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Abstract

Aims

Increased visceral adipose tissue and dysbiosis in the overweight and obese promote

chronic inflammation. The aim of this study was to compare the effects of moderate-intensity

continuous training (MICT) and high-intensity interval training (HIIT) on the gut-adipose tis-

sue cross-talk in obese Zucker rats.

Methods

Obese male Zucker rats (n = 36) were divided in three groups: MICT (12m.min-1 for 51min),

HIIT (6 sets at 18 m.min-1 for 4min followed by 3min at 10m.min-1) and controls (CONT; no

exercise). The animals ran on a treadmill 5 days/week for 10 weeks. Body composition, gly-

caemic control, lipid profile, inflammation, lipolysis signalling in subcutaneous and visceral

adipose tissue, intestinal permeability (tight junctions and plasma lipopolysaccharide bind-

ing protein; LBP), and gut microbiota composition were assessed in the three groups.

Results

After 10 weeks of exercise, total and epididymal fat mass decreased only in the HIIT group.

The α/β adrenergic receptor RNA ratio in subcutaneous adipose tissue increased only in the

HIIT group. The expression level of phosphorylated hormone-sensitive lipase was not modi-

fied by training. Both HIIT and MICT decreased inflammation (plasma myeloperoxidase and

keratinocyte-derived chemokine secretion in adipose tissue) and improved glucose metabo-

lism. Zonula occludens-1 and occludin were upregulated in the HIIT group. Plasma LBP
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was similarly reduced in both training groups. HIIT and MICT did not affect gut microbiota

composition.

Conclusion

In obese Zucker rats, HIIT and MICT improved inflammation and glucose metabolism. In

contrast, only HIIT decreased total and visceral fat mass. These adaptations were not asso-

ciated with modifications in gut microbiota composition.

Introduction

Obesity has dramatically increased worldwide in recent decades and is now a critical health

problem. In 2014, 1.9 billion people were overweight and among them 600 million were obese

in developed and developing countries [1]. Obesity is characterized by a low-grade inflamma-

tion state [2,3]. Abdominal fat mass (FM), especially visceral FM, is associated with metabolic

disorders and inflammatory state to a greater extent than total and subcutaneous FM [4]. Vis-

ceral FM is characterized by a greater secretory activity (free fatty acids, TNF-α, IL-6, IL-8,

etc.) that promotes insulin resistance, chronic low-grade inflammation and risks of cardiovas-

cular disease [5,6].

More recently, gut microbiota has been recognized as a major actor in pathological condi-

tions associated with obesity and its related complications [7,8]. This relationship was con-

firmed by increased adiposity in germ-free mice after faecal microbiota transplant from obese

mice (ob/ob) [9]. Moreover, a reduced microbial diversity and dysbiosis (i.e., a microbial

imbalance, characterized by an alteration in the Bacteroidetes/Firmicutes ratio) have been

observed in overweight or obese individuals [10] and in animal models of obesity [11]. Gut

microbiota is an exteriorized organ that can interact directly with other organs. Butyrate, pro-

pionate and acetate, the main short-chain fatty acids (SCFAs) produced by microbial fermen-

tation, favourably influence the host metabolism by producing anorexigenic hormones via

colonic epithelial cells [12,13], increasing the energy expenditure [14] and reducing inflamma-

tion [15]. High-fat diets induce dysregulation of intestinal permeability, promoting an increase

in plasma lipopolysaccharide (LPS) (i.e., a constituent of Gram-negative bacteria), a condition

defined as metabolic endotoxemia [16], and triggering inflammation and insulin resistance

[17].

Regular physical activity, alone or combined with energy restriction, is an effective way to

prevent and/or reduce excess adiposity [18]. Traditionally, Moderate Intensity Continuous

Training (MICT) is recommended for the overweight or obese. However, this exercise modal-

ity has little effect on weight and FM loss [19,20]. In the last few years, High Intensity Interval

Training (HIIT) has grown in popularity as a time-efficient and powerful strategy to reduce

total and abdominal/visceral FM [21,22]. Adrenergic receptors (α/β AR ratio) are probably

involved in such adaptations, but other, still unknown mechanisms could contribute to FM

loss. In this context, modulation of gut microbiota composition by physical activity is an inter-

esting hypothesis. Numerous studies have demonstrated that moderate-intensity training can

favourably alter gut microbiota composition in humans [23] and in animal models [24–31].

