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SQUARE-ROOT NUCLEAR NORM PENALIZED ESTIMATOR FOR

PANEL DATA MODELS WITH APPROXIMATELY LOW-RANK

UNOBSERVED HETEROGENEITY

JAD BEYHUM AND ERIC GAUTIER

Abstract. This paper considers a nuclear norm penalized estimator for panel data models

with interactive effects. The low-rank interactive effects can be an approximate model and the

rank of the best approximation unknown and grow with sample size. The estimator is solution

of a well-structured convex optimization problem and can be solved in polynomial-time. We

derive rates of convergence, study the low-rank properties of the estimator, estimation of the

rank and of annihilator matrices when the number of time periods grows with the sample

size. Two-stage estimators can be asymptotically normal. None of the procedures require

knowledge of the variance of the errors.

1. Introduction

Panel data allow to estimate models with flexible unobserved heterogeneity using the fact

that each individual is observed repeatedly. The high-dimensional statistics literature en-

ables estimation in the presence of a high-dimensional parameter, provided that it has a

low-dimensional structure. This paper studies a model that borrows from the two aforemen-

tioned strands of literature. We consider a linear panel data model with interactive effects of

the form: for i = 1, ..., N and t = 1, ..., T ,

(1) Yit =
∑K

k=1 βkXkit + λ⊤
i ft + Γd

it + Eit, E[Eit] = 0,

where Yit is the outcome, Xkit is the kth regressor, β ∈ R
K is a vector of parameters, λi and

ft are vectors in R
r of factor loadings and factors, Γd

it is a remainder which can account for

many weak factors, and Eit is an error. Only β is considered nonrandom. Precise assumptions

on the joint distribution of the vector of right-hand side variables is given later. Importantly,

only the regressors and outcomes are available to the researcher. The regressors correspond

to observed heterogeneity and the remaining right-hand side elements are called unobserved

heterogeneity. The interactive effects or factor structure generalizes the usual individual plus

time effects in where λ⊤
i ft = ci+dt. It allows for example for group time effects of the form dgt

for individuals in group g. One can think that λ⊤
i ft + Γd

it +Eit accounts for the contribution
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2 JAD BEYHUM AND ERIC GAUTIER

of regressors which are not available to the researcher but have an effect on the outcome if we

believe these have an approximate factor structure plus remainder plus error term. In such

a case, the error Eit is a composite error which accounts for a linear combination of those

coming from the approximate factor structure of the missing regressors and the usual error

from the model which includes both observed and unobserved regressors. When the regressors

and λ⊤
i ft + Γd

it are correlated, the least-squares estimator is inconsistent. This is a situation

where we say that the regressors are endogenous or that there is an omitted variable bias.

The specification that we analyze is very flexible to model unobserved heterogeneity and can

be used in the context of many applications (see, e.g., [13] in the context of public policy

evaluation). It is also a challenging one which has mainly been analyzed when the number of

factors r is fixed, especially when r is known, and Γd
it = 0. In matrix form, (1) becomes

(2) Y =
K∑

k=1

βkXk + Γl + Γd + E,

where Y,X1, ...,XK ,Γ
l,Γd and E are random N × T matrices. Γl is such that Γl

it = λ⊤
i ft

and rank
(
Γl
)

= r and Γd has small nuclear norm. The nuclear norm is the ℓ1-norm of the

vector of singular values. We denote by Γ = Γl + Γd. In this paper, β is most of the time the

parameter of interest and Γl a nuisance. Many variations on model (1) have been considered

and we name only a few. In [9, 24] the regressors have a factor structure and β can vary

across individuals. In [14, 18] the number of regressors grows with the sample size. [9, 20]

allow for lags of the outcome in (1). [3] proposes a least-squares estimator for the model which

equation is (1) when Γ = Γl and r is fixed and known. The least squares criterion involves the

product of λi and ft or a rank restriction and is not convex. It is shown to be
√
NT -consistent

and asymptotically normal when, among other things, the factors are strong. [19] shows that

using the same estimator with an upper bound on the true number of factors leads to the

same asymptotic properties.

The tools in this paper are related to those used in matrix completion. There, the problem

consists in estimating the unobserved entries of a low-rank matrix from an observed subset of

its entries, sometimes with additive noise (see, e.g., [7, 8, 15, 16, 17, 26, 27, 28]). The usual

ℓ0 and ℓ1-norms are replaced by the rank and nuclear norm, soft and hard thresholding are

carried on the singular values. These methods have recently been used in econometrics (see

in particular [2, 4, 10]). The problem in this paper differs in that we observe all the entries

of the matrices Y and X1, . . . ,XK but none of Γ +E and both Γ and E are random.

The iterative procedure in [3] could yield a local minimum while the theoretical properties

are for the global minimum. In contrast, the estimators in [21] and in this paper involve

convex programs for which converge to a global minimum is achieved in polynomial time. The

additional novelties of this paper are as follows. This paper considers a square-root nuclear

norm penalized estimator (see [5] for the Lasso), where the sum of squared residuals is replaced

by its square-root. It can be viewed as the estimator in [21] using a data-driven penalty level



PANEL DATA MODELS WITH APPROXIMATELY LOW-RANK UNOBSERVED HETEROGENEITY 3

so it is directly implementable by the researcher and does not require an additional diverging

multiplicative factor which can result in over-penalization and is useful in finite samples. We

provide a straightforward iterative algorithm to compute the estimator. Our results do not

rely on conditioning on realizations of Γ and we state the conditions on the joint distribution

of Γ and the regressors. Moreover, we allow the interactive effect to be an approximate model

and hence many non-strong-factors (see [25]) via the additional term Γd. The rank of Γl is

treated as random and can grow with the sample size and be unknown. We obtain low-rank

oracle type inequalities for various loss functions and results on the rank of our estimator of

Γ, introduce a thresholded estimator which can be used to estimate the rank of Γl as well as

projectors on the vector spaces spanned by the factors and factor loadings which we analyze

theoretically. We also obtain rates of convergence for the estimation of β. These results do not

rely on a strong-factor assumption which amounts to assuming that the ratio of any singular

value of Γl and
√
NT has a deterministic limit as N goes to infinity and T increases with N .

Finally, we propose a two-stage estimator and show its asymptotic normality. Based on our

result on the estimation of the rank of Γl by the procedures of this paper, we can proceed as

analyzed in [21] and use the estimator in [3] as a second stage.

2. Preliminaries

N denotes the positive integers, N0 denotes N ∪ {0}. For a ∈ R, we set a+ = max(a, 0)

and, for a 6= 0, a/0 = ∞. {µN} denotes a numerical sequence of generic term µN . MNT

is the set of matrices with real coefficients of size N × T . The transpose of a matrix A ∈
MNT is written A⊤, its trace is tr(A), and its rank is rank(A). For A ∈ MNT , vec(A)

is the operator that vectorizes the columns of A and, for a vector v ∈ R
NT , mat(v) is the

unique matrix in MNT such that v = vec (mat(v)). When matrices are defined involving

capital letters, their vectorization is denoted using lowercase letters. The kth singular value

of A ∈ MNT (arranged in decreasing order and repeated according to multiplicty) is σk(A)

and rank(A) is its rank. A =
∑rank(A)

k=1 σk(A)uk(A)vk(A)⊤ is a singular value decomposition

of A, where {uk (A)}rank(A)
k=1 is a family of orthonormal vectors of R

N and {vk (A)}rank(A)
k=1 is

a family of orthonormal vectors of RT . The scalar product in MNT is 〈A,B〉 = tr
(
A⊤B

)
.

The ℓ2-norm (or Frobenius norm) is |A|22 = 〈A,A〉 =
∑rank(A)

k=1 σk(A)2, the nuclear norm

is |A|∗ =
∑rank(A)

k=1 σk(A), and the operator norm is |A|op = σ1(A). Pu(A) and Pv(A) are

the orthogonal projectors onto span{u1(A), . . . , urank(A)(A)} and span{v1(A), . . . , vrank(A)(A)}
and Mu(A) and Mv(A) onto the orthogonal complements. For ∆ ∈ MNT , PA is defined as

PA(∆) = ∆ −Mu(A)∆Mv(A) and P⊥
A as P⊥

A (∆) = Mu(A)∆Mv(A). We rely, for A ∈ MNT and

c > 0, on the cone CA,c =
{

∆ ∈ MNT :
∣∣∣P⊥

A (∆)
∣∣∣
∗

≤ c |PA (∆)|∗
}
.

We denote by PX (resp. MX) the orthogonal projector on the vector space spanned by

{Xk}K
k=1 (resp. on its orthogonal) and X = (x1, . . . , xK). We consider an asymptotic where

N goes to infinity and T is a function of N that goes to infinity when N goes to infinity. The
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probabilistic framework consists of a sequence of data generating processes (henceforth DGPs)

that depend on N . We write that an event occurs w.p.a. 1 (”with probaility approaching

1”) when its probability converges to 1 as N goes to infinity. All limits are when N goes to

infinity. We denote convergence in probability and in distribution by respectively
P−→ and

d−→.

We allow the researcher to apply annihilator matrices Mu (to the left) and Mv (to the right)

on both sides of (2) and still denote by Y,X1, . . . ,XK ,Γ
l,Γd, E the transformed matrices. She

can apply a within-group (or first difference or Helmert) transform on the left to annihilate

individual effects and a similar on the right to annihilate time effects, two matrices are required

to annihilate group specific time effects. This is important if the researcher thinks there are

individual and time effects and there could be additional interactive effects and wants to avoid

relying on penalisation to figure out that there are classical individual and time effects. The

regressors can be transformations of the baseline regressors as developed in Section 4.6 to

ensure their operator norm is not too large, a feature sometimes useful in the analysis. We

do not write these transformations explicitly to simplify the exposition.

3. First-stage estimator

The estimator is defined, for λ > 0, as

(3)
(
β̂, Γ̂

)
∈ argmin

β∈RK , Γ∈MNT

1√
NT

∣∣∣∣∣Y −
K∑

k=1

βkXk − Γ

∣∣∣∣∣
2

+
λ

NT
|Γ|∗.

The nuclear norm is the ℓ1-norm of the vector of singular values. Similarly to the ℓ1-norm in

the Lasso estimator, it yields low-rank solutions, that is a sparse vectors of singular value of Γ̂

(see Proposition 7 for a formal result). This estimator can be viewed as a type of square-root

Lasso estimator of [5] for parameters which are matrices. As for the square-root Lasso, the

ℓ2-norm is not squared in (3) which implies that we do not need to know the variance of Eit

to choose the parameter λ. Under the assumptions of Proposition 4, the choice of λ amounts

to the choice of {φN} but this can be made without knowledge of parameters of the class of

DGP considered in the two cases analysed in the proposition.

Proposition 1. A solution
(
β̂, Γ̂

)
of (3) is such that

Γ̂ ∈ arg min
Γ∈MNT

1√
NT

|MX (Y − Γ)|2 +
λ

NT
|Γ|∗.

For u ≥ 0, u = minσ>0

{
σ
2 + 1

2σu
2
}

and the minimum is attained at σ = u if u > 0 or using

minimizing sequences going to 0 if u = 0. Thus any solution
(
β̂, Γ̂

)
of (3) is solution of

(4)
(
β̂, Γ̂, σ̂

)
∈ argmin

β∈Rk,Γ∈MNT ,σ>0

σ +
1

σNT

∣∣∣∣∣Y −
K∑

k=1

βkXk − Γ

∣∣∣∣∣

2

2

+
2λ

NT
|Γ|∗
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and

(5) σ̂ =
1√
NT

∣∣∣∣∣Y −
K∑

k=1

β̂kXk − Γ̂

∣∣∣∣∣
2

.

