization (third row) allows for a better preservation of the WM-GM

contrast than without (second row). In these simulations, simplified PD and

T1 distributions were assumed with 4 different values for WM, cortical GM,

cerebellum and CSF.

Figure 5 MPRAGE images of the brain obtained in one healthy volunteer in

sagittal, axial and coronal orientation (2 slices for each orientation). The first

row represents the 3 T MPRAGE acquisition. Rows 2 to 4 correspond to the

7 T acquisitions under the following conditions: i) SAR10g ≤ 3 W/kg and

minimization of Uα (row 2), ii) SAR10g ≤ 3 W/kg and minimization of Uf,2

(row 3) and iii) SAR10g ≤ 6 W/kg and minimization of Uα (row 4). The red

arrows indicate regions where strong artifacts occur (contrast loss, signal loss

or hyper-signals) in i) due to residual transmit B1 inhomogeneities, which are

removed, or at least reduced in ii). The boxes indicate four regions which

are zoomed in a subsequent figure to highlight some differences between both

pulse designs under the local SAR constraint of 3 W/kg. A slight artifact,

visible in the sagittal views, is caused by the strong non-linearity of the head

gradient outside the FOV. As a consequence, signal residuals coming from the

shoulders in particular can appear in the reconstructed image.

Figure 6 Zooms of the second and third row of Fig. 5, emphasizing the im-

provement obtained with direct optimization of the MPRAGE signal (images

a’-d’) compared to the standard FA optimization (images a-d) under the local

SAR constraint of 3 W/kg.



Figure 7 Bar plots of a) the WM-GM peak separation and b) the similarity

with the 3 T segmentation for the 3 MPRAGE acquisitions in vivo at 7 T.



List of Tables

Table 1 Simulated performance of the three pulse design strategies (objective

functions Uα, Uf,0 and Uf,2) under the local SAR constraint SAR10g,max = 3

W/kg. The first five metrics are those used for the L-curves. The standard

deviation of the hyper-signal σc,hyper and the hypo-signal σc,hypo contrast maps

are reported as well as the FA NRMSEs < (αSFA/αt,SFA − 1)2 >1/2 and <

(αInv/αt,Inv − 1)2 >1/2. All values are given in percentage.

Table 2 Influence of the norm’s coefficient p on the WM signal and the WM-

GM contrast statistics for the 7 T RF pulse design simulations. All values are

given in percentage.
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Uα Uf,0 Uf,2

fs,RMS 14.8 6.0 8.8
fc,RMS 11.2 10.3 9.2
σWM 10.4 4.2 6.6
σGM 22.7 9.5 14.3
σc(ρ) 12.5 11.5 10.9

σc,hyper 6.9 7.5 6.3
σc,hypo 10.0 9.1 8.8

αInv NRMSE 13.2 17.8 15.8
αSFA NRMSE 7.0 21.0 16.0

Table 1



Uα Uf,2

L2 L3 L5 L2 L3 L5

σSWM
10.4 9.5 8.9 6.6 6.8 9.0

σc(ρ) 12.5 12.1 12.2 10.9 11.0 14.1
QSWM

(5%) 20.2 18.3 21.6 12.2 13.5 17.9
Qc(ρ)(5%) 30.9 29.2 32.1 22.4 23.6 28.9

Table 2


