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Arts et Métiers, 2 rue Conté, 75003 Paris

E-mail: mathieu.aucejo@lecnam.net

Abstract. In time domain, force reconstruction problems are commonly solved from
Tikhonov and LASSO regularizations. Practically, these approaches can lead to inaccurate
reconstructions, if the sources to identify don’t share the same space-time characteristics or
the corresponding force vector doesn’t exhibit the desired structure. To alleviate this potential
drawback, we have recently introduced a multiplicative space-time regularization that allows
exploiting one’s prior knowledge of the spatial distribution of the sources as well as their
time history. In this contribution, the proposed regularization strategy is compared to the
multiplicative Tikhonov and LASSO regularizations through an experimental application to
point out the practical interest of exploiting simultaneously both spatial and temporal prior
information in terms of quality and robustness of the reconstructed excitation sources.

1. Introduction
Force reconstruction problems in time domain still remain an active topic in the structural dy-
namics community. To solve this problem, several approaches have been developed, such as
Kalman filtering [1] or adaptive filtering [2]. However, the most widespread strategy is certainly
the regularization, and more particularly, the Tikhonov and LASSO regularizations. From a
theoretical standpoint, Tikhonov regularization should be used when the force signal exhibits a
certain continuity [3, 4] and the spatial distribution of the sources is rather smooth [5]. On the
contrary, LASSO regularization should be used when the excitation signal is rather impulsive
[6, 7] and the spatial distribution of the sources is sparse [8]. It results that classical strategies
developed in the literature are theoretically not always well adapted to tackle both the local-
ization and time reconstruction problems at the same time, except for configurations where the
force vector to identify has the desired structure or the spatial distribution of sources and the
nature of the excitation signals share the same space-time characteristics, such as the sparsity
[9]. To the best of our knowledge, only a few methods have been developed to address this
specific issue and they generally consist in solving the space-time reconstruction problem in a
separated manner [10].

In this contribution, we propose to highlight the practical interest of exploiting simultaneously
both the spatial and temporal features of excitation sources to solve the inverse problem
efficiently thanks to the multiplicative space-time regularization, recently introduced by the
authors [11]. To this end, the proposed regularization strategy is compared to the multiplicative
Tikhonov and LASSO regularizations through an experimental application. In particular, it is



shown that properly exploiting one’s prior knowledge of the sources to identify allows improving
the quality and the robustness of the regularized solutions.

2. Multiplicative space-time regularization
Regularization consists in including in the formulation of the inverse problem some prior
information on the excitation field to identify in order to constrain the space of solutions. In the
present contribution, it is proposed to seek the unknown global excitation field F as the solution
of the following minimization problem:

F̂ = argmin
F\{0}

F(Y−HF) · R(F), (1)

where

• F(Y−HF) is the data-fidelity term which controls the a priori on the noise corrupting the
data. Here, it is assumed that the reconstruction model is linear and defined such that:

Y = HF; (2)

• R(F) is the regularization term that encodes prior information on the excitation field F,
i.e. what is known about the excitation field before making any measurement.

It should be noted here that the previous minimization problem is referred to as multiplicative
regularization. This choice has been made, because this approach is generally computationally
more efficient than its additive counterpart (a.k.a. Tikhonov-like regularization) given that
it is free from the preliminary definition of any optimal regularization parameter [14]. That
being said, it is clear from Eq. (1) that the quality of the reconstructed excitation field is
not only conditioned to the adequacy of the data-fidelity and regularization terms with the
actual noise and the actual space-time source characteristics, but also to the quality of the
reconstruction model describing the dynamic behavior of the considered structure. That is why,
all the ingredients of the method are described separately for the sake of clarity.

2.1. Derivation of the reconstruction model
The reconstruction model given by Eq. (2) can be classically established either from the dis-
cretization of the Duhamel’s integral or from the discretization of the state-space representation
of the mechanical system. In the present paper, the reconstruction model is built from a dis-
cretized state-space representation, because it can easily deal with kinematic data of various
types (displacement, velocity, acceleration, strain).

The state-space representation is composed of a state equation and an output equation. In
this contribution, we propose a state-space model based on the generalized-α integration scheme
[15], because this method is unconditionally stable and second-order accurate and minimizes the
numerical damping at low frequencies for a given high-frequency damping level.