This objective function in (4) has the advantage that the new objective function only has one

nonsmooth convex function in (β,Γ): the nuclear norm. Because f(x, y) = x2/y is convex on

the domain {(x, y) ∈ R
2|y > 0}, the objective function is convex in (β,Γ, σ). This formulation

is analogous to the concomitant Lasso or scaled-Lasso for linear regression (see [23, 29]).

3.1. First-order conditions and consequences. The formulation is used in Section 3.2

for implementation of our estimator. It is also useful to obtain by subdifferential calculus the

first order-conditions of program (3). Indeed, the differential with respect to βk at (β,Γ, σ)

on the domain (hence σ > 0) is, for k = 1, . . . ,K,

(6) − 2

σNT

〈
Xk, Y −

K∑

k=1

βkXk − Γ

〉

and the subdifferential with respect to Γ at (β,Γ, σ) (see (2.1) in [17]) is

(7)

− 2

σNT

(
Y −

K∑

k=1

βkXk − Γ

)
+

2λ

NT
Z, Z =

rank(Γ)∑

k=1

uk(Γ)vk(Γ)⊤ +Mu(Γ)WMv(Γ), |W |op ≤ 1



 ,

in particular |Z|op ≤ 1 and 〈Γ, Z〉 = |Γ|∗. Due to (5), if σ̂ = 0 then clearly β̂ is the least-

squares estimator which minimizes
∣∣∣Y −∑K

k=1 βkXk − Γ̂
∣∣∣
2

2
. Else, setting (6) to 0 at

(
β̂, Γ̂, σ̂

)

yields the same conclusion. Hence, if X⊤X is positive definite, we have

(8) β̂ =
(
X⊤X

)−1
X⊤(y − γ̂).

Because, if σ̂ > 0, 0 belongs to the set defined in (7) at
(
β̂, Γ̂, σ̂

)
, there exists Ŵ ∈ MNT and

Ẑ =
∑rank(Γ̂)

k=1 uk

(
Γ̂
)
vk

(
Γ̂
)⊤

+M
u
(
Γ̂
)ŴM

v
(

Γ̂
) such that

∣∣∣Ŵ
∣∣∣
op

≤ 1 and Y −∑K
k=1 β̂kXk − Γ̂ =

λσ̂Ẑ, hence, for all k = 1, . . . ,K,
〈
Xk, Ẑ

〉
= 0, thus MX

(
Ẑ
)

= Ẑ and

(9) Y −
K∑

k=1

β̂kXk − Γ̂ = MX

(
Y − Γ̂

)
= λσ̂Ẑ.

Again, due to (5), if σ̂ = 0 then (9) also holds. As a consequence, we have

σ̂ =
1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

and any solution
(
β̂, Γ̂

)
of (3) is also solution of

(10)
(
β̂, Γ̂

)
∈ argmin

β∈RK , Γ∈MNT

1

NT

∣∣∣∣∣Y −
K∑

k=1

βkXk − Γ

∣∣∣∣∣

2

2

+
2λσ̂

NT
|Γ|∗.
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So
(
β̂, Γ̂

)
given by (3) is a solution to a type of matrix Lasso estimator with data-driven

penalty λσ̂|Γ|∗/NT . The estimator in [21] corresponds to (10) without the data-driven σ̂.

Remark 1. Due to the nuclear norm, (9) and the expression of Ẑ yield
(
Y −

K∑

k=1

β̂kXk

)
M

v
(

Γ̂
) = λσ̂M

u
(

Γ̂
)ŴM

v
(

Γ̂
)

which, unlike [3], is not zero. Applying the annihilator M
u
(

Γ̂
) does not change this.

3.2. Computational aspect. Based on (4), where the objective function is convex, we can

iteratively minimize over β, Γ, and σ: start from
(
β(0),Γ(0), σ(0)

)
and repeat, for t ∈ N0 until

convergence,

(1) β(t+1) is obtained by least-squares minimizing
∣∣∣Y −∑K

k=1 βkXk − Γ(t)
∣∣∣
2

2
,

(2) Setting Z(t+1) = Y −∑K
k=1 β

(t+1)
k Xk, Γ(t+1) is obtained by solving the matrix Lasso

min
Γ

∣∣∣Z(t+1) − Γ
∣∣∣
2

2
+ 2λσ(t) |Γ|∗ ,

i.e. applying soft-thresholding to the singular value decomposition (henceforth SVD)

Γ(t+1) =

min(N,T )∑

k=1

(
σk

(
Z(t+1)

)
− λσ(t)

)
+
uk

(
Z(t+1)

)
vk

(
Z(t+1)

)⊤
,

(3) σ(t+1) =
∣∣∣Z(t+1) − Γ(t+1)

∣∣∣
2
/
√
NT .

Remark 2. The estimator in [21] can be obtained by repeating (1) and (2) for a fixed value of

σ(t). λNσ
(t) corresponds to

√
NTΨNT in their notations and they assume 1/

(
ΨNT

√
min(N,T )

)
+

ΨNT → 0 to circumvent the unavailability of an upper bound on the variance of the errors.

The method in [3] considers the number r of factors fixed and iterates step (1) and a modi-

fied step (2) where λ = 0 and under the restriction that rank(Γ) = r, from which we extract

the factor and factor loadings. The second step corresponds to hard-thresholding the SVD of

Z(t+1) to keep only the part corresponding to the r largest singular values. This can be written

(
β̃, Γ̃

)
∈ argmin

b∈RK

Γ∈MNT : rank(Γ)=r

∣∣∣∣∣Y −
K∑

k=1

bkXk − Γ

∣∣∣∣∣

2

2

.

It is argued that iterating (a) least-squares given factors and (b) PCA to obtain the r common

factors is less numerically robust. By partialling out, (a) corresponds to minimizing

∣∣∣∣∣

(
Y −

K∑

k=1

βkXk

)
Mv(Γ(t))

∣∣∣∣∣

2

2

.

4. Results
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4.1. Error bound on the estimation of Γ. A key quantity is the compatibility constant

(see [6]) defined, for each realization of X and all A ∈ MNT , by

κA,c = inf

∆ ∈ CA,c : ∆ 6= 0

√
2rank (A)|MX(∆)|2

|PA (∆)|∗
.

A few remarks are in order. First, if X = 0, we have MX(∆) = ∆. Second, the denominator

of the ratio cannot be 0 because, for ∆ ∈ CA,c, |∆|∗ ≤ (1 + c) |PA (∆)|∗, hence the function

of ∆ in the infimum is continuous. Third, because the ratio involves two linear operators,

the infimum is the same if we restrict ∆ to have norm 1 and the intersection with the cone

is compact. Hence, the infimum is a minimum. Fourth, for all A ∈ MNT and c > 0, the

minimum is the limit of minima over finite sets so it is a measurable function of X. Fifth, we

work with κ
Γ̃,c

for a random Γ̃ which depends on the random Γ and X via κ
Γ̃,c

itself and we

allow Γ and X to be dependent. We make a slight abuse of notations and consider that κ
Γ̃,c

is a measurable function of both inputs Γ̃ and X. In practice, it is a measurable lower bound

on it for every fixed Γ̃ ∈ MNT and X in the support of the corresponding random matrix.

Remark 3. When X = 0 one has, for all A ∈ MNT and c > 0, κA,c ≥ 1.

Proposition 2. The following lower bounds hold

(11) κA,c ≥ min

∆ ∈ CA,c : ∆ 6= 0

|MX(∆)|2
|PA (∆)|2

≥ min

∆ ∈ CA,c : ∆ 6= 0

|MX(∆)|2
|∆|2

.

The quantity in the middle is the restricted eigenvalue (see [17]). The smaller one is used

in [21]. Throughout the rest of the paper, ρ ∈ (0, 1) and define

c (ρ, ρ̃) =
1 + ρ+ ρ̃

1 − ρ
, d (ρ, ρ̃) = max (1 + ρ̃, ρ (1 + c (ρ, ρ̃))) , e (ρ, ρ̃) = d (ρ, ρ̃) + ρ (1 + c (ρ, ρ̃)) ,

θ∞

(
Γ̃, ρ, ρ̃

)
= 2


1 −



d (ρ, ρ̃)

√
2rank

(
Γ̃
)
λ

√
NTκ

Γ̃,c(ρ,ρ̃)




2


−1

+

e (ρ, ρ̃) ,

θ (ρ, ρ̃) = inf
Γ̃∈MNT

max


θ∞

(
Γ̃, ρ, ρ̃

) λrank
(
Γ̃
)

|MX(E)|2√
NTκ2

Γ̃,c(ρ,ρ̃)

,
1

ρ̃

∣∣∣Γ − Γ̃
∣∣∣
∗


 ,

θ∗(ρ) = inf
ρ̃>0

(1 + c (ρ, ρ̃)) θ (ρ, ρ̃) , θσ(ρ) = inf
ρ̃>0

d (ρ, ρ̃) θ (ρ, ρ̃) .

Theorem 1. If ρλ|MX(E)|2/
√
NT ≥ |MX(E)|op, we have

∣∣∣Γ̂ − Γ
∣∣∣
∗

≤ 2θ∗(ρ),(12)
∣∣∣∣σ̂ − 1√

NT
|MX (E)|2

∣∣∣∣ ≤ 2λ

NT
θσ(ρ).(13)
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Note that θ∗(ρ) ≤ θσ(ρ)/ρ. For example, we can take ρ̃ = 1 and ρ = 2/5, in which case

c (ρ, ρ̃) = 4, d (ρ, ρ̃) = 2, e (ρ, ρ̃) = 4, θ∗(ρ) = 5θ (ρ, ρ̃), and θσ(ρ) = 2θ (ρ, ρ̃). We state a

more general result to allow the theory to handle the case where ρ is close to 1 which allows

a smaller λ (what matters is the product ρλ) and we find works well in small samples. The

result of Theorem 1 is in the spirit of a low-rank oracle inequality. If we use the decomposition

Γ = Γl + Γd in (2), where Γl has low-rank and Γd could have high-rank but has small nuclear

norm, and take Γ̃ = Γl in the maximum in the expression of θ∗ we obtain

max


θ∞

(
Γl, ρ, ρ̃

) λrank
(
Γl
)

|MX(E)|2√
NTκ2

Γl,c(ρ,ρ̃)

,
1

ρ̃

∣∣∣Γd
∣∣∣
∗




and the upper bounds in Theorem 1 depend on both nuisance parameters. In the usual setup

where Γ = Γl, we can drop
∣∣∣Γd
∣∣∣
∗

from the maximum and obtain a more classical bound which

depends on rank(Γ). The term involving (·)−1
+ in the definition of θ∞

(
Γ̃, ρ, ρ̃

)
could be ∞ if

κ
Γ̃,c(ρ,ρ̃) is too small. This term appears because we do not assume a priori knowledge on the

variance of the errors or use a sequence of penalties that diverge too fast. A small constant

c (ρ, ρ̃) implies a small cone and a large value of κ
Γ̃,c(ρ,ρ̃). The difference between the upper

bound in Theorem 1 and a genuine oracle inequality is that the right-hand side is random

due to the randomness of Γ and X.

4.2. Restriction on the joint distribution of X and E. We maintain the following

baseline assumption on the DGP.

Assumption 1. The following hold:

(i) There exists σ > 0 such that |E|22 /(NT )
P−→ σ2,

(ii) There exists Σ ∈ MKK positive definite such that X⊤X/(NT )
P−→ Σ,

(iii) X⊤e = OP

(√
NT

)
,

(iv) There exists {µN} such that µN = O(
√
NT ) and

∑K
k=1 |Xk|2op = OP

(
µ2

N

)
.

