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Abstract. Several methods have been proposed recently to learn spa-
tiotemporal models of shape progression from repeated observations of
several subjects over time, i.e. a longitudinal data set. These methods
summarize the population by a single common trajectory in a supervised
manner. In this paper, we propose to extend such approaches to an unsu-
pervised setting where a longitudinal data set is automatically clustered
in different classes without labels. Our method learns for each cluster
an average shape trajectory (or representative curve) and its variance in
space and time. Representative trajectories are built as the combination
of pieces of curves. This mixture model is flexible enough to handle inde-
pendent trajectories for each cluster as well as fork and merge scenarios.
The estimation of such non linear mixture models in high dimension is
known to be difficult because of the trapping states effect that ham-
pers the optimisation of cluster assignments during training. We address
this issue by using a tempered version of the stochastic EM algorithm.
Finally, we apply our algorithm on synthetic data to validate that a tem-
pered scheme achieve better convergence. We show then how the method
can be used to test different scenarios of hippocampus atrophy in ageing
by using an heteregenous population of normal ageing individuals and
mild cognitive impaired subjects.

Keywords: Longitudinal data analysis · Mixture model · Branching
population · Riemannian framework.

1 Introduction

With the emergence of large longitudinal data sets (subjects observed repeat-
edly at different time points), construction of spatiotemporal atlases has become
a central issue. From the repeated observations of individuals at different time
points, such atlases aim at estimating a trajectory that will be representative of
the population, as well as the spatiotemporal variability within this population.
The representative trajectory is a long-term scenario of changes informed by se-
quences of short-term individual data. Being able to construct such an atlas has
a large number of applications: understanding of a disease progression, highlight-
ing of growth patterns, etc.. Several statistical approaches have been proposed
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to address this problem. Descriptive [7] or generative [10,13] approaches have
been derived for data taking the form of feature vectors. Generative longitudinal
models have been proposed for shape data, usually using flows of deformations
to construct shape trajectories [5,11,14]. All these methods however assumed
that observations are drawn from an homogeneous population that may be sum-
marized by a single representative trajectory.

In many situations, populations are likely to be heterogeneous but with-
out prior knowledge on the sub-groups composing them, thus preventing the
use of such supervised approaches. Developing unsupervised statistical learn-
ing methods is known to be challenging. The difficulty is further increased in
the spatiotemporal setting since clustering may take various forms: sub-groups
may follow independent trajectories, or they may follow trajectories that fork
or merge at specific time-points. The former case is relevant to discover patho-
logical sub-types having different disease course. The latter is interesting for a
disease that is seen as a progressive deviation from a normal aging scenario.

In this paper, we address this issue by proposing a mixture model for longi-
tudinal shape data. The scenario of each cluster results from the combination of
successive pieces of trajectories. This framework enables to build complex broken
line design. These pieces of trajectory may be different for different clusters, or
certain parts may be shared among clusters to model forking or merging trajec-
tories. The model offers therefore a very flexible framework for testing complex
clustering scenarios.

In practice, we used the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework to build trajectories of shape changes, which may be seen
as geodesics on a Riemannian manifold [12]. The construction of longitudinal at-
lases has been proposed in this framework, where the representative trajectory
is a geodesic [5,13] or a piecewise geodesic [2] and the spatiotemporal variabil-
ity is modeled using a tubular coordinate system around the common geodesic.
Such methods are based on a generative mixed-effect model. We extend here
this model to a mixture model, where each mixture component is described by
a piecewise geodesic curve. Some part of this curve may be shared by several
clusters. To estimate the different parameters, derivations of the Expectation-
Maximization algorithm are known to be efficient [4]. However, estimating mix-
ture components in such a high-dimension non-linear setting is known to be
difficult. A central difficulty is the “trapping states” effect, where changing class
assignment is always more costly than adjusting the parameters of the clusters,
resulting in very few updates of class assignment during optimization. Prag-
matic solutions have been proposed, for instance in [3] for cross sectional data
but at high computational cost. Here we introduce tempered distributions into
the stochastic approximation EM in order to avoid to be trapped in the initial
labelling.