To derive the state equation from the generalized-α method, let us consider a regular partition
of the time domain such that t0 < · · · < tk < · · · < tf (t0 and tf : initial and final instants)
and let h = tk+1 − tk denote the time step size. For a mechanical system described by its mass,
stiffness and damping matrices (M, K, C), one has to start from the following equations [16]:

M
..
dk+1−αm + C

.
dk+1−αf

+ K dk+1−αf
= Sf fk+1−αf

, (3a)
.
dk+1 =

.
dk + (1− γ)h

..
dk + γ h

..
dk+1, (3b)

dk+1 = dk + h
.
dk +

(
1

2
− β

)
h2

..
dk + β h2

..
dk+1, (3c)



where γ and β are the parameters of the Newmark method, αm and αf are two averaging
parameters associated to the inertia and internal/external forces, while dk = d(tk) and fk = f(tk)
are, respectively, the displacement and excitation vectors at time tk, Sf being the selection matrix
of the excitation degrees of freedom. In the previous equation, the quantity dk+1−α must be
read as:

dk+1−α = (1− α) dk+1 + αdk. (4)

For linear systems, it is a common practice to use a modally reduced order model to limit
the computational costs. In this regard, when the displacement vector is expanded on its modal
basis, the previous equation of motion becomes:

..
qk+1−αm

+ Zn
.
qk+1−αf

+ Ω2
n qk+1−αf

= ΦT
n Sf fk+1−αf

, (5a)
.
qk+1 =

.
qk + (1− γ)h

..
qk + γ h

..
qk+1, (5b)

qk+1 = qk + h
.
qk +

(
1

2
− β

)
h2

..
qk + β h2

..
qk+1, (5c)

where qk is the generalized displacement, Φn is the matrix of the mass-normalized mode shapes,
Ωn = diag(ω1, . . . , ωn) and Zn = diag(2ξ1ω1, . . . , 2ξnωn), where ωn and ξn are respectively the
modal angular frequency and the modal damping ratio of the mode n.

After some manipulations, detailed in Ref. [11], and considering that the state vector xk is

defined such that xk = [qTk
.
q
T
k
..
q
T
k ]T , we obtain the following state equation:

xk+1 = A xk + B+ fk+1 + B− fk, (6)

where A is the system matrix, while B− and B+ are the input matrices applied to the force
vector at time k and k + 1.

Regarding the output equation, it can be expressed as:

yk = Sd dk + Sv

.
dk + Sa

..
dk

= Sd Φn qk + Sv Φn
.
qk + Sa Φn

..
qk

= O xk,

(7)

where yk is the output vector, Sd, Sv and Sa are, respectively, the selection matrices of the dis-
placement, velocity and acceleration data measured on the structure and O = [Sd, Sv, Sa]Φn

is the output matrix.

All things considered, the state-space representation of the dynamical system deriving from
the generalized-α method is given by:{

xk+1 = A xk + B+ fk+1 + B− fk

yk = O xk
. (8)

At this stage, a last step is required to derive the reconstruction model as defined in Eq. (2).
For this purpose, it is first necessary to express the state vector at time tk from the state and
input vectors at times tj ≤ tk. In doing so, it can be shown that the state vector xk writes:

xk = Ak x0 + Ak−1 B− f0 +
k−1∑
j=1

Ak−j−1 B fj + B+ fk, for tk > t0, (9)



where B = A B+ + B− and x0 et f0 are the known initial state and input vectors.

From the previous relation, it results that the output vector yk, for t0 < tk ≤ tn (n: number
of time samples), is given by the relation:

yk = OAk x0 + OAk−1 B− f0 +
k−1∑
j=1

OAk−j−1 B fj + OB+ fk. (10)

In the end, the proposed reconstruction model simply writes:

Y = H F, (11)

where

Y =


y1

y2

y3
...

yn

−


OA
OA2

OA3

...
OAn

x0 −


OB−

OAB−

OA2B−

...
OAn−1B−

 f0, H =


OB+ 0 · · · 0

OB OB+ . . .
...

...
...

. . . 0
OAn−2B OAn−3B · · · OB+

 ,

F =


f1
f2
f3
...
fn

 .

Here, it is important to note that the initial state and input vectors are chosen so that x0 = 0
and f0 = 0. In other words, this means that it is compulsory to start the recordings of the output
data before exciting the structure.