Condition (iv) is not restrictive if µN =
√
NT due to (ii). The role of (iv) is to introduce

the notation {µN}.

Proposition 3. Under Assumption 1 with µN =
√
NT , we have

∣∣∣∣
|MX(E)|2√

NT
− σ

∣∣∣∣ = OP

(
1√
NT

)
(14)

∣∣∣|MX(E)|op − |E|op

∣∣∣ = OP

(
µN√
NT

)
.(15)

Based on Theorem 1 and Proposition 3 the researcher should choose {λN} as follows.
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Assumption 2. Maintain Assumption 1 and, given an upper bound µN for Assumption 1

(iv), take {λN } of the form

(16) λN =

(
1 − φ1N√

NT

)−1 (
ψN + φ2N

µN√
NT

)
,

where {φ1N} and {φ2N} are arbitrary sequence going to infinity, as slowly as we want but no

faster than
√
NT for {φ1N }, and

(i) ψN = O
(√

NT
)
,

(ii) limN→∞ P

(
ρψNσ ≥ |E|op

)
= 1.

We can take φ1 = φ2 in which case we write φ = φ1 = φ2. (16) holds whether µN =
√
NT

or we have a sharper bound on it. Under the premises of Section 4.6, we can take µN = λN

and

(17) λN =

(
1 − φN√

NT

)−1

ψN .

The event E =
{
ρλN |MX(E)|2 /

√
NT ≥ |MX(E)|op

}
can be written

E =

{
ρψNσ + ρ

φ2NµN√
NT

σ + ρ
φ1NλN√
NT

σ ≥ |E|op +
(
|MX(E)|op − |E|op

)
+ ρλN

(
σ − |MX(E)|2√

NT

)}
,

hence

P (E) ≥ P

({
ρψNσ ≥ |E|op

}⋂{
ρ
φ2NµN√
NT

σ ≥ |MX(E)|op − |E|op

}⋂{
φ1N√
NT

σ ≥ σ − |MX(E)|2√
NT

})

and the 3 events have probability going to 1 by (ii) and Proposition 3 so limN→∞ P (E) = 1.

We can handle large classes of joint distributions ofX and E, including ones where the errors

have heavy tails. Else, important cases are such that |E|op = OP

(√
max(N,T )

)
(see [22, 30]

and Appendix A.1 in [19]). For such distributions, it is enough to take ψN = C
√

max(N,T )

for large enough C for Assumption 2 to hold. An easy way to circumvent thr problem that

C is unknown is to take ψN = φ2N

√
max(N,T ) but this results in over penalization. At the

cost of additional assumptions on the distribution, one can obtain the following more precise

proposal based on Corollary 5.35 and Theorem 5.31 in [30].

Proposition 4. If E = MuηMv, where Mu and Mv are, possibly random, matrices such that

|Mu|op ≤ 1 and |Mv|op ≤ 1 and either of the following holds

(i) {ηit}i,t are i.i.d. centered Gaussian random variables,

(ii) {ηit}i,t are i.i.d. centered random variables with finite fourth moments and T/N con-

verges to a constant in [0, 1],

then the sequence defined by ψN =
(√

N +
√
T
)
/ρ + ϕN , where ϕN → ∞ arbitrarily slowly

in case (i) and
{
ϕN/

√
T
}

is bounded away from 0 in case (ii), satisfies Assumption 2 (ii).
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The matrices Mu and Mv can be known or estimated (see, e.g., Section 4.6) and have been

applied to the data. Applying such matrices cannot increase rank
(
MuΓlMv

)
,
∣∣∣MuΓdMv

∣∣∣
op

, or

|MuηMv |op. These matrices can be unknown and the baseline error E can have temporal and

cross-sectional dependence. Because the operator norm of a matrix is equal to the operator

norm of its transpose, the role of N and T can be exchanged in (ii). The proposed choice

of the penalty level is almost completely explicit and does not depend on the variance of the

errors. The remaining sequences are arbitrary. In contrast to (16) where
(
1 − φ1N/

√
NT

)−1

converges to 1, [21] employs a factor converging to infinity. Hence, the data-driven method

of this paper provides less shrinkage, less bias, and a better bias/variance tradeoff.

4.3. Restriction on the joint distribution of X and Γ. We now discuss restrictions so

that the bounds in Theorem 1 are small.

Assumption 3. The random matrix Γ can be decomposed as Γ = Γl + Γd, where, for {rN},

(i) rank
(
Γl
)

= OP (rN ),

(ii)
∣∣∣Γd
∣∣∣
∗

= OP (λNrN ),

(iii) There exists κ > 0 independent of N such that κΓl ≥ κ w.p.a. 1.

Based on the expression of θ∗(ρ) and θσ(ρ), Theorem 1, and Proposition 3, a tight decom-

position of the form Γ = Γl + Γd implies that Γl and Γd are functions of X and Γ.

Proposition 5. Assumption 3 (iii) for a cone with constant c holds with the lower bound κ

if, w.p.a. 1, κ2 + 2rank
(
Γl
)
Q(b, b⊥) ≤ 1, where b, b⊥ ∈ R

K are defined, for k = 1, . . . ,K, as

bk = amin
(
|PΓl (Xk)|op , |Xk|op

)
, b⊥k = a

∣∣∣P⊥
Γl (Xk)

∣∣∣
op

, a =
∣∣∣X⊤X/(NT )

∣∣∣
−1

op
|X|2/(NT ),

Q(b, b⊥) =|b|221l
{
pN |b⊥|22 ≥ 1

}
+

(
|b+ b⊥c|22 − c2

pN

)
1l

{
1 − pN 〈b⊥, b〉

c
≤ pN |b⊥|22 < 1

}

+



∣∣∣∣∣b+ b⊥

pN 〈b⊥, b〉
1 − pN |b⊥|22

∣∣∣∣∣

2

2

− pN 〈b⊥, b〉2

(
1 − pN |b⊥|22

)2


 1l

{
pN |b⊥|22 < 1 − pN〈b⊥, b〉

c

}
,

and pN = min
(
N − rank

(
Γl
)
, T − rank

(
Γl
))

.

Note that Q(b, b⊥) < |b+ b⊥c|22 and, if K = 1, a = 1/ |X1|2 and

|b+ b⊥c|22 =
1

|X1|22

(
min

(
|PΓl (X1)|op , |X1|op

)
+
∣∣∣P⊥

Γl (X1)
∣∣∣
op
c

)2

.

The quantity
∣∣∣P⊥

Γl (Xk)
∣∣∣
op

=
∣∣∣Mu(Γl)XkMv(Γl)

∣∣∣
op

in the definition of b⊥k can be not too large

because the projectors can reduce the operator norm if Xk has a component with a factor

structure and shares some factors in common with Γl which are annihilated by Mv(Γl) (see

Remark 5 for further discussion of this aspect). Due to Assumption 1 (ii), a = OP

(
1/

√
NT

)
.
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In the worst case, by the crude bound |Xk|op ≤ |Xk|2, b and b⊥, hence Q(b, b⊥) are bounded.

If µN = o
(√

NT
)
, the condition in Proposition holds for arbitrary constants κ < 1 for N

large enough, but this is not necessary. Section 4.6 presents solutions to work with regressors

with smaller operator norm. Lemma A.7 in [21] provides an alternative sufficient condition for

Assumption 3 (ii). Lemma A.8 is another sufficient condition when K = 1. In our framework

r1N can grow, c can be different from 3, and we do not work contionnal on Γl, condition (iii)

has to be modified with a denominator of
√
NTrN and the probabilities are with respect to

the distribution of (Γ,X1). It is claimed in Remark (a) in [21] that the condition in Lemma

A.8 holds when X1 = Πl
1 +U1, Πl

1 has a fixed rank, and U1 has iid mean zero normal entries.

4.4. Rates of convergence. Theorem 1 and the assumptions on the DGP yield the following.

Theorem 2. Under assumptions 2 and 3,
∣∣∣Γ̂ − Γ

∣∣∣
∗

= OP (λNrN ) ,(18)

σ̂ − σ = OP

(
λ2

NrN

NT

)
,(19)

β̂ − β = OP

(
λNrNµN

NT

)
.(20)

In (20), we have implicitly assumed that
√
NT = O (λNrNµN ) but this always occurs

when X 6= 0 and the problem is to have λNrNµN as close as possible in rate to
√
NT . Under

usual assumptions where we can take λN proportional to
√

max(N,T ), rN fixed, and make no

restriction on {µN} so that µN = O(
√
NT ), we obtain the rate convergence of 1/

√
min(N,T )

which is the one in [21]. Theorem 2 shows that β̂ remains consistent if rN = o
(√

min(N,T )
)
.

Obviously rN can be larger if µN is smaller. The most favorable situation, when µN =

O
(√

max (N,T )
)

and λN is proportional to
√

max(N,T ), yields

β̂ − β = OP

(
max(N,T )rN

NT

)
,

hence, when N/T converges to a constant, this becomes OP

(
rN/

√
NT

)
. Achieving µN =

o
(√

NT
)

and in some cases µN = O
(√

max (N,T )
)

using transformed regressors is some-

times possible under the premises of Section 4.6 and this paper allows to obtain such an

estimator and transformed regressors in a data-driven way. Section 4.7 proposes an alterna-

tive approach where we can obtain the 1/
√
NT rate and to have asymptotic normality.

4.5. Additional results using the relation to the matrix Lasso. Recall that any solu-

tion
(
β̂, Γ̂

)
of (3) is also solution of (10). Based on this we can prove the following additional

results on our estimator which would also apply to (10) even if rather than σ̂ we use an

upper bound on the standard error of the errors. The results that we state involve σ̂ but,

under the assumptions of Theorem 2, σ̂ is a consistent estimator of σ. In order to guarantee

P

(
ρλN min (σ̂, σ) ≥ |MX(E)|op

)
→ 1 we need the following assumption.
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Assumption 4. Assumption 2 holds and {φ1N } satisfies the additional restriction that, for

N large enough,
(

1 − φ1N√
NT

)2

φ1N ≥ φ2N
rN√
NT

(
ψN + φ2N

µN√
NT

)2

.

Indeed, we can replace
{
φ1Nσ/

√
NT ≥ σ − |MX(E)|2 /

√
NT

}
by
{
φ2Nσλ

2
NrN/NT ≥ σ − σ̂

}

in the previous analysis which converges to 1 due to (19) because, due to Assumption 4,

φ1N ≥ φ2Nλ
2
NrN/

√
NT , hence

(
1 − φ2N

λ2
NrN

NT

)
λN ≥

(
1 − φ1N√

NT

)
λN = ψN + φ2N

µN√
NT

.

A conservative choice is φ1N = c1

√
NT for a small c1 ∈ (0, 1). Now on, we use cones with

constant c = c (ρ) = (1 + ρ)/(1 − ρ). First, with a proof similar to the computations in [17],

we obtain a result which is an oracle inequality with constant 1 if X and Γ are not random.

Proposition 6. If ρλmin (σ̂, σ) ≥ |MX(E)|op, we have

1

NT

∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
≤ inf

Γ̃





1

NT

∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
+

2(λ(1 + ρ) min (σ̂, σ))2

NT

rank
(
Γ̃
)

κ2
Γ̃,c(ρ)



 .

This inequality yields a slightly different notion of approximately sparse solution because

the first term in the maximum involves
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
/(NT ) rather than

∣∣∣Γ − Γ̃
∣∣∣
∗
. The next

result provides a bound on rank
(
Γ̂
)

as a function of the previous bound.