Most studies with rodents used MICT protocols that involve treadmill running or spontaneous

activities on a running wheel. Only two studies investigated the effects of HIIT on gut micro-

biota composition. Batacan et al. found slight differences in gut microbiota phylotype in Wis-

tar rats after MICT and HIIT without any association with FM loss [32]. Similarly, despite

HIIT, fat mass loss and microbiota
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changes in gut microbiota composition, Denou et al. detected no FM loss after HIIT in

C57BL/6 mice [33].

The aim of the present study therefore was to compare the effect of HIIT and MICT pro-

grammes on total and visceral FM loss in Zucker rats, a genetic model of obesity. We hypothe-

sized that HIIT is more effective than MICT in decreasing total and visceral FM. We also

aimed to determine whether gut microbiota modulation is involved in the reduction of the

amount of adipose tissue, and whether the metabolic and inflammatory profiles are improved

more effectively by HIIT than by MICT.

Material and methods

Ethical approval

The experimental protocol was approved by the “Comité d’éthique en expérimentation ani-

male” of Auvergne (C2EA-02, approval number: 3075–2015120813375547) and was in accor-

dance with the current legislation on animal experimentation (Guide for the care and use of

laboratory animals, Eighth edition 2011). All efforts were made to protect animal welfare and

to minimize suffering at each step of the protocol. The animals were sacrificed by cervical dis-

location following isoflurane anaesthesia.

Animals

Seventy-five 8-week-old male Zucker rats from Charles River Laboratories were individually

housed with a reversed light-dark cycle in a temperature-controlled room (21˚C). After 1 week

of treadmill acclimatization, rats most proficient at running were selected and randomly

assigned to one of the three groups: HIIT (n = 12), MICT (n = 12) or CONT (no exercise)

(n = 12).

Exercise training

Exercise training was performed on a motorized treadmill at 0˚ inclination 5 days/week (Mon-

day to Friday) for 10 weeks. Both groups started with a warm-up at 10 m.min-1 for 5min. In

the HIIT group, rats ran 6 sets of 4min at 18m.min-1 followed by 3min at 10m.min-1. In the

MICT group, animals ran at 12m.min-1 for 51min. The protocols were originally designed to

have the same total running distance for all groups, as proposed by Metz et al. 2005 [34],

Kapravelou et al. 2015 [35] and Haram et al. 2009 [36]. CONT rats were placed in the training

room during the sessions to expose them to the same environment and for the same time as

the HIIT and MICT groups.

Food intake, weight and body composition

Food (3% fat, 16% protein, 60% carbohydrates, 5% minerals, and 4% fibres; SAFE A04, France)

and water were provided ad libitum. Food intake was recorded once a week (on Thursday).

Weight was recorded weekly during the 10 weeks of training (W0 to W10). At week 0, 2, 5,

8 and 10, body composition was measured by MRI (Echo Medical Systems, Houston, TX), and

epididymal fat pads were weighed post-mortem.

Indirect calorimetry

At week 10 (end of the training), the rats were placed in indirect calorimetric cages (TSE Sys-

tems, Bad Homburg, Germany) for 48h (24h of familiarization and 24h of measurements)

with ad libitum access to food and water. Metabolic measurements (O2 and CO2 consumption,

food intake and spontaneous activity) were recorded. The respiratory exchange ratio (RER)

HIIT, fat mass loss and microbiota
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was determined as the ratio of produced CO2 (VCO2) over consumed O2 (VO2). Data were

analysed over 24h, and in 12h-light and 12h-dark conditions.

Oral Glucose Tolerance test (OGTT)

OGTTs were performed at the beginning and at the end of the study. After 6h of fasting fol-

lowed by oral gavage of glucose (4.0 g.kg lean mass-1), glycaemia was monitored with a gluc-

ometer (Accu-chek Performa, Roche Diagnostics, Basel, Switzerland) and tail blood samples

taken at 15, 30, 60, 90 and 120min post-gavage. The area under the curve for glucose (AUC)

and the netAUC (after subtraction of the baseline glucose concentration) were calculated. The

homeostatic model assessment for insulin resistance (HOMA-IR) index was used to assess IR

as follows: fasting insulin (mU.L-1) × fasting glucose (mmol.L-1)/ 22.5 [37]

Post-mortem blood samples and plasma measurements

At the end of the study, blood was collected and centrifuged at 2000g for 10min for plasma sep-

aration. All samples were frozen at -80˚C until analysis. Plasma insulin was measured with the

Ultrasensitive Insulin ELISA Kit (ALPCO, Salem, NH, USA). Lipid profile was determined by

quantifying plasma lipoproteins and lipids with commercial kits following the manufacturers’

instructions: triglycerides (Max Discovery, Austin, USA), LDL (Crystal Chem, Downers

Grove, USA), HDL (Crystal Chem, Downers Grove, USA) and total cholesterol (Max Discov-

ery, Austin, USA). LBL plasma level was measured with the LBP ELISA Kit for various species

(Hycult Biotech, Netherland) following the manufacturer’s instructions.