2.2. General formulation of the reconstruction problem
To obtain consistent reconstructions, it has be seen that a proper choice of the data-fidelity and
regularization terms is crucial, since the more the prior information on the noise and the sources
is meaningful, the more the confidence in the reconstruction is high [12]. Consequently, devel-
oping a particular regularization strategy is equivalent to propose particular data-fidelity and
regularization terms. In the present case, this means that the data-fidelity has to reflect one’s
prior knowledge on the noise corrupting the data, while the regularization term must reflect
one’s prior knowledge on the spatial and temporal characteristics of the forces to reconstruct.

Regarding the data-fidelity term, a common assumption consists in considering that the
measured data are corrupted by an additive Gaussian white noise, leading to a data-fidelity
term of the form:

F(Y−HF) = ‖Y−HF‖22 . (13)

The choice of the regularization term requires more reflection, since it must encode available
information about the space-time characteristics of the excitation field to identify. To this end,
it is relevant to define a regularization term based on a mixed `p,q−norm. Practically, the
regularization term is defined such that:

R(F) = ‖F‖qp,q . (14)



To better understand the influence of the space-time regularization term in the formulation
of the inverse problem, one can represent the unknown force vector F as a matrix, where the
rows correspond to the time signal at a particular location and the columns to the excitation
field at a specific instant. In doing so, it comes:

F = [f1 . . . fj . . . fn] =


f11 · · · f1j · · · f1n
...

...
...

fi1 · · · fij · · · fin
...

...
...

fm1 · · · fmj · · · fmn

 , (15)

where m is the number of reconstruction points of the excitation field.

On the other hand, if one reminds that the mixed `p,q-norm is defined by:

‖F‖p,q =

 m∑
i=1

 n∑
j=1

|fij |p


q
p


1
q

, ∀ (p, q) ∈ R∗+, (16)

it becomes clear that the proposed regularization term introduces an explicit coupling between
the coefficients of F and allows promoting some structures observed in real signals [13]. To illus-
trate this particular property of the mixed norms, let us consider the case for which (p, q) = (2, 1).
In this situation, the matrix F is supposed to be sparse along the columns (space) and full along
the rows (time). In other words, one promotes the spatial sparsity of the excitation field and
the continuity of the time signals.

From the foregoing, the general formulation of the proposed space-frequency multiplicative
regularization is given by:

F̂ = argmin
F\{0}

‖Y−HF‖22 · ‖F‖
q
p,q . (17)

From a numerical standpoint, the previous formulation is solved from an adapted Iteratively
Reweighted Least Squares algorithm described in Ref. [11]. Interesting readers can refer to the
latter reference for more details.

3. Hammer impact reconstruction
In this section, the experimental reconstruction of a hammer impact is studied. This application
intends to investigate the practical interest of applying the proposed approach for solving force
reconstruction problems. The main objective of this real-world application is to demonstrate
the advantages of the proposed strategy in terms of identification quality and robustness in
operating conditions, compared to regularization strategies based on standard regularization
terms.

3.1. Description of the structure under test
The structure under test is a thin aluminum plate of 60 cm in length, 40 cm in width and 6 mm
in thickness, clamped along its length in a wooden support. The effective width of the plate
resulting from the mounting conditions is 39.1 cm. To perform all the subsequent measurements
the system is suspended to a rigid structure through a set of elastic bungee cords [see Fig. 1].



Figure 1: Structure under test

3.2. Reconstruction model
In the present application, the reconstruction model is built from a modal reduction and by con-
sidering that only acceleration data are available. Practically, this means that only the modal
parameters of the structure and the selection matrix of the acceleration data Sa have to be
known to establish the reconstruction model given by Eq. (11).

To obtain the modal parameters of the structure, an experimental modal analysis (EMA) has
been conducted from a roving hammer test performed on a grid of 17× 17 points using three
reference accelerometers and an impact hammer equipped with a steel tip to properly excite all
the modes below 6500 Hz. The goal of the EMA is to extract the modes of the real structure
in order to limit the influence of modeling errors when establishing the reconstruction model.
The locations and the associated identification numbers of the references accelerometers with
respect to the measurement grid are presented in Fig. 2. All in all, the first 83 flexible modes
and 2 suspension modes (at 1 Hz and 2.5 Hz) have been extracted.