Proposition 7. If ρλσ̂ ≥ |MX(E)|op then we have

(
λ(1 − ρ)σ̂ −

∣∣∣Γd
∣∣∣
op

)2

+
rank

(
Γ̂
)

≤
∣∣∣∣Pu
(

Γ̂
)MX

(
Γl − Γ̂

)
P

v
(

Γ̂
)
∣∣∣∣
2

2
≤
∣∣∣MX

(
Γl − Γ̂

)∣∣∣
2

2
.

As a result, under the above conditions and Assumtion 3 (ii),

rank
(
Γ̂
)

≤ 2
(
(1 + ρ)/((1 − ρ)κΓl,c(ρ))

)2
rank

(
Γl
)
.

We can combine propositions 6 and 7 with Proposition 11 in the appendix to obtain results

for other loss functions, in particular the Frobenius norm.

Our estimator has desirable low-rank properties but it can fail to obtain rank(Γ), rank
(
Γl
)
,

or annihilator matrices. Thus, we introduce the hard-thresholded estimator

Γ̂t =

rank
(

Γ̂
)

∑

k=1

σk

(
Γ̂
)

1l
{
σk

(
Γ̂
)

≥ t
}
uk

(
Γ̂
)
vk

(
Γ̂
)⊤

.
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Proposition 8. Under the assumptions of Theorem 2 and Assumption 4, if
∣∣∣Γd
∣∣∣
op

= oP (λNσ),

we have

(21) max

(∣∣∣Γ − Γ̂
∣∣∣
op
,
∣∣∣Γl − Γ̂

∣∣∣
op

)
≤ (ρ+ 1)λN

(
σ +OP

(
rNµ

2
N

NT

))
.

Assumption 5. Let h > 1. The following conditions hold

(i) rNµ
2
N = o(NT ),

(ii) P

(
σrank(Γl)

(
Γl
)

≥ (ρ+ 1)λNh
2(h+ 1)σ

)
→ 1.

Condition (i) guarantees the OP in (21) is oP (1). It allows the pivotal thresholding methods

below but imposes a slight restriction on the operator norms of the regressors. Section 4.6

allows to come back to a case where (i) holds for a large class of regressors. Without (i)

max

(∣∣∣Γ − Γ̂
∣∣∣
op
,
∣∣∣Γl − Γ̂

∣∣∣
op

)
= OP (λN )

and can adapt the results which follow at the expense of a theoretical but unfeasible threshold-

ing level or using conservative levels λN/t = o(1). Condition (ii) is weaker than a strong-factor

assumption on Γl. We now show that we can recover rank(Γ) with a data-driven threshold.

Proposition 9. Under the assumptions of Proposition 8 and Assumption 5, then setting

t = (ρ+ 1)λNh
2σ̂ yields

P

(
rank

(
Γ̂t
)

= rank
(
Γl
))

→ 1.

Moreover, if we remove (ii), then we have

P

(
rank

(
Γ̂t
)

≤ rank
(
Γl
))

→ 1,

if we replace (ii) by the weaker assumption P

(
σrank(Γl)

(
Γl
)

≥ (ρ+ 1)λNh
3σ
)

→ 1, we have

P

(
rank

(
Γ̂t
)

≥ rank
(
Γl
))

→ 1,

and

(22) max

(∣∣∣Γ − Γ̂t
∣∣∣
op
,
∣∣∣Γl − Γ̂t

∣∣∣
op

)
≤ (ρ+ 1)λN (h2 + 1) (σ + oP (1)) .

We strengthen Assumption 5 (ii) as follows. When vN increases like
√
NT , it is a strong-

factor assumption.

Assumption 6. Let {vN} be such that vN ≥ (ρ+ 1)λNh
2(h+ 1)σ. Assume that

P

(
σrank(Γl)

(
Γl
)

≥ vN

)
→ 1.

Proposition 10. Under the assumptions of Proposition 9 and Assumption 6, we have
∣∣∣∣Pv
(

Γ̂t

) − Pv(Γl)

∣∣∣∣
2

=

∣∣∣∣Mv
(

Γ̂t
v

) −Mv(Γl)

∣∣∣∣
2

≤ (ρ+ 1)

√
2rNλN

vN

(
(h2 + 1)σ + oP (1)

)

∣∣∣∣Pu
(

Γ̂t

) − Pu(Γl)

∣∣∣∣
2

=

∣∣∣∣Mu
(

Γ̂t

) −Mu(Γl)

∣∣∣∣
2

≤ (ρ+ 1)

√
2rNλN

vN

(
(h2 + 1)σ + oP (1)

)
.
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Under a strong-factor assumption, when λN is proportional to
√

max(N,T ) and rN is fixed,

we obtain the same rate of convergence as using PCA and as in Lemma A.7 in [3]. Here we

obtain an upper bound with known constant. The rates that we obtain are also more general

because we do not need to maintain the strong-factor assumption or that rN is fixed, {λN}
could also allow for errors with larger tails of the operator norm.

4.6. Working with transformed regressors. In the previous sections, {µN} sometimes

plays an important role and we might want it to be not too large. However, this can be as

large as O(
√
NT ) if the next assumption holds. So we devote this section to the analysis of

this difficult situation.

Assumption 7. For all k ∈ {1, . . . ,K},

(23) Xk = Πl
k + Πd

k + Uk,

and Πd
k, Uk, σk, rkN , λkN , and vkN play the role of Γd, E, σ, rN , λN and vN and satisfy the

assumptions of Proposition 4, Assumption 3 (i) and (ii), and Assumption 5 (ii). We assume

that for at least one k ∈ {1, . . . ,K}, Πl
k 6= 0 and |Πk|op + |Πk|−1

op = OP

(√
NT

)
.

The problem is difficult due to Πl
k 6= 0 and |Πk|−1

op = OP

(√
NT

)
. No transformation is

required if Πl
k = 0 or if

∣∣∣Πl
k

∣∣∣
op

= oP

(√
NT

)
. The problem would be even harder if Πl

k does

not have a small rank (i.e., with “many” strong factors) and there is obviously a problem

related to identification when Xk = Πl
k and Πl

k has small rank. Under the aforementioned

assumptions, we can take λkN = λN . The matrix Πl
k, σk, and the annihilators Mu(Πl

k
) and

Mv(Πl

k
) can be estimated like in the previous sections and one can replace Xk by X̃k, where

Xk − X̃k has low rank, and Γl by Γ̃l = Γl +
∑K

k=1 βk

(
Xk − X̃k

)
. For simplicity of exposition,

we apply a transformation to all regressors. When X = 0, (3) can be computed as an iterated

soft-thresholding estimator.

One can work with an estimator Π̃k of Πk of the form Π̃k = Π̂k or Π̃k = Π̂t
k obtained

as described in the previous sections, with (1) X̃k = Xk − Π̃k, (2) X̃k = M
u
(

Π̃k

)Xk, (3)

X̃k = XkMv
(

Π̃k

), (4) X̃k = P⊥
Π̃k

(Xk), (5) X̃k = Xk −X
(lk)
k where X

(lk)
k is obtained from Xk

by keeping the low rank component from a SVD corresponding to the lk = rank
(
Π̃k

)
largest

singular values. An alternative is to rely on Principal Component Analysis (henceforth PCA)

using the eigenvalue-ratio (see [1]) to select the number of factors. By the previous results,

using such transformed regressors gives rise to additional terms in Γ̃ of rank each at most

18rkN + oP (1) if Πk = Πl
k or of same rank as X̃ l

k w.p.a. 1 if we use hard-thresholding as

well. Assuming we transform all regressors, the rank of Γ̃ is at most r̃N + oP (1), where r̃N =

rN +2((1+ρ)/(1−ρ))2∑K
k=1 rkN if Π̃k = Π̂k and lk = rank

(
Π̂k

)
and else r̃N = rN +

∑K
k=1 rkN .

Using Π̃k = Π̂t
k has the advantage that if Πd

k 6= 0 we have guarantees on the low rank of Γ̃.
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Remark 4. In Assumption 7 we have assumed that we maintain the assumption of Proposition

4 and Assumption 5 (ii) for simplicity of exposition. But we can also handle heavy tailed

errors Uk by choosing a penalty level λkN large enough as disscussed before Proposition 4 .

We maintain Assumption 5 (ii) to allow for a simple thresholding rule but it is enough to use

a thresholding at any level of smaller order than
√
NT to obtain µN = o

(√
N
)
.

4.7. Second-stage estimator of β. As seen at the end of Section 4.4, the estimator β̂ could

sometimes achieve the 1/
√
NT rate. But under weaker conditions we obtain a slower rate

of convergence. This section presents three different two-stage approaches which deliver an

asymptotically normal estimator of β.

4.7.1. Approach 1: Annihilation of low-rank components of Γ and the regressors. This section

analyzes another approach under Assumption 7 where, for simplicity of exposition, the last

statement holds for all regressors, and we use the transformed regressors with transformation

(1) or (2). We obtain estimators of Πl
u =

(
Γl,Πl

1, . . . ,Π
l
K

)
and Πl

v =

((
Γl
)⊤

,
(
Πl

1

)⊤
, . . . ,

(
Πl

K

)⊤
)⊤

by plug-in using Π̃k = Π̂k or Π̃k = Π̂t
k (preferably) for k = 1, . . . ,K and

(24) Γ̂ =
̂̃
Γ −

K∑

k=1

β̂kΠ̃k.

We denote by Π̂u and Π̂v the estimators, by σ2 = σ2 +
∑K

k=1 σ
2
k and σ̂

2
= σ̂2 +

∑K
k=1 σ̂

2
k, by

σ̃ = σ and ̂̃σ = σ̂ if Π̃k = Π̂k, and by σ̃ = (h2 + 1)σ and ̂̃σ = (h2 + 1)σ̂ if Π̃k = Π̂t
k. Because,

for K ∈ N and A1, . . . , AK with same number of rows, |(A1, . . . , AK)|2op ≤ ∑K
k=1 |Ak|2op, and

Γ̂ − Γl =
̂̃
Γ − Γ̃l +

K∑

k=1

(
βk − β̂k

)(
Π̃k − Πk

)
+

K∑

k=1

(
βk − β̂k

)
Πk,

we obtain the following corollary of Proposition 8 and (22).

Corollary 1. Under the assumptions 1, 3, where in (iii) we have Γ̃l instead of Γl, 4, 7,

λ2
N r̃N = o(NT ), and

∣∣∣Γd
∣∣∣
op

= oP (λNσ), we have

∣∣∣Γl − Γ̂
∣∣∣
op

≤ (ρ+ 1)λN (σ + oP (1))

max

(∣∣∣Πl
u − Π̂l

u

∣∣∣
op
,
∣∣∣Πl

v − Π̂l
v

∣∣∣
op

)
≤ (ρ+ 1)λN (σ̃ + oP (1)) .

Based on this corollary, we can rely on hard-thresholding of these estimators that we

denote by Γ̂t, Π̂t
u and Π̂t

v and estimate the rank of Γl and the annihilator matrices Mu(Γl),

Mv(Γl), Mu(Πl
u), and Mv(Πl

v) by M
u
(

Γ̂t

), M
v
(

Γ̂t

), M
u
(

Π̂t
u

), and M
v
(

Π̂l
v

). Again, the first two

annihilators are estimated at the same rate as in Lemma A.7 in [3] if Γl satisfies a strong

factor assumption. Proposition 9 and Proposition 10 hold with the annihilator matrices of
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this section replacing σ by σ̃ and σ̂ by ̂̃σ and Assumption 5 (ii) by

P

(
min

(
σrank(Πl

u)

(
Πl

u

)
, σrank(Πl

v)

(
Πl

v

))
≥ (ρ+ 1)λNh

2(h+ 1)σ̃
)

→ 1

and Assumption 6 by λ2
N r̃N = o(NT ) maintained in Corollary 1 and the next assumption.