Plasma myeloperoxidase (MPO), and cytokine and free fatty acid (FFA)

release from adipocytes

Plasma MPO concentration was measured using a commercial ELISA Kit (R&D Systems).

At the end of the study, adipose tissue was collected and a known amount of each fat pad

(subcutaneous and visceral) was placed in Dulbecco’s Modified Eagle Medium (DMEM) with

antibiotics (50mg.ml-1 gentamicin) or in KBEBS-Ringer’s solution (pH = 7.4). After overnight

incubation at 37˚C, 5% CO2, samples were centrifuged and supernatants frozen at -80˚C. Cyto-

kines (KC and IL-6) secreted by tissues were quantified in these supernatants diluted in

reagent diluent (1% BSA) using an ELISA Kit (R&D systems). FFA were analysed with a com-

mercial kit (Wako Chemicals, Richmond, USA), according to the manufacturer’s instructions.

Microbiota composition analysis

Rat colons were transferred in ZR BashingBead Lysis Tubes (0.1 & 0.5 mm, Zymo Research)

with lysis buffer (Maxwell RSC Buffy Coat DNA) and homogenized using a Precellys homoge-

niser (2X 15 seconds followed by 2min rest). Lysis tubes were centrifuged at 14000g at 4˚C for

3min, and supernatants were collected in new tubes and centrifuged again to ensure that all

beads were removed. The supernatants were then placed in cartridges in Maxwell RSC Instru-

ment (Promega) to extract DNA. DNA concentration was determined by Qubit Fluorometric

Quantitation (Invitrogen) and DNA quality was assessed by spectrophotometry (260/280 and

260/230 ratios, Nanodrop). The variable regions V3-V4 of bacterial 16S rRNA genes were

amplified from the purified DNA using the following primers: Forward CTTTCCCTACACG
ACGCTCTTCCGATCTACGGRAGGCAGCAG, and Reverse GGAGTTCAGACGTGTGCTCT
TCCGATCTTACCAGGGTATCTAATCCT. All PCR amplifications were performed with MTP

Taq DNA Polymerase and 10X MTP Taq Buffer (Sigma, D7442-1500U) and the following

cycling conditions: 94˚C for 1min, followed by 30 cycles of 94˚C for 1min, 65˚C for 1min, and

HIIT, fat mass loss and microbiota
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72˚C for 1min, and a final elongation step at 72˚C for 10min. Illumina sequencing was per-

formed in collaboration with the GeT core facility (Toulouse). Paired-end read assembly, qual-

ity and length filtering, OTU picking (97% sequence identity threshold) and chimera removal

were performed with UPARSE [38]. OTUs with low counts (<0.1% of the total number of

sequences per sample) were excluded. Sequences of samples with over 6000 reads were loaded

into the QIIME 1.9.1 pipeline for diversity analysis [39]. Taxonomy assignment was performed

with the SILVA database 132 (https://www.arb-silva.de/). Alpha diversity of bacterial commu-

nities was assessed from four different indexes including richness and/or evenness (Chao1,

Shannon, Simpson and evenness). The Kruskal–Wallis test was used to estimate alpha diversity

differences between groups. Beta diversity was used to analyse the dissimilarity between the

groups’ membership and structure. Accordingly, abundance-weighted and/or phylogenetic-

weighted distance matrices were generated on the basis of Bray-Curtis and weighted/

unweighted UniFrac distances and reported according to principal coordinate analysis

(PCoA). Permutational analysis of variance (PERMANOVA with 999 permutations) was used

to determine significant differences between groups. Significance testing for taxon abundance

was performed with a Wilcoxon rank sum test and the Bonferroni procedure to correct p-val-

ues. P-values�0.05 were considered significant.

Faecal short-chain fatty acid (SCFA) concentration

Weighted faecal samples were reconstituted in 200μl Milli-Q water, disrupted, incubated at

4˚C for 2h and centrifuged at 12000g at 4˚C for 15min. Supernatants were weighed and satu-

rated phosphotungstic acid solution was added (1g for 100μL). After overnight incubation at

4˚C, samples were centrifuged again and SCFA concentrations were determined by gas chro-

matography (Nelson 1020, Perkin-Elmer, St Quentin en Yvelines, France) as previously

described [40].

