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Statement of significance 

 

This work reports a new bone substitute made of precipitated apatite crystals that resemble in 

composition and crystallinity to the mineral phase of bone. The bone regeneration capacity of 

this synthetic biomimetic calcium phosphate (SBCP) was studied by using an original model 

of vertical bone regeneration with cups on the calvaria of rats. After 4 weeks, a significantly 

higher bone growth was found for SBCP compared to deproteinized bovine bone matrix 

(DBBM) and empty controls. This rapid vertical bone regeneration together with high 

resorption rate indicated that this new biomaterial is particularly interesting for filling bone 

defects in oral surgery. 
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Abstract 

Bone regeneration is often required to provide adequate oral rehabilitation before dental 

implants. Vertical ridge augmentation is the most challenging of all situations and often 

requires the use of autologous bone grafting. However, autologous bone grafting induces 

morbidity and the harvestable bone is limited in quantity. Alternatives to autologous bone 

grafting include bovine bone derived biomaterials which provide good clinical results and 

synthetic bone substitutes that still fail to provide a reliable clinical outcome. Synthetic 

biomimetic calcium phosphate biomaterials, consisting of precipitated apatite crystals that 

resemble in composition and crystallinity the mineral phase of bone, arise as an alternative to 

both bovine bone and the current sintered bone substitutes. This study aims at comparing the 

vertical bone regeneration capacity of the synthetic biomimetic calcium phosphate (SBCP, 

MimetikOss, Mimetis Biomaterials) with a deproteinized bovine bone matrix (DBBM, Bio-

Oss®, Geistlich Biomaterials) on the calvaria of rats. In order to model vertical bone 

augmentation, hemispherical cups were filled with the two types of biomaterial granules and 

implanted onto the skull of rats while empty cups were used as controls. After 1 day, 4 and 8 

weeks of healing, bone growth was determined by microcomputed tomography and 

histomorphometry. After 4 weeks of implantation, a significantly higher bone growth was 

found in the case of SBCP compared to DBBM and left empty controls. At 8 weeks, no 

statistically significant differences were found between the two bone substitutes. These results 

are promising since vertical bone regeneration was faster in the case of SBCP than for DBBM. 

 

 

Keywords: Vertical bone regeneration, synthetic biomimetic calcium phosphate, 

deproteinized bovine bone Matrix, Hydroxyapatite, cups, calvaria, rats. 
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Introduction 

Bone augmentation is often required prior to the placement of dental implants, especially in 

cases where both vestibular and lingual alveolar bone suffered bone resorption after tooth 

extraction. In this context, one of the major challenges in dental surgery is vertical bone 

augmentation [1,2] which has proven to be highly unpredictable even for experienced surgeons 

[3]. In order to tackle this problem, surgeons use bone grafts that can ensure a predictable and 

reliable clinical outcome. For augmentation of the alveolar bone crest, autologous bone remains 

the gold standard due to its osteogenic properties and similarity with the host tissue. However, 

autologous bone has drawbacks such as morbidity at the donor site, limited quantity and high 

resorption rate [4,5]. The use of bone graft substitutes (BGS) in bone regeneration has proven 

to be efficient in some dental indications, such as sinus lift and alveolar ridge preservation after 

tooth extraction [6,7]. In these particular sites, the BGS is surrounded by several bone walls, 

protecting granulated BGS from potential migration and movements thus favouring bone 

regeneration. However, none of the commercially available dental BGS has demonstrated to 

be reliable in vertical bone augmentation of the alveolar crest [8,9] even if some studies state 

that deproteinized bovine bone matrix (DBBM) is a good candidate for vertical ridge 

augmentation [10]. 