Assumption 8. Let {vN} be such that vN ≥ (ρ+ 1)λNh
2(h+ 1)σ̃, we have

P

(
min

(
σrank(Πl

u)

(
Πl

u

)
, σrank(Πl

v)

(
Πl

v

))
≥ vN

)
→ 1

and, for a sequence {rN}, max
(
rank

(
Πl

u

)
, rank

(
Πl

v

))
= OP (rN ).

We denote by P⊥
Π̂t

(resp. P⊥
Π ) the operator which applied to A ∈ MNT is P⊥

Π̂
(A) =

M
u
(

Π̂t
u

)AM
v
(

Π̂t
v

) (resp. P⊥
Π (A) = Mu(Πu)AMv(Πv)) and define the estimator

(25) β̃(1) ∈ argmin
β∈RK

∣∣∣∣∣P
⊥
Π̂t

(
Y −

K∑

k=1

βkXk

)∣∣∣∣∣

2

2

.

Also P⊥
Π̂t

(X) (resp. P⊥
Π̂t

(U), P⊥
Π (X), and P⊥

Π (U)) is the matrix formed like X, replacing the

matrices Xk by P⊥

Π̂t
(Xk) (resp. P⊥

Π (Xk), P⊥
Π (Uk), and P⊥

Π (Uk)) for k = 1, . . . ,K.

Assumption 9. Maintain the assumptions of Corollary 1 and Assumption 8 and

(i) rNλ
2
N

(
λN +

√
rNµ

2
N/vN

)
/vN = o (NT ),

(ii) rNλ
3
N/vN = o

(√
NT

)
,

(iii) r
3/2
N λ3

N (|Γ|op + λN ) /v2
N = oP

(√
NT

)
,

(iv)
∣∣∣P⊥

Πl(Π
d)
∣∣∣
2

2
= oP (NT ),

(v) There exists Σ⊥ ∈ MKK positive definite such that P⊥
Πl(U)⊤P⊥

Πl(U)/(NT )
P−→ Σ⊥,

(vi) P⊥
Πl(U)⊤e/

√
NT

d−→ N (
0, σ2Σ⊥

)
.

Regarding Assumption 9 (iii), |Γ|op is usually OP

(√
NT

)
if it has a nontrivial low-rank

component. (i)-(iii) can be satisfied under weaker assumptions than a strong factor assumption

(vN is of the order of
√
NT ) and when rN goes to infinity. (v) is satisfied, for example, if

(Πl
u,Π

l
v) and U are independent and (vi) when (X,Γl) and E are independent.

Theorem 3. Let Assumption 9 holds. We have
√
NT

σ̂

(
β̃(1) − β

)
d−→ N

(
0,Σ−1

⊥

)
,

P⊥

Π̂t
(X)⊤P⊥

Π̂t
(X)/(NT )

P−→ Σ⊥.

Also, if |PΠl(U)|22 = oP (|U |22) then Σ⊥ = E[U⊤U ]. This occurs if E
[
max

(
rank

(
Πl

u

)
, rank

(
Πl

v

))]
=

o
(√

min(N,T )
)

and U and (Πl
u,Π

l
v) are independent.
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4.7.2. Approach 2: Using [3]’s estimator as a second stage. An alternative approach put

forward by [21] is to rely on a preliminary estimator like their matrix Lasso as a first-step to

initialize [3]’s non convex estimator. Among other conditions, using such a two-stage approach

requires that the rate of convergence of the first-step estimator of β is at least (NT )1/6, a

consistent estimator of rank(Γ), which is assumed constant, a strong-factor assumption on

Γ, and Γd = 0. This methodology can be applied using as a first-stage the thresholded or

nonthresholded square-root estimator of this paper. We denote this estimator by
(
β̃(2), Γ̃(2)

)
.

This paper provides a consistent estimator of rank
(
Γl
)

via hard-thresholding of (24) or an

upper bound on it without thresholding. Lemma 3 in [21] proposes an other consistent

estimator but probably has a typo due to contradictory assumptions. The advantage of the

estimator of this paper is that the level of thresholding is less conservative and makes use of

the consistent estimator of the variance of errors. Recall that if Γd = 0 and Πl
1 = . . . ,Πl

K ,

from the discussion after Proposition 7 and (24),

rank
(
Γ̂
)

≤ 2

(
1 + ρ

1 − ρ

)2
(
r̃N

κ2
Γ̃l

+
K∑

k=1

rkN

)
+ oP (1).

An estimator of the asymptotic covariance matrix of the second-stage estimator, given a

consistent estimator of r̂ = rank
(
Γl
)
, is given by (see page 1552 of [19]) σ̂BΣ̂B, where

σ̂B =
1√

(N − r̂)(T − r̂) −K

∣∣∣∣∣Y −
K∑

k=1

β̃
(2)
k Xk − Γ̃(2)

∣∣∣∣∣
2

(
Σ̂B

)
kl

=
1

NT

〈
M

u
(

Γ̃(2)
)XkMv

(
Γ̃(2)
),Xl

〉
∀k, l ∈ {1, . . . ,K}2.

5. Simulations

We take the same data generating process as in [21] with a single regressor and two factors:

Yit = X1it +
2∑

l=1

(1 + λ0,il) f0,tl + Eit,

X1it = 1 +
2∑

l=1

(2 + λ0,il + λ1,il)(f0,tl + f0,t−1 r) + Uit,

where f0,tl, λ0,il, λ1,il, Uit, and Eit for all indices are mutually independent and i.i.d. standard

normal. The matrix X1 has an approximate factor structure with a low-rank component of

rank 3 due to the constant 1. The least-squares estimator β̂LS which ignores the presence of

Γ is inconsistent because Xit and Γit are correlated. By the analysis of the paper, the square-

root estimator coincides with the estimator in [21] with a smaller penalization. The results in

[21] are obtained with a penalty much smaller than allowed by the theory. We compare the

performance of the least-squares estimator β̂LS , the square-root estimator β̂ obtained with the

baseline regressors, the square-root estimator β̂pt obtained with the transformed regressors,

where we apply (2) from Section 4.6 with Π̃1 = Π̂t
1, and the two-stage estimators from Section
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4.7. We use β̂LS to initialize the iterative estimators. The number of iterations is 100 to obtain

the estimator of rank (Γ), as explained after Corollary 1, useful to compute β̃(2). We use the

same number of iterations to obtain β̂pt. We consider an additional 100 iterations for β̂, β̂pt,

and β̃(2). As a result, β̃(1) and β̃(2) have been computed with the same number of iterations.

We consider two sample sizes: (a) N = T = 50 and (b) N = T = 150. We use 7300 Monte-

Carlo replications to allow for an accuracy of ±0.005 with 95% for the coverage probabilities

of 95% confidence intervals. We choose λN = 1.01
(√

N +
√
T
)

and the hard-thresholding

levels are 2λN times an estimator of the standard error from the first-stages.

A first approach is to not apply any matrix to the data as described after Proposition 4. The

results in tables 1 and 2 compare the performance of the estimators in terms of Mean Squared

Error (henceforth MSE), bias, and standard error (henceforth std). In case (a), rank
(
Π̂t

1

)

has been found to be always equal to 2 while rank
(
Π̂1

)
to 3 (the true rank), rank

(
Γ̂t
)

has

been found to be always equal to 2 (the true rank) in 89% of the cases and else to 1. We used

rank
(
Π̂t

1

)
for β̂pt and subsequently rank

(
Γ̂t
)
, β̃(1) and β̃(2), even though it did not perform

well for such small sample size. In case (b), rank
(
Π̂t

1

)
has been found to be always equal to

3 while rank
(
Π̂1

)
and rank

(
Γ̂t
)

have been found to be always equal to 2 (the true rank).

Table 1. N = T = 50

β̂LS β̂ β̂pt β̃(1) β̃(2)

MSE 0.053 0.020 5 10−4 0.002 9 10−4

bias 0.230 0.142 -10−4 0.019 0.009

std 0.017 0.015 0.023 0.035 0.029

Table 2. N = T = 150

β̂LS β̂ β̂pt β̃(1) β̃(2)

MSE 0.053 0.011 4 10−5 4 10−5 1 10−5

bias 0.231 0.103 4 10−4 2 10−5 -8 10−5

std 0.009 0.008 0.006 0.006 0.003

A second approach is to apply Within transforms Mu = IN − JN/N and Mv = IT − JT /T

to the left and right of Y and X1, where JN ∈ MNN (resp. JT ∈ MT T ) has all entries equal

to 1. These allow to get rid of the mean 1 of X1 but more generally of any individual and

time effects in both Πl and Γl. The results are in tables 3 and 4. In case (a), rank
(
Π̂t

1

)
and

rank
(
Π̂1

)
has been found to be always equal to 2 (the true rank), rank

(
Γ̂t
)

has been found

to be equal to 2 (the true rank) in 81% of the cases and else to 1. In case (b), rank
(
Π̂t

1

)
,

rank
(
Π̂1

)
, rank

(
Γ̂t
)

have been found to be always equal to 2 (the true ranks).

Table 5 assesses the coverage probabilities in the different cases.
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Appendix

Recall that, for all A,M,N ∈ MNT (see lemma 2.3 and 3.4 in [27] for the last two),

PA(M) = Mu(A)MPv(A) + Pu(A)M,(26)

rank (PA(M)) ≤ 2 min (rank (M) , rank(A)) ,(27)

〈PA(M),PA(N)〉 = 〈PA(M), N〉 ,(28)
〈

PA(M),P⊥
A (M)

〉
= 0,(29)

∣∣∣A+ P⊥
A (M)

∣∣∣
∗

= |A|∗ +
∣∣∣P⊥

A (M)
∣∣∣
∗
.(30)

Proof of Proposition 1. By definition of β̂ and Γ̂, we have, for all β ∈ R
K and Γ ∈ MNT ,

1√
NT

∣∣∣∣∣Y −
K∑

k=1

β̂kXk − Γ̂

∣∣∣∣∣
2

+
λ

NT

∣∣∣Γ̂
∣∣∣
∗

≤ 1√
NT

∣∣∣∣∣Y −
K∑

k=1

βkXk − Γ

∣∣∣∣∣
2

+
λ

NT
|Γ|∗.

By definition of PX and of the estimator, for all β ∈ R
K and Γ ∈ MNT , we have

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

+
λ

NT

∣∣∣Γ̂
∣∣∣
∗

≤ 1√
NT

∣∣∣∣∣Y −
K∑

k=1

β̂kXk − Γ̂

∣∣∣∣∣
2

+
λ

NT

∣∣∣Γ̂
∣∣∣
∗

https://arxiv.org/abs/1810.10987
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≤ 1√
NT

∣∣∣∣∣Y −
K∑

k=1

βkXk − Γ

∣∣∣∣∣
2

+
λ

NT
|Γ|∗.

By choosing β such that
∑K

k=1 βkXk = PX (Y − Γ), we obtain, for all Γ ∈ MNT ,

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

+
λ

NT

∣∣∣Γ̂
∣∣∣
∗

≤ 1√
NT

|MX (Y − Γ)|2 +
λ

NT
|Γ|∗,

hence the result.

Proof of Proposition2. The first inequality is obtained using trace duality and (27). The

second is obtained by (29) and the Pythagorean theorem.