3.2.1. Measurement of acceleration data and excitation signal The output data resulting from
a hammer impact have been collected using four accelerometers mounted on the structure. The
input and output measurement devices have been located at nodes of the grid defined for the
EMA to ensure the consistency of the reconstruction process. The locations and the identification
numbers (ID) of the measured input and output data are defined in Fig. 3. In particular, it can
be seen that no accelerometer is located at the excitation point (ID: 236).

In the present experiment, the hammer is equipped with a soft rubber tip, so as to fix the cut-
off frequency of the excitation around 500 Hz. In this way, the convergence of the reconstruction
model in terms of modal series is ensured. Regarding the signal processing parameters, the
sampling frequency has been set to 16384 Hz for 32768 lines, meaning that the data have been
recorded every 61 µs during 2 s.

3.2.2. Application To demonstrate the interest of including the prior information available
about the space-time characteristics of excitation signals, we propose to compare the proposed
multiplicative space-time (ST) regularization to the multiplicative counterpart of Tikhonov and
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Figure 2: Locations of the reference accelerometers with respect to the grid used for EMA - (◦)
Roving hammer excitation points and (�) Measurement points (reference accelerometers)
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Figure 3: Location of the accelerometers and the hammer impact with respect to grid used for
EMA – (◦) Nodes of the grid used for EMA, (�) Accelerometers et (♦) Hammer impact

LASSO regularizations. The latter are respectively referred to as multiplicative Tikhonov
regularization (mTIK) and multiplicative LASSO (mLASSO) regularization and are formally
expressed as:

F̂ = argmin
F\{0}

‖Y−HF‖22 · ‖F‖qq, (18)

where q = 2 for mTIK and q = 1 for mLASSO.

In the following, the reconstructions are performed considering that the acceleration data are
measured at nodes 19, 66, 153, 228 of the grid used for the EMA and the excitation sources are
identified at nodes 19, 66, 228, 236 [see Fig. 3].

A first comparison is performed by reconstructing the applied forces on a sequence of 24 ms.
To apply ST regularization, it is necessary to fix the value of the norm parameters p and q.
Because the reconstruction of the hammer impact is performed on a rather short duration, it is



reasonable to promote the continuity of the reconstructed excitation signals and the sparsity of
the source distribution on the structure. As a result, the norm parameters defining the space-
time regularization term are set to (p, q) = (2, 0.5).

When applying mTIK (q = 2), mLASSO (q = 1) and ST regularizations on the selected
sequence, we observe that all the three regularization approaches give very similar reconstructed
excitation fields, which are in very good agreement with the target excitation field [see Fig. 4].
This surprising result can be partly explained from the analysis of Fig. 3 showing that the
reconstruction points are rather distant from each other. This probably makes the reconstruction
easier over this relatively long sequence compared to the impact duration.
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Figure 4: Reconstruction of the excitation field corresponding to a hammer impact over
24 ms – (a) Waterfall representation - mTIK regularization, (b) Waterfall representation -
mLASSO regularization, (c) Waterfall representation - ST regularization for (p, q) = (2, 0.5)
and (d) Identified time signal at excitation point – (—) Reference signal and (−−) Tikhonov
regularization, (− · −) LASSO regularization and (· · · ) ST regularization

Over a shorter duration, however, the results significantly differ. Indeed, when the
reconstructions are performed on a sequence of 5.4 ms, obtained reconstructions show that,
in this particular situation, only ST regularization allows obtaining a consistent space-time
reconstruction of the target excitation field [see Fig. 5].
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Figure 5: Reconstruction of the excitation field corresponding to a hammer impact over 5.4
ms – (a) Waterfall representation - Tikhonov regularization, (b) Waterfall representation -
LASSO regularization, (c) Waterfall representation - ST regularization for (p, q) = (2, 0.5)
and (d) Identified time signal at excitation point – (—) Reference signal and (−−) Tikhonov
regularization, (− · −) LASSO regularization and (· · · ) ST regularization

Consequently, this experimental application clearly indicates that properly exploiting
simultaneously the space-time characteristics of excitation sources is beneficial in terms of quality
and robustness of reconstructed solutions.

4. Conclusion
The practical interest of taking advantage of one’s prior knowledge of the space-time
characteristics of the sources to identify has been demonstrated in this contribution through
a real-world application. More specifically, it has been clearly established that developing
a regularization strategy based on the definition of a space-time regularization term allows
improving the quality and robustness of reconstructed excitation sources.
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