We will finally quantitatively validate our model on simulated 2D data and
then apply it on a data set of hippocampus shapes in the context of Alzheimer’s
disease to highlight different atrophy patterns between normal ageing individuals
and subjects developing Alzheimer’s disease.
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2 Geometrical model

In the following, we consider a longitudinal data set of n subjects, each being
observed ki times: (yi,j)1≤i≤n,1≤j≤ki at time (ti,j)1≤i≤n,1≤j≤ki .
We recall the construction of geodesics in the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) framework [9]. Given an initial set of control
points c0 and momenta m0 at a time t0, we obtain a flow of diffeomorphisms
Expc0,t0,t(m0) that deforms the ambient space continuously in time, and then
any mesh embedded into this space. These flows define geodesics on the manifold
M =

{
Expc0,t0,1(m0)|m0 ∈ Rncp×d

}
.

We want now to construct a piecewise geodesic representative trajectory
γ0 as a combination of K different geodesics following each other, generalizing
the work done in [2] in dimension 1. Hence, we introduce a subdivision of R:
(tR,1 < ... < tR,K−1 < tR,K := +∞) where (tR,k)1≤k≤K−1 are the rupture times
i.e. times when the representative curve switches from one geodesic to the other.
We also fix the value of the representative curve at the rupture times yk for
k ≥ 2 to assure the continuity of the trajectory. More formally, given a set of
control points c1 ∈ Rncp×d, of rupture times tR ∈ RK−1, an initial shape y1 and
K momenta (m0,m1, ...,mK−1), we define the representative trajectory as:
γ(t)(y1) = Expc1,tR,1,tR,1−t(m0) ◦ y11t≤tR,1

+

K−1∑
k=1

Expck,tR,k,t−tR,k
(mk) ◦ yk1tR,k≤t≤tR,k+1

ck = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) ◦ ck−1 for k ≥ 2

yk = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) ◦ yk−1 for k ≥ 2.

(1)
It can be remarked that the first rupture time has a particular role as we must
define a geodesic before it and another after.

Now that we can define a representative trajectory, we want to compute
a transformation from this trajectory towards a subject taking into account
both spatial and temporal differences. For each subject i, let ξi,0, ...ξi,K−1 be
acceleration coefficients and τi,0, ..., τi,K−1 time shifts. We write for every sub-
ject i: ψi,0(t) = tR,1 − eξi,0 (tR,1 − t+ τi,0) and, for each component k ≥ 1,
ψi,k(t) = tR,k + eξi,k (t− tR,k − τi,k). Each subject has its own rupture times:
tR,i,k such that tR,k = ψi,k(tR,i,k) i.e. tR,i,k = tR,k + τi,k. To assure the continu-
ity of the time reparametrization at each of those rupture times, we also fix all
the time shifts but τi,0, from now on noted τi, by continuity conditions. Finally,

we set: ψi(t) = ψi,0(t)1t≤tR,i,1
+
∑K−1
k=1 ψi,k(t)1tR,i,k≤t≤tR,i,k+1

. The time shifts
τi allow the subjects to be at different stage of evolution while the acceleration
factors ξi,k allow an inter-subject variability in the pace of evolution on each
geodesic (quicker evolution if ξi,k > 0, slower if ξi,k < 0).
As proposed in [5], we also introduce for each subject a space-shift momenta
wi which accounts for geometric variability. We use the notion of parallel trans-
port to define the spatial deformation at a time t. More precisely, we note Pγ
the parallel transport which transports any vector w ∈ Rncp×d along the tra-
jectory γ. Then, to code the deformation field at a time t, we transport the
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Fig. 1: Samples from a piecewise
geodesic (top) and a parallel deforma-
tion (bottom). The red momenta codes
the template evolution, lowering then
raising an arm after the rupture time.
The blue momenta is transported along
the piecewise geodesic and defines the
deformation frame.

momenta w along the curve γ(t) and then compute the flow given by this new
momenta. More precisely, we define: ηt(w) = Expγ(t)(c1),0,1(Pγ(t)(w)). Finally,
the deformation of the representative curve γ by the space shift w is given by:
γw(t) = ηt(w) ◦ γ(t) ◦ y1. The space deformation process is summarized in Fig 1.
We will model this space shift as a linear combination of ns sources: we sup-
pose that w = A(m0,...,mK−1)⊥s with A(m0,...,m1)⊥ a ncp × ns matrix called the
modulation matrix and s ∈ Rns the sources. By projecting all the columns of
A(m0,...,mK−1)⊥ on (m0, ...,mK−1)⊥ for the metric Kg, we impose orthogonality
between the space shifts and the momenta vectors. It has been shown in [13] that
this condition is necessary to assure the identifiability of the model by prevent-
ing a confusion between the space shifts and the acceleration factors. Finally, we
deform the template γ(t)(y1) by setting: γi(t) = γw(ψi(t)) .