Proof of Theorem 1. The techniques are similar to those in [5, 11]. Take Γ̃ ∈ MNT and denote

by ∆ = Γ̂ − Γ. Remark that
∣∣∣Γ̂
∣∣∣
∗

=
∣∣∣Γ − Γ̃ + Γ̃ + P

Γ̃
(∆) + P⊥

Γ̃
(∆)

∣∣∣
∗

≥
∣∣∣Γ̃ + P⊥

Γ̃
(∆)

∣∣∣
∗

−
∣∣∣Γ − Γ̃

∣∣∣
∗

−
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

(31)

≥
∣∣∣Γ̃
∣∣∣
∗

+
∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

−
∣∣∣Γ − Γ̃

∣∣∣
∗

−
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

(by (30)).(32)

Now, by (9) and the definition of Γ̂, we have

(33)
1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

+
λ

NT

∣∣∣Γ̂
∣∣∣
∗

≤ 1√
NT

|MX (Y − Γ)|2 +
λ

NT
|Γ|∗ .

By convexity, trace duality, and λρ|MX(E)|2/
√
NT ≥ |MX(E)|op, if MX(E) 6= 0, we have

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2 ≥ − 1√
NT |MX(E)|2

〈
MX(E), Γ̂ − Γ

〉

≥ − λρ

NT
|∆|∗.(34)

(34) also holds if MX(E) = 0 because
∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

≥ 0. This and (33) imply

(35)
∣∣∣Γ̂
∣∣∣
∗

≤ ρ|∆|∗ + |Γ|∗.

Using (32), we get
∣∣∣Γ̃
∣∣∣
∗

+
∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

−
∣∣∣Γ − Γ̃

∣∣∣
∗

−
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

≤ ρ |∆|∗ + |Γ|∗

and |Γ|∗ ≤
∣∣∣Γ − Γ̃

∣∣∣
∗

+
∣∣∣Γ̃
∣∣∣
∗

yields

∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

−
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

≤ ρ |∆|∗ + 2
∣∣∣Γ − Γ̃

∣∣∣
∗
.

Then, because |∆|∗ ≤
∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

+
∣∣∣P

Γ̃
(∆)

∣∣∣
∗
, we have

(36) (1 − ρ)
∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

≤ (1 + ρ)
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

+ 2
∣∣∣Γ − Γ̃

∣∣∣
∗
.



22 JAD BEYHUM AND ERIC GAUTIER

Also, by (33),

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2 ≤ λ

NT

(
|Γ|∗ −

∣∣∣Γ̂
∣∣∣
∗

)

and

|Γ|∗ −
∣∣∣Γ̂
∣∣∣
∗

≤
∣∣∣Γ̃
∣∣∣
∗

+
∣∣∣Γ − Γ̃

∣∣∣
∗

−
∣∣∣Γ̂
∣∣∣
∗

= 2
∣∣∣Γ − Γ̃

∣∣∣
∗

+
∣∣∣Γ̃
∣∣∣
∗

−
∣∣∣Γ − Γ̃

∣∣∣
∗

−
∣∣∣Γ̂
∣∣∣
∗

≤ 2
∣∣∣Γ − Γ̃

∣∣∣
∗

+
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

−
∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

(by (32)),

hence we have

(37)
1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2 ≤ λ

NT

(
2
∣∣∣Γ − Γ̃

∣∣∣
∗

+
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

)
.

Let ρ̃ > 0 and consider two cases.

Case 1. If ρ̃
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

≤ 2
∣∣∣Γ − Γ̃

∣∣∣
∗
, we have, by (36),

|∆|∗ ≤
∣∣∣P

Γ̃
(∆)

∣∣∣
∗

+
∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

≤ 2

1 − ρ

(∣∣∣P
Γ̃
(∆)

∣∣∣
∗

+
∣∣∣Γ − Γ̃

∣∣∣
∗

)

≤ 2

1 − ρ

(
2

ρ̃
+ 1

) ∣∣∣Γ − Γ̃
∣∣∣
∗
.

This yields the first part of the first inequality of Theorem 1. The first part of the second

inequality is obtained by combining (34) and (37).

Case 2. Otherwise, if ρ̃
∣∣∣P

Γ̃
(∆)

∣∣∣
∗
> 2

∣∣∣Γ − Γ̃
∣∣∣
∗
, we obtain, by (36), that

∣∣∣P⊥

Γ̃
(∆)

∣∣∣
∗

≤ c (ρ, ρ̃)
∣∣∣P

Γ̃
(∆)

∣∣∣
∗
,

which implies that ∆ ∈ C
Γ̃

and |∆|∗ ≤ (1 + c (ρ, ρ̃))
∣∣∣P

Γ̃
(∆)

∣∣∣
∗
. We have

1

NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

2
− 1

NT
|MX (Y − Γ)|22 =

1

NT

∣∣∣MX

(
Γ̂ − Γ

)∣∣∣
2

2
− 2

NT

〈
MX(E), Γ̂ − Γ

〉

hence, because λρ|MX(E)|2/
√
NT ≥ |MX(E)|op,

1

NT

∣∣∣MX

(
Γ̂ − Γ

)∣∣∣
2

2

≤ 1

NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

2
− 1

NT
|MX (Y − Γ)|22 + 2λρ (1 + c (ρ, ρ̃))

|MX(E)|2
(NT )

3
2

∣∣∣P
Γ̃
(∆)

∣∣∣
∗

(38)

and, by (37),

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2 ≤ (1 + ρ̃)λ

NT

∣∣∣P
Γ̃
(∆)

∣∣∣
∗
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which, combined with (34), yields
∣∣∣∣

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2
∣∣∣∣ ≤ d (ρ, ρ̃)

λ

NT

∣∣∣P
Γ̃
(∆)

∣∣∣
∗
.(39)

Now, using

1

NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

2
− 1

NT
|MX (Y − Γ)|22

=

(
1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2
)

×
(

1√
NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

− 1√
NT

|MX (Y − Γ)|2 +
2√
NT

|MX (Y − Γ)|2
)

and (39), we obtain

1

NT

∣∣∣MX

(
Y − Γ̂

)∣∣∣
2

2
− 1

NT
|MX (Y − Γ)|22(40)

≤ d (ρ, ρ̃)
λ

NT

∣∣∣P
Γ̃
(∆)

∣∣∣
∗

(
d (ρ, ρ̃)

λ

NT

∣∣∣P
Γ̃
(∆)

∣∣∣
∗

+
2 |MX (E)|2√

NT

)
.

Combining (38) and (40), we get

1

NT

∣∣∣MX

(
Γ̂ − Γ

)∣∣∣
2

2
≤
(
d (ρ, ρ̃)

λ

NT

∣∣∣P
Γ̃
(∆)

∣∣∣
∗

)2

+ 2e (ρ, ρ̃)
λ |MX (E)|2

(NT )
3
2

∣∣∣P
Γ̃
(∆)

∣∣∣
∗
.

By definition of κ
Γ̃,c(ρ,ρ̃), this implies

|MX (∆)|2 ≤ 2


1 −


d (ρ, ρ̃)

√
2rank

(
Γ̃
)
λ

√
NTκ

Γ̃,c(ρ,ρ̃)




2


−1

+

e (ρ, ρ̃)
λ

√
2rank

(
Γ̃
)
|MX(E)|2

√
NTκ

Γ̃,c(ρ,ρ̃)

,

|PΓ(∆)|∗ ≤ 4


1 −


d (ρ, ρ̃)

√
2rank

(
Γ̃
)
λ

√
NTκ

Γ̃,c(ρ,ρ̃)




2


−1

+

e (ρ, ρ̃)
λrank

(
Γ̃
)

|MX(E)|2√
NTκ2

Γ̃,c(ρ,ρ̃)

,(41)

which yields the first result. The second result follows from (39) and (41).

Proof of Proposition 3.

Lemma 1. It holds that |PX(E)|2 = OP (1) and |PX(E)|op = OP

(
µN/

√
NT

)
.

Proof. Let | · | denote the ℓ2 or operator norm. We use that, due to Assumption 1 (ii), w.p.a.

1, |PX(E)| =
∣∣∣X(X⊤X)−1X⊤e

∣∣∣ and

∣∣∣X(X⊤X)−1X⊤e
∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xk

(
(X⊤X)−1X⊤e

)
k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

|Xk|2
∣∣∣(X⊤X)−1X⊤e

∣∣∣
2
.
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Due to Assumption 1 (ii) and (iii), we have

∣∣∣(X⊤X)−1X⊤e
∣∣∣
2

≤
∣∣∣∣∣∣

(
X⊤X

NT

)−1
∣∣∣∣∣∣
op

∣∣∣∣∣
X⊤e

NT

∣∣∣∣∣
2

= OP

(
1√
NT

)
(42)

and |Xk|2 =
√

(X⊤X)kk = OP

(√
NT

)
hence the result. �

By Lemma 1 and the inverse triangle inequality, we have
∣∣∣∣
|MX(E)|2√

NT
− |E|2√

NT

∣∣∣∣ ≤ |PX(E)|2√
NT

P−→ 0

and we conclude by Assumption 1 (i). For the operator norm, we use Assumption 1 (iv) and
∣∣∣|MX(E)|op − |E|op

∣∣∣ ≤ |PX(E)|op.

Proof of Proposition 5. Let us consider a cone with constant c. We work for any draw of X

and Γl and consider the matrices fixed. By the computations in the proof of Lemma 1,

|PX(∆)|2 ≤ |X|2
NT

∣∣∣∣∣∣

(
X⊤X

NT

)−1
∣∣∣∣∣∣
op

∣∣∣X⊤δ
∣∣∣
2
.

Also, for k ∈ {1, . . . ,K}, using the cone and the trace duality in the third display, we obtain

|〈Xk,∆〉| ≤ |〈Xk,PΓl (∆)〉| +
∣∣∣
〈
Xk,P⊥

Γl (∆)
〉∣∣∣

= |〈PΓl (Xk) ,PΓl (∆)〉| +
∣∣∣
〈

P⊥
Γl (Xk) ,P⊥

Γl (∆)
〉∣∣∣

≤ min
(
|PΓl (Xk)|op , |Xk|op

)
|PΓl (∆)|∗ +

∣∣∣P⊥
Γl (Xk)

∣∣∣
op

∣∣∣P⊥
Γl (∆)

∣∣∣
∗
,

hence

|PX(∆)|22 ≤
K∑

k=1

(
bk |PΓl (∆)|∗ + b⊥k

∣∣∣P⊥
Γl (∆)

∣∣∣
∗

)2
.

Also, by homogeneity, we have

κ2
Γl,c = 2rank

(
Γl
)

inf
∆∈C

Γl : |PΓl (∆)|
∗
=1

(
|∆|2 − |PX(∆)|22

)
.

Denote by {σk} and {σ⊥k} the singular values of PΓl (∆) and P⊥
Γl (∆). The rank of the first

(resp. the second) matrix is at most 2rank
(
Γl
)

(resp. pN ) so, by the Pythagorean theorem,

κ2
Γl,c ≥ 2rank

(
Γl
)

inf∑
k

σk=1

|σ|0≤2rank(Γl)∑
k

σ⊥k≤c

|σ⊥|0≤pN

σ≥0,σ⊥≥0


∑

k

σ2
k +

∑

k

σ2
⊥k −

K∑

k=1

(
bk + b⊥k

(∑

k

σ⊥k

))2
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= 1 + 2rank
(
Γl
)

inf∑
k

σ⊥k≤c

|σ⊥|0≤pN

σ⊥≥0


∑

k

σ2
⊥k −

K∑

k=1

(
bk + b⊥k

(∑

k

σ⊥k

))2

(43)

= 1 + 2rank
(
Γl
)

inf
0≤u≤c

inf∑
k

σ⊥k=u

|σ⊥|0≤pN

σ⊥≥0

(∑

k

σ2
⊥k −

K∑

k=1

(bk + b⊥ku)2

)

= 1 + 2rank
(
Γl
)

min
0≤u≤c

(
u2

pN
−

K∑

k=1

(bk + b⊥ku)2

)
.(44)

The degree 2 polynomial in the bracket has a minimum at u∗ given by u∗

(
1 − pN |b⊥|22

)
=

pN 〈b⊥, b〉. If pN |b⊥|22 ≥ 1 then the minimum is at 0 in which case κ2
Γl,c

≥ 1 − 2rank
(
Γl
)

|b|22,

else, if pN 〈b⊥, b〉 < c
(
1 − pN |b⊥|22

)
the minimum is at u∗ and

κ2
Γl,c ≥ 1 − 2rank

(
Γl
)


∣∣∣∣∣b+ b⊥

pN 〈b⊥, b〉
1 − pN |b⊥|22

∣∣∣∣∣

2

2

− pN 〈b⊥, b〉2

(
1 − pN |b⊥|22

)2


 ,

else, the minimum is at c and

κ2
Γl,c ≥ 1 − 2rank

(
Γl
)(

|b+ b⊥c|22 − c2

pN

)
.