Despite some chemical similarities with the mineral of bone, synthetic calcium phosphate 

bioceramics, such as hydroxyapatite (HA) and beta-tricalcium phosphate (b-TCP), present 

poor bone regenerative properties in large defects and variable resorption rate [11]. The reasons 

may be related to the high sintering temperatures of bioceramics (e.g. 800-1200 °C), which 

confers physicochemical features differing drastically from the mineral phase of bone, which 

is naturally precipitated from body fluids at body temperatures. Xenografts, such as 

deproteinized bovine bone matrix (DBBM) have proven their efficacy in a wide range of dental 

indications but present low bone remodelling capacity over time [12,13]. Furthermore, animal-
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derived products may potentially carry risks of immunological rejection and disease 

transmission such as bovine spongiform encephalopathy [14]. 

Synthetic Biomimetic Calcium Phosphate (SBCP) is a very attractive alternative due to their 

synthesis route. SBCP presents many similarities with natural bone [15]. SBCP, which is 

obtained by precipitation in aqueous media at low temperature, is composed of a calcium-

deficient hydroxyapatite (CDHA) and have low crystallinity resembling the mineral phase of 

bone. These biomimetic materials, e.g. in the form of calcium phosphate cement, have been 

primarily used as bone fillers, although the absence of macro-porosity in cements prevents 

bone ingrowth and limits the regenerative capacity [16,17]. Granules of 0.2-1 mm in size 

present an inter-granular porosity that facilitates body fluid permeability, cell colonization, 

vascularization and bone tissue ingrowth [18]. There is a limited number of studies comparing 

the in vivo performance of DBBM and SBCP granules in a model of vertical bone 

augmentation. In order to mimic the clinical situation of vertical bone augmentation, a 

preclinical model consisting of hemispheric cups filled with biomaterial granules on the 

calvarias of rats is proposed here.  

This study aims at comparing the vertical bone regeneration capacity of a synthetic biomimetic 

calcium phosphate (SBCP, MimetikOss, Mimetis Biomaterials, Spain) and a deproteinized 

bovine bone matrix (DBBM, Bio-Oss®, Geistlich Biomaterials, Switzerland) to promote 

vertical bone formation onto the calvaria of rats. Hemispherical cups were filled with the two 

types of granules and implanted on the skull of rats while empty cups were used as controls. 

After 1 day, 4 and 8 weeks of healing, the biomaterial content and bone growth were 

determined by microcomputed tomography and histomorphometry.   
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Materials and methods 

Hemispherical cups 

Hemispherical hollow cups were drawn by computer-aided design and milled from polymethyl 

methacrylate (PMMA) resin discs (TEMP Basic, Zirkonzahn, Italy). PMMA was chosen 

because of its biocompatibility, radiolucent characteristics and solubility in solvents during 

histological processing. As shown in Figure 1, the cups had an internal diameter of 6 mm and 

fixation reliefs to ensure stability once placed onto the calvaria of rats. 

 

Bone graft substitutes 

Two types of bone graft substitutes (BGS) were used to fill the cups: demineralized bovine 

bone matrix (DBBM, Bio-Oss®, Geistlich Biomaterials, Switzerland) in granular form with 

sizes between 0.25 and 1 mm and synthetic biomimetic calcium phosphate (SBCP, 

MimetikOss, Mimetis Biomaterials, Spain) in granular form with sizes between 0.2 and 1 mm. 

Both BGS were provided in vials sealed into blisters, sterilized by gamma irradiation and used 

following the instructions for use. 

 

Physico-chemical characterization of bone graft substitutes 

The microstructure of the BGS was observed by scanning electron microscopy (Neon 40, Zeiss, 

Germany) operating at 5 kV after metallization with AuV-sputter coating (K950X, Emitech, 

US). Mercury intrusion porosimetry (MIP, AutoPore IV, Micromeritics, USA) was performed 

to determine the pore entrance size distribution. The specific surface area (SSA) was evaluated 

by nitrogen adsorption using the Brunauer–Emmett–Teller theory (Micromeritics, ASAP 2020, 

USA). Samples were also analysed by ATR-FTIR (Nicolet 6700, Thermo Scientific). X-ray 

diffraction (XRD) was performed on the finely ground granules of both DBBM and SBCP. 