This construction builds a piecewise geodesic model of progression. We now
propose an extension for the analysis of heterogeneous populations. More pre-
cisely, we suppose it exists N different representative curves, each of the subjects
i being in the cluster cl(i) of the particular representative curve γcl(i). This rep-

resentative curve comes with its own set of rupture times (t
cl(i)
R,1 < ... < t

cl(i)
R,K−1),

initial shape y
cl(i)
1 , control points c

cl(i)
1 , momenta (m

cl(i)
0 , ...,m

cl(i)
K−1) and modu-

lation matrix A
cl(i)

(m
cl(i)
0 ,...,m

cl(i)
K−1)

⊥
.

This mixture framework enables to compare and test hypothesis on the clusters.
For instance, all or part of the clusters can be shared on the first stage of evo-
lution (t < tR,1). This imposes all or part of the representative curves to have
the same first component, i.e. tkR,1, yk1 , ck1 and mk

0 are equals for all or part of
the clusters k ∈ [|1, N |]. Similarly, we could impose the equality of some of the
representative curves on other time segments, allowing us to handle populations
forking or merging at the rupture times.

3 Statistical Model and estimation

We now define the mixed effects statistical model: we note zrpop = ((mr
k)0≤k≤K−1,

yr1, c
r
1, (t

r
R,k)0≤k≤K−1, A

r
(mr

0,...,m
r
K−1)

⊥) the population parameters of the clus-

ter r and zi = ((ξi,k)1≤k≤K−1, τi, si) the deformation parameters of the sub-
ject i. Depending on the case, we place ourselves in the current [15] or var-
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ifold [6] framework, allowing us to compute distances between shapes with-
out any point correspondence. We suppose that the subject i is obtained as
a noised deformation of the representative curve γcl(i): ∀i ∈ [|1, n|], ∀j ∈ [|1, ki|],
yi,j |cl(i), zcl(i)pop , zi ∼ N (γi(ti,j), σ

2Id), that the deformation parameters zi verify:
zi|cl(i) ∼ N (0, Σcl(i)) where for all cluster r, Σr is a positive-definite matrix,

that the cluster r is drawn with a probability pr i.e. cl(i) ∼
∑N
r=1 p

rδr and that
zrpop ∼ N (z̄rpop, v

r
pop) where vrpop are small fixed variances. Our model is thus de-

fined with parameters θ =
(
(Σr, pr, z̄rpop)1≤r≤N , σ

)
. For effectiveness in the high

dimension low sample size setting, we work in the Bayesian framework and set as
priors: Σr ∼ W−1(V,mΣ), σ ∼ W−1(v,mσ), p ∼ D(α) and z̄rpop ∼ N (¯̄zrpop, v̄

r
pop)

where W is the inverse Wishart distribution and D is the Dirichlet distribution.
We can remark that the joint distribution is in the curved exponential family
which guaranties the convergence of the Stochastic Approximation Expectation
Maximization algorithm (SAEM) [4].
From now on, we write q the probability distribution. To estimate the parameters
θ, we want to compute a maximum a posteriori estimator by using a stochastic
version of the Expectation Maximization algorithm known as MCMC-SAEM [3].
It consists in the following steps: (i) simulation of (z, zpop, cl) as an iterate of an
ergodic Monte Carlo Markov Chain with stationary distribution q(zpop, z, cl|y, θ),
(ii) stochastic approximation of the sufficient statistics of the curved exponential
model and (iii) maximization using the updated stochastic approximation.
However, using the algorithm as presented above yields to bad results in explor-
ing the support of the conditional probability distribution. This issue is known
as trapping states: once a label is given to an observation, the probability of
changing to another is almost zero. This leads to no change of label after a
few iterations. To solve this problem, we use a tempered version of the MCMC-

SAEM. We choose to sample from 1
C(Tk)

q(c|y, θ)
1

Tk where Tk is a sequence of

temperature converging towards 1 and C(Tk) is the normalizing constant. The
higher the temperature, the flatter the distribution and the more the clusters are
likely to explore the entire set. We optimize the temperature sequence so that
the Markov chain strides well the support with a dynamic similar to a simulated
annealing [8]. By choosing a sequence of temperature converging towards 1, we
do not affect the convergence of our algorithm, as showed in [1].