Protein extraction and western blotting

Adipose tissue (subcutaneous and visceral) and colon samples were homogenized in 500μl of

lysis buffer (Tris 25mM, EDTA 1mM, EGTA 5mM, MgCl2 0.1mM, Glycerol 10%, NaCl

150mM, Nonidet P-40 1%, SDS 1%) supplemented with freshly added protease inhibitor cock-

tail (cOmplete, Mini, EDTA-free Protease Inhibitor Cocktail, Roche), Sodium Orthovanadate

(1mM), PMSF (1mM) and N-Ethylmaleimide (5mM). The homogenates were then centri-

fuged at 10 000 rpm at 4˚C for 5min. A small aliquot (20μl) was used for protein concentration

with the DC Protein Assay (Bio-Rad, USA). The rest was frozen at -80˚C until use.

Proteins were separated on 12% SDS-PAGE gels, transferred to nitrocellulose membranes,

and blocked with 5% BSA in Tris buffered saline (pH 8) containing 0.05% Tween 20 (TBST) at

room temperature under agitation for 1h. Membranes were then incubated with diluted pri-

mary antibodies against phospho-HSL (Cell Signaling Technology), occludin (1:500 dilution;

33–1500; Invitrogen) or ZO-1 (1:500 dilution; 61–7300; Invitrogen) at 4˚C under agitation

overnight. After three washes with TBST, membranes were incubated with secondary antibod-

ies in TBST at room temperature under agitation for 1h. Antibody interactions were detected

with the Enhanced Chemiluminescence Detection Kit (Amersham Biosciences, RPN2108) fol-

lowed by the Bio-Rad ChemiDoc imaging system. Data for pHSP were normalised to total pro-

tein loading using the Stain-Free Blot system (Bio-Rad, USA). ZO-1 and occludin protein

contents were normalised to GAPDH expression. Band densities were analysed with Image J

software.

HIIT, fat mass loss and microbiota
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Quantitative Real-Time PCR

Total RNA was extracted from adipose tissues using TRIzol (Invitrogen, Life Technologies) and

was reverse transcribed using the High Capacity cDNA Transcription Kit (Applied Biosystems,

Life Technologies). Expression of the genes encoding α AR and β AR was analysed with the

SYBR Green qPCR Master Mix (applied biosystems) and a CFX Bio-Rad system. The fold induc-

tion was calculated using the Ct method as follows: ΔΔCt = (Cttarget gene- Cthousekeeping gene) treatment

- (Cttarget gene- Cthousekeeping gene)nontreatment, and the final data were derived from 2−ΔΔCT.

Statistical analysis

All statistical analyses were performed with Statistica software (version 12). Data were pre-

sented as the mean ± standard deviation (SD). Normal data distribution was tested using the

Kolmogorov–Smirnov test and the homogeneity of variance from the F-test. In the absence of

normal distribution or variance homoscedasticity, the data were log-transformed before analy-

sis. A one-way ANOVA (group effect) or ANOVA with repeated measures was used to deter-

mine significances (time (T) and group (G) effects & G x T interactions), followed by a

Newman–Keuls post-hoc test when a significant effect was found. To assess beta- diversity,

distance matrices between samples were generated on the basis of Bray-Curtis and weighted/

unweighted UniFrac distances and reported according to principal coordinate analysis

(PCoA). Analyses and graphical outputs were performed in R version 3.3.2. Differences with a

p value�0.05 were considered statistically significant.

Results

HIIT is a time- efficient strategy to decrease total and epididymal fat mass

After 1 week of treadmill acclimatization, adult Zucker rats were randomly divided in three

groups: HIIT (n = 12), MICT (n = 12) or CONT (no exercise) (n = 12). No significant differ-

ence in food intake between groups was observed during the study period (Fig 1).

Despite our attempt to match running distances between groups, rats in the MICT group

ran greater distances (23.3 ± 1.1 vs 21.4 ± 2.3 km) (p�0.05) and for a longer time (1941 ± 88

vs 1510 ± 114 min) (p�0.001) than rats in the HIIT group. After 10 weeks of training, body

Fig 1. Weekly food intake. Data are expressed as the mean ± SD.

https://doi.org/10.1371/journal.pone.0214660.g001
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weight and total lean mass were comparable between groups (Fig 2A and 2B). However, total

FM was lower in the HIIT than in the CONT group at week 5 (p�0.05) and week 8 (p�0.01),

and in the HIIT group than in the MICT group at the end of the training protocol (p�0.05)

(Fig 2C). At the end of the study, epididymal (visceral) adipose tissue was reduced only in the

HIIT group (p�0.05) (Fig 2D).