Frozen dried sample of bovine bone (obtained from a butcher) was used to compare the 
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composition of BGS to native bone tissue in terms of chemical composition and crystalline 

phases. XRD analyses were performed using a powder diffractometer (D8 Advance, Bruker, 

Germany) with Bragg-Brentano geometry equipped with a germanium monochromator and a 

Cu Kα source operating at 40 kV and 40 mA. Data sets were collected with a step size of 0.019 

° in 2q and a counting time of 1 s per step. The diffraction patterns were compared with files 

from the Joint Committee on Powder Diffraction Standards for α-TCP (JCPDS No. 9-348), β-

TCP (JCPDS No. 9-169) and hydroxyapatite (HA; JCPDS No. 9-432).  Phase quantification 

was performed by comparing the ratios of the area for the most intense peak using the XRD 

analysis software (EVA, Bruker, Germany). 

 

Study Design 

All experimental procedures and protocols were reviewed and approved by the local animal 

care and use ethics committee (Reference of the study CEEA 2012.188 accepted on 

17/01/2013). The European regulation on the use and care of experimental animals was 

followed carefully. Fifty-two Wistar albino rats (strain: Wistar, Rj:Han, adult, male, average 

body weight of 150 g) were purchased from a professional stock breeder (Janvier Labs, Le 

Genest Saint Isle, France). Three animals were placed per cage with pelleted food and water in 

a temperature-controlled room with 12 hours artificial day/night cycle. Animals were 

acclimatised at the Experimental Therapeutic Unit, Faculty of Medicine of Nantes, for a 

minimum of 10 days prior to surgery. The study design consisted of 3 groups: empty cups, 

cups filled with DBBM granules or with SBCP granules; and 3 time points: 1 day, 4 weeks and 

8 weeks (n=6 per group). At 1 day, the empty condition was not considered since the granules 

were not present for histomorphometry analysis. The total number of rats was 48, plus 4 spares, 

giving a total of 52 animals.  
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Surgical procedure 

Each rat was placed on the ventral position under general anaesthesia by inhalation with a mask 

of 3 % isofluorane (Forane®, Baxter Healthcare Corp., USA) in air at a flowrate of 1 L/min. 

The head was shaved and disinfected with 10 % povidone iodine solution (Betadine®, Scrub) 

and sterile gauzes. Local anaesthesia was performed by subcutis injection of adrenaline 

articaine hydrochloride (0.2 ml, Alphacaine SP, Dentsply, France). Pre- and post-operative 

analgesia was provided by intramuscular injection of buprenorphine (30 µl/kg, 2 times/day for 

3 days, Buprécare, Axience, Pantin, France). The animals were identified with numbered ear 

tags. The bone calvaria was exposed by a lateral incision and smooth dissection. The 

periosteum was incised and detached from the bone calvaria. A cup, either left empty or filled 

with the BGS granules, was placed onto the bone calvaria. To ease the filling of the cup, the 

BGS granules were hydrated with physiological saline. The surgical wound was carefully 

closed with non-absorbable polyamide 4/0 sutures (Peters Surgicals, Bobigny, France). After 

1 day, 4, and 8 weeks of implantation, the animals were euthanized by prolonged inhalation of 

carbon dioxide gas. The site was dissected and examined for signs of tissue necrosis, 

inflammation or infection. The calvaria was cut using a circular diamond saw mounted on a 

dental hand piece (NM3000, Nouvag, Switzerland). Immediately after dissection, samples 

were fixed in 10 volumes of neutral 4% formaldehyde (Microm Microtech, France) and stored 

at 4 °C for a minimum of 3 days.  

 

Microcomputed tomography 

Microcomputed tomography (micro-CT) analysis was performed on calvaria after 1 day, 4 

weeks and 8 weeks using a high-resolution X-ray micro-CT system for small-animal imaging 

(micro-CT 1076, SkyScan, Kontich, Belgium). All samples were scanned using the same 

parameters (pixel size 9 µm, 50 kV, 0.5 mm Al filter and 0.8 ° of rotation step). Three-
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dimensional reconstructions were made using a software (CTVOX, Skyscan, Belgium) to 

evaluate the filling capacity of the BGS in the cup. Bone and biomaterial volume over total 

volume (BV+MV)/TV were determined in the cup owing to a software allowing to finely select 

the threshold (CTAN, Skyscan, Belgium) on 3 samples for each time point. 