Remark 5. Denoting by P⊥
A,U×V the operator defined like PA using annihilators which project

onto the orthogonal of the vector space spanned by the columns of A and U (resp. A and V )

for U and V such that the vector spaces have common dimension r (A,U × V ), noting that to

obtain (31) it is enough that Γ̃P⊥
Γ̃,U×V

(∆)⊤ = 0 and Γ̃⊤P⊥
Γ̃,U×V

(∆) = 0, the result of Theorem

1 holds replacing κ
Γ̃,c(ρ,ρ̃) by a compatibility constant replacing P⊥

Γ̃
by P⊥

Γ̃,U×V
, P

Γ̃
by P

Γ̃,U×V
,

everywhere rank
(
Γ̃
)

by r
(
Γ̃, U × V

)
, and with an infimum over U and V after the infimum

over Γ̃. The freedom over U and V allows to annihilate low-rank components of Xk if it has

an approximate factor structure and deliver constants b⊥k which are OP

(√
max(N,T )

)
.

Proof of Theorem 2. The first inequalities follow from Theorem 1 so we only prove (20). Due

to Assumption 1 (ii), w.p.a. 1, β̂ − β =
(
X⊤X

)−1
X⊤(γ − γ̂) +

(
X⊤X

)−1
X⊤e, also

∣∣∣X⊤(γ − γ̂)
∣∣∣
2

2
=

K∑

k=1

〈
Xk, Γ̂ − Γ

〉2
≤

K∑

k=1

|Xk|2op

∣∣∣Γ̂ − Γ
∣∣∣
2

∗
(by trace duality),

∣∣∣∣
(
X⊤X

)−1
X⊤(γ − γ̂)

∣∣∣∣
2

≤ 1

NT

∣∣∣∣∣∣

(
X⊤X

NT

)−1
∣∣∣∣∣∣
op

√√√√
K∑

k=1

|Xk|2op

∣∣∣Γ̂ − Γ
∣∣∣
∗
.
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By Assumption 1 and (18), we obtain

∣∣∣∣
(
X⊤X

)−1
X⊤(γ − γ̂)

∣∣∣∣
2

= OP (λNrNµN/(NT )). Next,

by (42), we have

∣∣∣∣
(
X⊤X

)−1
X⊤e

∣∣∣∣
2

= OP (1/
√
NT ). This yields the result.

Proof of Proposition 6. The proof techniques are similar to those in [17]. We make use of the

fact that if Z ∈ ∂| · |∗
(
Γ̃
)
, i.e., is of the form

Z =

rank
(

Γ̃
)

∑

k=1

uk

(
Γ̃
)
vk

(
Γ̃
)⊤

+M
u
(

Γ̃
)WM

v
(

Γ̃
),

for W such that |W |op ≤ 1, then

(45)
〈
Ẑ − Z, Γ̂ − Γ̃

〉
≥ 0

and, for a well chosen matrix W (see [17] page 2308),
〈
M

u
(

Γ̃
)WM

v
(

Γ̃
), Γ̃ − Γ̂

〉
= −

∣∣∣∣Mu
(

Γ̃
)Γ̂M

v
(

Γ̃
)
∣∣∣∣
∗

= −
∣∣∣P⊥

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗
.

Now, by (9) and (45), we obtain
〈
MX

(
Γ − Γ̂

)
, Γ̃ − Γ̂

〉

≤ λσ̂
〈
Z, Γ̃ − Γ̂

〉
−
〈
MX (E) , Γ̃ − Γ̂

〉

≤ λσ̂
∣∣∣P

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

∧
∣∣∣∣Pu
(

Γ̃
)
(
Γ̃ − Γ̂

)
P

v
(

Γ̃
)
∣∣∣∣
∗

− λσ̂
∣∣∣P⊥

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

−
〈
MX (E) , Γ̃ − Γ̂

〉
.(46)

We now use

2
〈
MX

(
Γ − Γ̂

)
, Γ̃ − Γ̂

〉
=
∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
+
∣∣∣MX

(
Γ̃ − Γ̂

)∣∣∣
2

2
−
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
(47)

and consider cases (1)
〈
MX

(
Γ − Γ̂

)
, Γ̃ − Γ̂

〉
≤ 0 and (2)

〈
MX

(
Γ − Γ̂

)
, Γ̃ − Γ̂

〉
> 0.

In case (1), due to (47), we have
∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
≤
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
, hence the result.

In case (2), we have

λσ̂
∣∣∣P⊥

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

≤ λσ̂
∣∣∣P

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

−
〈
MX (E) , Γ̃ − Γ̂

〉
,

thus, because ρλσ̂ ≥ |MX(E)|op, Γ̃ − Γ̂ ∈ C
Γ̃
. Moreover, by (47) and (46), we have

∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
+
∣∣∣MX

(
Γ̃ − Γ̂

)∣∣∣
2

2
+ 2λσ̂

∣∣∣P⊥

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

≤
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
+ 2λσ̂

∣∣∣P
Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

− 2
〈
MX (E) , Γ̃ − Γ̂

〉

≤
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
+ 2λσ̂

∣∣∣P
Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

+ 2ρλσ̂
(∣∣∣P

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

+
∣∣∣P⊥

Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗

)

and, by definition of κ
Γ̃,c(ρ)

,

∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
+
∣∣∣MX

(
Γ̃ − Γ̂

)∣∣∣
2

2
≤
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
+ 2λ(1 + ρ)σ̂

∣∣∣P
Γ̃

(
Γ̃ − Γ̂

)∣∣∣
∗
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≤
∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
+ 2λ(1 + ρ)σ̂

√
2rank

(
Γ̃
)

κ
Γ̃,c(ρ)

∣∣∣MX

(
Γ̃ − Γ̂

)∣∣∣
2
,

hence

1

NT

∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
≤ 1

NT

∣∣∣MX

(
Γ − Γ̃

)∣∣∣
2

2
+

2(λ(1 + ρ)σ̂)2

NT

rank
(
Γ̃
)

κ2

Γ̃,c(ρ)

.

Proof of Proposition 7. (9) yields, for all k = 1, . . . , rank
(
Γ̂
)
,

uk

(
Γ̂
)⊤

MX

(
Γl − Γ̂

)
vk

(
Γ̂
)

= λσ̂ − uk

(
Γ̂
)⊤

MX

(
Γd + E

)
vk

(
Γ̂
)

= λσ̂ −
〈
MX

(
Γd + E

)
, uk

(
Γ̂
)
vk

(
Γ̂
)⊤
〉
,

≥ λ(1 − ρ)σ̂ −
∣∣∣Γd
∣∣∣
op
,

and, by summing the inequalities,

(48)

〈rank
(

Γ̂
)

∑

k=1

u
(
Γ̂
)

k
v
(
Γ̂
)⊤

k
, P

u
(

Γ̂
)MX

(
Γl − Γ̂

)
P

v
(

Γ̂
)
〉

≥
(
λ(1 − ρ)σ̂ −

∣∣∣Γd
∣∣∣
op

)
rank

(
Γ̂
)
,

thus ∣∣∣∣Pu
(

Γ̂
)MX

(
Γl − Γ̂

)
P

v
(

Γ̂
)
∣∣∣∣
2

≥
(
λ(1 − ρ)σ̂ −

∣∣∣Γd
∣∣∣
op

)√
rank

(
Γ̂
)
.

Proposition 11.

Proposition 11. Let m =

(
|X|op

NT

∣∣∣∣
(

X⊤X
NT

)−1
∣∣∣∣
op

)2 (∑K
k=1 |Xk|2op

) (
rank (Γ) + rank

(
Γ̂
))
, we

have
∣∣∣PX

(
Γ − Γ̂

)∣∣∣
2

2
≤ m

(1 −m)+

∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
,
∣∣∣Γ − Γ̂

∣∣∣
2

2
≤
(

1 +
m

(1 −m)+

) ∣∣∣MX

(
Γ − Γ̂

)∣∣∣
2

2
.

Proof. By Theorem C.5 in [12], the definition of PX , and the computations in the proof of

Theorem 2, we have, w.p.a. 1,

∣∣∣PX

(
Γ − Γ̂

)∣∣∣
2

2
≤




|X|op

NT

∣∣∣∣∣∣

(
X⊤X

NT

)−1
∣∣∣∣∣∣
op




2 (
K∑

k=1

|Xk|2op

)
rank

(
Γ − Γ̂

) ∣∣∣Γ̂ − Γ
∣∣∣
2

2
≤ m

∣∣∣Γ̂ − Γ
∣∣∣
2

2
.

We conclude by the Pythagorean theorem. �

Proof of Proposition 8. By (9), we have Γl − Γ̂ =
∑K

k=1

(
β̂k − βk

)
Xk −Γd −E+λN σ̂Ẑ, hence

∣∣∣Γ − Γ̂
∣∣∣
op

≤
∣∣∣β̂ − β

∣∣∣
2

√√√√
K∑

k=1

|Xk|2op +
∣∣∣Γd
∣∣∣
op

+ |E|op + λN σ̂

and we conclude using Theorem 2 and Assumption 2 (ii).
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Proof of Proposition 9. The Weyl’s inequality, yields, for k ∈ {1, . . . ,min(N,T )},
∣∣∣σk

(
Γl
)

− σk

(
Γ̂
)∣∣∣ ≤

∣∣∣Γl − Γ̂
∣∣∣
op
.

This implies, for k ≤ rank
(
Γl
)
,

(49) σk

(
Γ̂
)

≥ σk

(
Γl
)

−
∣∣∣Γl − Γ̂

∣∣∣
op

and, for k > rank
(
Γl
)
,

(50) σk

(
Γ̂
)

≤
∣∣∣Γl − Γ̂

∣∣∣
op
.

By Assumption 5 (i) and Proposition 8, we have P

(∣∣∣Γl − Γ̂
∣∣∣
op

≤ (ρ+ 1)λNhσ

)
→ 1. By

Theorem 2 and λ2
NrN = o(NT ), we obtain P ((ρ+ 1)λNhσ < t) → 1 and, by (50),

(51) P

(
∀k > rank

(
Γl
)
, t > σk

(
Γ̂
))

→ 1.

By Assumption 5 (ii), we have P

(
σk

(
Γl
)

−
∣∣∣Γl − Γ̂

∣∣∣
op

≤ (ρ+ 1)λNh
3σ

)
→ 1. By Theorem

2 and λ2
NrN = o(NT ), we obtain P

(
t < (ρ+ 1)λNh

3σ
) → 1 and, by (49),

(52) P

(
∀k ≤ rank

(
Γl
)
, t < σk

(
Γ̂
))

→ 1.

Combining (51) and (52), we obtain the first result. The other results are obtained similarly.