4 Results

We first test our algorithm on simulated data. We create 200 subjects by deform-
ing a branching piecewise-geodesic representative curve with two components.
More precisely, we draw three random momenta and apply them on a fixed
shape to obtain the first common component and the two distinct ones fork-
ing at the rupture time. We then apply our algorithm to find the two clusters,
the representative curves and the spatiotemporal deformations towards the data
sequence of each subject. Results in Fig. 2 show that there is no noticeable dif-
ferences between the true and estimated trajectories (left), nor between true and
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Fig. 2: In red, the exact simulated data, in black, the results given by our algo-
rithm. On the left, the representative curves that split up at a certain rupture
time. On the right side, two subjects given with their reconstructions.

Fig. 3: Left: evolution of the varifold distances between the subjects and their
reconstructions. Right: percentage of error in the classification along the first 100
iterations. With tempered distribution, the oscillating temperature coerces a lot
of subjects to change classes. After 500 iterations, the error is 31.3% smaller.

reconstructed observations (right). To quantify the reconstruction error, we com-
pute the varifold norm of the errors for all subjects along the iterations on Fig.
3. In particular, all the errors in the estimation of the population and subjects
parameters are under 5%. We also show the necessity of using tempered distri-
butions by plotting the error of classification with and without temperature.
We want now to test hypothesis about the heterogeneity of the population. We

run our algorithm supposing first that the two representative trajectories are
different. We then run it again supposing that their first component is the same
and that they fork at the rupture time. To select the model, we then compute
the log-likelihood ratio test. As expected, the log-likelihood is smaller for the
model without fork (difference of 24.6), confirming that the data are more likely
to be drawn from a branching model than two unrelated components.

We now test our algorithm on 100 subjects obtained from the Alzheimer’s
Disease Neuroimaging Initiative database. 50 of those subjects are control pa-
tients (CN) and 50 are Mild Cognitive Impairment subjects eventually diagnosed
with Alzheimer’s disease (MCIc). Meshes of the right hippocampus is segmented
from the rigidly registered MRI. We run our algorithm with a forking model as
in the synthetic experiment. As there is no reason for the control subjects to
have two different dynamics, we also ask one of the branch to follow the same
geodesic after the rupture time. Our algorithm splits the patients in two clusters,
one of them presenting a quicker and different pattern of atrophy (Fig. 4 and
5). In particular, 72% of the subjects are classified as expected: the CN in the
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Fig. 4: Representative shape evolution at the ages 63.6y, 68.4y, 74.7y (i.e. rupture
time), 77.9y, 81.5y and 85.1y. Bottom shapes: cluster with one dynamic. Top
shapes : cluster with change of dynamic after rupture time.

Fig. 5: Left: volume evolution for two clusters with separate trajectories. Center:
volume evolution for two branching clusters. Right: comparison of the age at
diagnosis with the individual rupture time for the MCIc patients, R2 = 0.91

cluster with one dynamic and a slower atrophy and the MCIc in the cluster with
a quicker atrophy after the rupture time. Moreover, the individual rupture times
are strongly correlated to the diagnostic age.

We run again the algorithm, looking for two clusters with separate trajecto-
ries, one of them with only one dynamic (see supplementary material and Fig 5).
This time, 70% of the subjects are classified as expected. It must be remarked
that we cannot compare the volume evolution of the different models as the time
reparametrization and so the time-line is different from one cluster to the other.
We now want to select the model. The log-likelihood is bigger in this second
case, which suggests that the MCI subjects are likely to deviate from a normal
aging scenario at an earlier stage in life that is not observed in this data set.

5 Conclusion

We proposed a mixture model for longitudinal shape data sets where represen-
tative trajectories take the form of piecewise geodesic curves. Our model can
be applied in a wide variety of situations to test whether sub-populations fork
or merge at different time-points or follow unrelated trajectories on other time
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intervals. We showed on simulated examples that our tempered optimisation
scheme is key to achieve convergence of such a mixed model combining discrete
variables with continuous variables of high dimension. Its application on real
data allowed us to investigate the relationship between normal and pathological
ageing. Future work will focus on designing specific model selection criterion in
this longitudinal setting.

This work has been partly funded by ERC grant No678304 and
H2020EU grant No66699
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