 

Histology and histomorphometry 

The samples were decalcified with 5 % ethylene diamine tetra acetic acid (EDTA) and 0.2 % 

paraformaldehyde in phosphate-buffered saline (PBS) for 96 h using a microwave automate 

(KOS Microwave, HistoStation, Milestone Medical, USA). The samples were then rinsed with 

tap water and dehydrated in ascending series of 80, 95 and 100 % ethanol baths, and finally in 

butanol for 30 min (Automated dehydration station, Microm Microtech, France). After 

dehydration, the PMMA cup was dissolved in acetone. The samples were then immersed in 

liquid paraffin at 56 °C (Histowax, Histolab Products AB, Sweden) and embedded at -16 °C. 

Blocks were cut by using a standard microtome (RM2250, Leica, Germany). Thin histological 

serial sections (3-5 µm) were performed perpendicular to the calvaria in the middle of the cup. 

The slices were mounted on microscope glass slides (Polysine, Thermo Scientific, Germany) 

and stained with Masson’s trichrome using an automated staining station (Microm Microtech). 

This staining combines haematein for cell nuclei (purple/black), fushin Ponceau for cytoplasm, 

muscle and erythrocytes (red) and light green solution for collagen (green/blue). The stained 

slices were scanned (NanoZoomer 2.0RS, Hamamatsu Corp. Japan) and observed with the 

virtual microscope (NDP view software, Hamamatsu Corp). The parameters quantified in the 

region of interest (Figure 1) by histomorphometric analysis (Image J,	National Institute of 

Health, USA) were the area percentages of biomaterial (MS/TS), bone (BS/TS) and residual 

tissues (RS/TS). The vertical bone regeneration in the cup was determined by calculating the 

percentage of newly formed bone in the free space, defined as follows: 
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% Bone surface in free space = (BS/(BS+RS)) x 100 

where: 

 BS is the bone surface in the region of interest 

 MS is the biomaterial surface in the region of interest 

 TS is the total surface of the region of interest 

 RS is the residual tissue surface of the region of interest 

 

Statistical analysis 

Based on a statistical power calculation, 6 animals were used per group. Data are presented as 

average ± standard deviation. Statistical differences were determined using one-way ANOVA 

with Tukey’s post hoc tests using Minitab 16 software (Minitab, Inc., USA). Statistical 

significance was considered for p value < 0.05. 

 

Results 

Physico-chemical properties of the bone graft substitutes 

The morphology and microstructure of the two bone graft substitutes (BGS) were observed by 

scanning electron microscopy (SEM). As illustrated in Figure 2, the Demineralized Bovine 

Bone Matrix (DBBM) granules showed an irregular shape with one large and two short 

dimensions, while the synthetic biomimetic calcium phosphate (SBCP) granules appeared 

spherical. At high magnification, the DBBM surface exhibited aligned micropores whereas 

needle-like crystals were observed on the SBCP surface. 

The pore size distribution was measured by mercury intrusion porosimetry. Both BGS 

presented a bimodal pore entrance size distribution (Figure 3). The left peak, corresponding to 

the smallest pore entrance diameters, was considered to represent the micro/nano porosity of 

the granules themselves (intra-granule porosity). These peaks were in the range 0.01-0.03 µm 
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and 0.10 µm for DBBM and SBCP, respectively. The right peak, at higher entrance pore sizes, 

corresponded to the spaces between the granules (inter-granular porosity). Peaks had a 

maximum value at 200 µm and 150 µm for DBBM and SBCP, respectively. The peak of inter-

granular macro-porosity exhibited by SBCP was wider than the one of DBBM. Quantification 

of the corresponding pore volumes led to the determination of the intra-granular microporosity 

(<10 µm), inter-granular porosity (> 10 µm) and total porosity, as presented in Table 1. DBBM 

was found to have a slightly higher intra-granular micro-porosity than SBCP, while the inter-

granular porosity of SBCP was substantially higher. SBCP presented a higher total porosity 

than DBBM. The SSA, as measured by Nitrogen adsorption is also reported in Table 1. The 

SSA of DBBM was higher than that of SBCP by an order of magnitude. 