Proof of Proposition 10. Because

∣∣∣∣Mv
(

Γ̂t

) −Mv(Γl)

∣∣∣∣
2

2
=

∣∣∣∣Pv
(

Γ̂t

) − Pv(Γl)

∣∣∣∣
2

2
= rank

(
Γ̂t
)

+ rank
(
Γl
)

− 2

rank(Γl)∑

k=1

vk

(
Γl
)⊤

P
v
(

Γ̂t

)vk

(
Γl
)
,

= rank
(
Γ̂t
)

− rank
(
Γl
)

+ 2

rank(Γl)∑

k=1

vk

(
Γl
)⊤

M
v
(

Γ̂t

)vk

(
Γl
)

∣∣∣∣ΓlM
v
(

Γ̂t

)
∣∣∣∣
2

2
=

rank(Γl)∑

k=1

σk

(
Γl
)2
vk

(
Γl
)⊤

M
v
(

Γ̂t

)vk

(
Γl
)
,

the result follows from
∣∣∣∣Mv

(
Π̂t

v

) −Mv(Πl
v)

∣∣∣∣
2

2
≤
∣∣∣rank

(
Γ̂t
)

− rank
(
Γl
)∣∣∣+ 2

σrank(Γl) (Γl)
2

∣∣∣∣Γ
lM

v
(

Γ̂t

)
∣∣∣∣
2

2

≤
∣∣∣rank

(
Γ̂t
)

− rank
(
Γl
)∣∣∣+ 2

σrank(Γl) (Γl)
2

∣∣∣Γl − Γ̂t
∣∣∣
2

op

∣∣∣∣Mv
(

Γ̂t

)
∣∣∣∣
2

2

≤ oP (1) + 2rN


(ρ+ 1)λN (h2 + 1) (σ + oP (1))

σrank(Γl) (Γl)




2

.
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Proof of Theorem 3. Using that M
u
(

Π̂t
u

) and M
v
(

Π̂t
v

) are self-adjoint, a solution to (25) sat-

isfies, for l = 1, . . . ,K,

〈
M

u
(

Π̂t
u

)XlMv
(

Π̂t
v

), Y −∑K
k=1 β̃

(1)
k Xk

〉
= 0, hence

〈
Mu(Πl

u)XlMv(Πl
v),Γ

d + E +
K∑

k=1

(
βk − β̃

(1)
k

)
Xk

〉

=

〈(
Mu(Πl

u) −M
u
(

Π̂t
u

)
)
XlMv(Πl

v),Γ
d + E +

K∑

k=1

(
βk − β̃

(1)
k

)
Xk

〉

+

〈
Mu(Πl

u)Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Γd + E +

K∑

k=1

(
βk − β̃

(1)
k

)
Xk

〉

−
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Γ + E +

K∑

k=1

(
βk − β̃

(1)
k

)
Xk

〉
,

so

K∑

k=1

(
βk − β̃

(1)
k

)(〈
Mu(Πl

u)XlMv(Πl
v),Xk

〉
−
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
XlMv(Πl

v),Xk

〉

−
〈
Mu(Πl

u)Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Xk

〉

+

〈(
Mu(Πl

u) −M
u
(

Π̂t
u

)
)
Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Xk

〉)

= −
〈
Mu(Πl

u)XlMv(Πl
v),Γ

d + E
〉

+

〈(
Mu(Πl

u) −M
u
(

Π̂t
u

)
)
XlMv(Πl

v),Γ
d + E

〉

+

〈
Mu(Πl

u)Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Γd + E

〉

−
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Γ + E

〉
.(53)

Let us show that
〈
Mu(Πl

u)XlMv(Πl
v),Xk

〉
, which by Assumption 9 (v) diverges like NT , is the

high-order term multiplying
(
βk − β̃

(1)
k

)
in (53). This also yields the consistency of the estima-

tor of the covariance matrix. By self-adjointness of the projections, Theorem C.5 in [12], and

Proposition 9 with the modifications of Section 4.7 which imply rank

(
Mu(Πl

u) −M
u
(

Π̂t
u

)
)

≤
2rN w.p.a. 1, denoting, for a matrix M and r ∈ N by |M |22,r =

∑r
k=1 σk(M)2, we have,

∣∣∣∣
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
XlMv(Πd

v),Xk

〉∣∣∣∣

≤ (1 + oP (1))

∣∣∣∣Mu(Πl
u) −M

u
(

Π̂t
u

)
∣∣∣∣
2

∣∣∣XlMv(Πl
u)X

⊤
k

∣∣∣
2,2rN

≤
(√

2rN + oP (1)
) ∣∣∣∣Mu(Πl

u) −M
u
(

Π̂t
u

)
∣∣∣∣
2

∣∣∣XlMv(Πl
v)

∣∣∣
op

∣∣∣XkMv(Πl
v)

∣∣∣
op
,
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hence, by Proposition 10 with the modifications of Section 4.7,
∣∣∣∣
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
XlMv

(
Π̂t

v

),Xk

〉∣∣∣∣

≤ 2(ρ+ 1)rNλN

vN

(
(h2 + 1)σ̃ + oP (1)

) ∣∣∣
(
Πd

l + Ul

)
Mv(Πl

v)

∣∣∣
op

∣∣∣
(
Πd

k + Uk

)
Mv(Πl

v)

∣∣∣
op
.

We treat similarly

∣∣∣∣
〈
Mu(Πl

u)Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Xk

〉∣∣∣∣, and, for the fourth term, use that

∣∣∣∣
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Xk

〉∣∣∣∣

≤
∣∣∣∣
(
Mu(Πl

u) −M
u
(

Π̂t
u

)
)
Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)∣∣∣∣

∗
|Xk|op

≤
(√

2rN + oP (1)
) ∣∣∣∣
(
Mu(Πl

u) −M
u
(

Π̂t
u

)
)
Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)∣∣∣∣

2
|Xk|op

≤
(√

2rN + oP (1)
) ∣∣∣∣Mu(Πl

u) −M
u
(

Π̂t
u

)
∣∣∣∣
op

∣∣∣∣Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)∣∣∣∣

2
|Xk|op

≤
(√

2rN + oP (1)
) ∣∣∣∣Mu(Πl

u) −M
u
(

Π̂t
u

)
∣∣∣∣
2

|Xl|op

∣∣∣∣Mv(Πl
v) −M

v
(

Π̂t
v

)
∣∣∣∣
2

|Xk|op

≤ (ρ+ 1)2(2rN )3/2λ2
N

v2
N

(
(h2 + 1)2σ̃2 + oP (1)

)
|Xl|op|Xk|op,

where we use Proposition 9 in the third display and Proposition 10 (with the modifications

of Section 4.7) in the last display. Let us consider now the quantities on the right-hand side

in (53). Proceeding like above, we have
∣∣∣∣
〈(

Mu(Πl
u) −M

u
(

Π̂t
u

)
)
XlMv(Πl

v),Γ
d + E

〉∣∣∣∣

≤ (1 + oP (1))

∣∣∣∣Mu(Πl
u) −M

u
(

Π̂t
u

)
∣∣∣∣
2

∣∣∣∣XlMv(Πl
v)

(
Γd + E

)⊤
∣∣∣∣
2,2rN

≤ 2(ρ+ 1)rNλN
(
(h2 + 1)σ̃ + oP (1)

)

vN

(
ρλNσ +

∣∣∣ΓdMv(Πl
v)

∣∣∣
op

)(
ρλNσl +

∣∣∣Πd
lMv(Πl

v)

∣∣∣
op

)

and treat similarly

〈
Mu(Πl

u)Xl

(
Mv(Πl

v) −M
v
(

Π̂t
v

)
)
,Γd + E

〉
. With the same arguments,

the absolute value of the last term of (53) is smaller than

(ρ+ 1)
√

2(2rN )3/2λ2
N

(
(h2 + 1)2σ̃2 + oP (1)

)

v2
N

|Xl|op

(
|Γ|op + ρλN (h2 + 1)σ̃ + oP (1)

)
.

Let us now look at the first terms on the left-hand side and on the right-hand side of (53).

By (iv), for all k, l ∈ {1, . . . ,K},
〈
Mu(Πl

u)XlMv(Πl
v),Xk

〉
=
〈
Mu(Πl

u)UlMv(Πl
v), Uk

〉
+ oP (NT )

so, by (v),
〈
Mu(Πl

u)XlMv(Πl
v),Xk

〉
are the high-order terms on the left-hand side of (53). Sim-

ilarly, by (iv), the high-order terms on the right-hand side of (53) are
〈
Mu(Πl

u)UlMv(Πl
v), E

〉
.
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As a result, β̃(1) is asymptotically equivalent to the ideal estimator β

(54) β ∈ argmin
β∈RK

∣∣∣∣∣P
⊥
Πl

(
Y −

K∑

k=1

βkUk

)∣∣∣∣∣

2

2

.

Hence, w.p.a. 1, β−β =
(
P⊥

Πl(U)⊤P⊥
Πl(U)

)−1
P⊥

Πl(U)⊤e and we conclude by usual arguments.

To obtain the first part of the second statement we use that U⊤U − P⊥
Πl(U)⊤P⊥

Πl(U) is sym-

metric positive definite. It is clearly symmetric. The positive definiteness follows from the

following computations. Let b ∈ R
K , we have

∑

k,l

bkbltr
(
U⊤

k Ul

)
≥
∑

k,l

bkbltr
(
Mv(Πl

v)U
⊤
k Ul

)

=
∑

k,l

bkbltr
(
Mv(Πl

v)U
⊤
k Mu(Πl

v)UlMv(Πl
v)

)
+
∑

k,l

bkbltr
(
Mv(Πl

v)U
⊤
k Pu(Πl

v)UlMv(Πl
v)

)

≥
∑

k,l

bkbltr
(
P⊥

Πl(Uk)⊤P⊥
Πl(Ul)

)
.

Because U⊤U has a fixed dimension, all norms are equivalent and
∣∣∣U⊤U − P⊥

Πl(U)⊤P⊥
Πl(U)

∣∣∣
op

≤
tr
(
U⊤U − P⊥

Πl(U)⊤P⊥
Πl(U)

)
= |PΠl(U)|22 = oP (|U |22). We conclude using that |U |22 ≤ K

∣∣∣U⊤U
∣∣∣
op

.

Also, from the above, P⊥
Πl(U)⊤P⊥

Πl(U) = P⊥
Πl(U)⊤P⊥

Πl(U) + M where M is a smaller order

term by condition (iv). We obtain the last part of the second statement using the next lemma.

Lemma 2. Assume U and (Πl
u,Π

l
v) are independent, and E

[
max

(
rank

(
Πl

u

)
, rank

(
Πl

v

))]
=

o
(√

min(N,T )
)
, then |PΠl(U)|22 /(NT ) = oP (1), hence P⊥

Γr (U)⊤P⊥
Γr (U)/(NT )

P−→ E

[
U⊤U

]
.

Proof. We prove that, for k ∈ {1, . . . ,K}, |PΠl(Uk)|22 /(NT ) converges to 0 in L1. This relies

on (26) and the facts that Mu(Πl) is a contraction for the Euclidian norm and

E

[∣∣∣UkPv(Πl)

∣∣∣
2

2

]
= E

[
E

[∣∣∣UkPv(Πl)

∣∣∣
2

2

∣∣∣Πl
u,Π

l
v

]]

= E

[
E

[
N∑

i=1

∣∣∣Ui·Pv(Πl)

∣∣∣
2

2

∣∣∣Πl
u,Π

l
v

]]
= NE

[
rank

(
Πl

v

)]
u2 = o(NT )

and similarly for E

[∣∣∣Pu(Πl)Uk

∣∣∣
2

2

]
. By the arguments in the previous proof U⊤U/(NT ) and

P⊥
Γr (U)⊤P⊥

Γr (U)/(NT ) have same limit, hence the result by the law of large numbers. �
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