The FTIR spectra of the two biomaterials, together with that of the frozen dehydrated bovine 

bone, are shown in Figure 4a. Both DBBM and SBCP exhibited the phosphate bands of 

hydroxyapatite, similarly to what was found in dehydrated bone. In natural bone, these 

phosphate bands coexist with others assigned to the organic compounds, namely collagen and 

other extracellular matrix proteins. The XRD patterns of the different biomaterials are shown 

in Figure 4b. DBBM consisted of a hydroxyapatite phase with a comparable crystallinity as 

found in natural bone. SBCP was composed of two crystalline phases, calcium deficient HA 

and b-TCP in a weight proportion of 80 % and 20 %, respectively.  

 

Comparison of vertical bone regeneration on the calvaria of rats 

After surgery, all animals exhibited normal clinical symptoms and the sutures were checked 

for correct healing. Rats were all feeding themselves correctly after a few hours as analgesia 

was maintained during the first 72 hours. No major pain symptoms were observed after this 

period and animals gained weight normally. At sacrifice after 4 and 8 weeks, no signs of 

infections or tissue necrosis were noticed. 
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Microcomputed tomography (micro-CT) reconstructions are provided in Figure 5. Newly 

formed bone was not found in the empty cups after 4 and 8 weeks. In general, the granules 

were well packed and maintained into the cups, although some granules were found outside 

one day, 4 and 8 weeks after surgery. As reported in Table 2, the (BV+MV)/TV calculations 

indicated the absence of newly formed bone in the left empty cups after 4 and 8 weeks 

indicating the validity of this vertical bone augmentation model. One day after surgery, the 

cups appeared to be well-filled with granules for both types of biomaterials although the 

quantity was higher for SBCP than for DBBM due to the higher packing of spherical granules. 

The (BV+MV)/TV gradually increased from 1 day to 8 weeks for the DBBM. The 

(BV+MV)/TV of the SBCP first decreased from 1 day to 4 weeks before increasing to a similar 

value as DBBM after 8 weeks. Both groups of biomaterials filled cups had similar 

(BV+MV)/TV values after 8 weeks.  

Decalcified histology was employed to directly observe the tissues formed within the cups 

around biomaterial granules as micro-CT did not allow the distinction between bone and 

biomaterial with similar grey levels. A representative histology section of each condition at 

each time point is reported in Figure 6 at low magnification and at high magnification in 

Figures 7-9 . When the cup was left empty, a very limited vertical bone growth was observed 

at both 4 and 8 weeks after surgery. The calvaria bone exhibited a vertical thickening with a 

newly formed non-woven bone that originated from the periosteum while most of the cup was 

filled with a necrotic tissue at 4 weeks (Figures 6 and 7). Thickening of the cortical bone was 

also observed at 8 weeks with mature lamellar bone covered by a thin vascularized fibrous 

tissue. Numerous necrotic cells occupied the rest of the left empty cups. In the case of DBBM, 

some bone formation was observed at 4 weeks in the “cortical” area originating from the 

periosteum (Figures 6 and 8). Woven bone was observed between the granules and a few blood 

vessels were distinguished. The “cup” area showed limited signs of bone formation at 4 weeks 
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but was filled with newly formed bone at 8 weeks. The majority of DBBM granules were 

encapsulated in a vascularized fibrous tissue without macrophages or giant cells typical of a 

foreign body reaction. For cups filled with the SBCP granules, newly formed bone was 

observed in the cortical area with some fibro-vascular tissue at 4 weeks (Figures 6 and 9). The 

SBCP granules appeared surrounded by a mineralized collagen tissue with osteoblastic cells. 

Bone formation at 8 weeks in this area was complete and the granules were surrounded by 

lamellar bone close to the cortical bone and woven bone in the rest of the cup. Again, 

osteoblastic cells were observed around the SBCP granules with macrophages indicating a 

foreign body reaction. The cup area showed limited signs of bone formation at 4 weeks and 

good bone formation between granules at 8 weeks, as shown in Figure 6 and 9. 

As shown in Figure 10, histomorphometry corroborated that SBCP presented superior bone 

formation capacity in the “cortical” area compared to DBBM or empty conditions at 4 weeks 

(p=0.002).  The density of bone in free space was statistically higher for SBCP as compared to 

DBBM at 4 weeks with a p-value of 0.01. At 8 weeks, no statistically significant differences 

were observed between DBBM and SBCP, showing a percentage of bone between the 

biomaterial granules of 60.6 ± 14.1 % and 73.3 ± 18.8 %, respectively. The values of MS/TS 

(Figure 10) obtained by histomorphometric analysis corroborated that SBCP granules pack 

better into the cup, although no statistically significant differences were observed between the 

two biomaterials (p=0.09). The MS/TS value did not change over time for both types of 

biomaterial. 

 

Discussion 

The use of novel biomimetic synthetic calcium phosphate bone substitute that resembles 

closely the mineral phase of bone is of high interest for bone regeneration. Biomimetic 

materials are the focus of many research teams since they are claimed to possess superior 
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osteoconductive properties owing to their micro/nano porosity and their high specific surface 

area which is lower than DBBM but can still be considered as a high value as compared to 

other synthetic calcium phosphate bioceramics produced mainly by sintering at high 

temperatures [19][20].  

The empty cup was considered as the negative control condition, although some bone growth 

was observed at 4 and 8 weeks, suggesting that the initial stimulation by scratching cortical 

bone sufficed to stimulate a slight bone growth even in the case where no scaffolding was 

provided. This overgrowth of calvaria bone has also been reported in a rabbit model [21]. 

Based on the hypothesis that the two tested biomaterials presented different initial packing 

abilities, the percentage of bone between granules was calculated by using a method described 

by Flautre et al. [22]. SBCP recorded a significantly higher value of bone in the free spaces at 

4 weeks, while the difference was not significant at 8 weeks, as compared to DBBM. This 

result suggests that synthetic biomimetic calcium phosphate granules are able to conduct bone 

ingrowth faster than demineralized bovine bone matrix granules. The shape of the granules, 

their micro structure and the higher total porosity can be partly responsible for the faster bone 

regeneration capacity of SBCP as compared to DBBM [20].  These results suggest that SBCP 

is superior to DBBM and that a possible faster mode of action makes this type of biomimetic 

calcium phosphate biomaterial a good candidate for their use in challenging dental indications 

such as vertical bone augmentation. Further studies are needed in a large animal model in a 

dental indication to further confirm the findings of the present study. Nevertheless, none of the 

condition indicated a complete filling of the cups with bone tissue. It will be of interest to 

conduct a similar experiment with bone marrow derived mesenchymal stem cells associated to 

the biomaterial in order to induce bone tissue formation, as previously reported [23]. Another 

limitation of our study concerns vascularization that is key to bone regeneration. The 
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proportion of blood vessels at 4 and 8 weeks was superior for SBCP than for DBBM but 

remained insufficient for a complete bone regeneration in the cups.  

 

Conclusion 

Synthetic biomimetic calcium phosphate granules were evaluated as a good candidate for 

vertical bone augmentation. This new bone graft substitute outperformed DBBM in terms of 

bone formation rate since newly formed bone tissue was more abundant at 4 weeks of 

implantation for SBCP. Furthermore, owing to their physicochemical characteristics and 

packing features, the SBCP granules have a great potential for alveolar bone ridge 

augmentation. 
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