Gut microbiota composition and faecal short chain fatty acid

concentration are not modified by exercise training

To investigate the effect of the two exercise modalities on gut microbiota composition, the

eubacterial 16S rRNA genes present in colon tissue were sequenced. All alpha diversity indexes

(only Chao1 index is shown in Fig 3A) did not show any significant difference in species rich-

ness between the three groups at the end of the training programme (week 10). Beta-diversity

analysis based on the uniFrac distance coupled with principal coordinate analysis (PCoA)

showed no clustering of samples (Fig 3B). Univariate analysis of the abundance of major tax-

ons (relative abundance >1%) %) identified no significant differences between groups. Simi-

larly, the faecal concentrations of the major SCFAs (butyrate, acetate and propionate) were not

significantly different in the three groups (Fig 3C).

HIIT stimulates tight junction protein synthesis more efficiently than

MICT, but both training modalities decrease plasma lipopolysaccharide

binding protein (LBP)

At the end of the training programme, zonula occludens-1 (ZO-1) (MICT vs CONT; p�0.05

and HIIT vs CONT; p�0.005) and occludin (MICT vs CONT; p� 0.01 and HIIT vs CONT;

Fig 2. Effect of 10 weeks of exercise training on weight and body composition. Body weight (A), total lean mass (B), total fat mass (C) and epididymal fat

mass (D). Data are expressed as the mean ± SD. § p�0.05 CONT vs. HIIT; § § p�0.01 CONT vs. HIIT £ p�0.05 HIIT vs. MICT and �p�0.05.

https://doi.org/10.1371/journal.pone.0214660.g002
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p�0.001) were upregulated in both training groups, particularly in the HIIT group (Fig 4A,

4B and 4C). In addition, occludin expression level was significantly correlated with epididymal

adipose tissue depots (r = -0.5; p�0.05) and total FM change (FM at week 10—FM at baseline)

(r = -0.4; p�0.05). Occludin and ZO-1 were also negatively related to IL-6 secretion in epidid-

ymal adipose tissue (r = -0.4, p�0.05 for both). Finally, expression of LBP (a marker of obesity

[41,42] and metabolic endotoxemia [43]) was reduced by about 50% in both HIIT and MICT

groups (p� 0.01 vs CONT) (Fig 4D).

MICT and HIIT induce anti-inflammatory effects at the systemic and

adipose tissue levels

At the end of the training programme (week 10), secretion of free fatty acids (FFA) was

reduced in subcutaneous adipocytes (p�0.05 HIIT and MICT vs CONT), but not in the epi-

didymal tissue (Fig 5A and 5B). Conversely, keratinocyte-derived chemokine (KC) secretion

was reduced in the epididymal adipose tissue (p�0.05 HIIT and MICT vs CONT), but not in

subcutaneous adipocytes (Fig 5C and 5D). On the other hand, IL-6 secretion in the two types

of adipose tissue was not significantly different from that in the CONT group (Fig 5E and 5F).

At the systemic level, the plasma concentration of myeloperoxidase (MPO) decreased in both

MICT and HIIT groups after 10 weeks of training (p�0.05 vs CONT) (Fig 5G). Plasma MPO

levels were positively associated with plasma LBP levels (r = -0.5; p�0.001).

Fig 3. Effect of 10 weeks of exercise training on gut microbiota and faecal concentration of short-chain fatty acids (SCFAs). Gut microbiota composition:

Chao1 index (A); Principal Component Analysis (PCoA) of the Bray-Curtis distances (β-diversity) (B); SCFA concentration in faeces after 10 weeks of training

(C). Data are expressed as the mean ± SD.

https://doi.org/10.1371/journal.pone.0214660.g003
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Only HIIT increases the α2 AR/β3 AR ratio in subcutaneous adipose tissue

At the end of the training programme, the α/β adrenergic receptor RNA ratio in subcutaneous

adipose tissue was greater in the HIIT group than in the CONT (p�0.001) and MICT (p

�0.01) groups, but not in epididymal adipose tissue (p�0.05) (Fig 6A and 6B). The level of

phosphorylated hormone-sensitive lipase (phospho-HSL) in subcutaneous (Fig 6C) and epi-

didymal adipose tissue (Fig 6D) was not modified by exercise training.

HIIT and MICT improve glucose metabolism, but do not modify the lipid

profile

Fasting glycaemia did not differ between the three groups at the end of the study (week 10)

(Table 1). Repeated ANOVA measures of the results of the oral glucose tolerance test (OGTT)

performed at the end of the training programme showed a significant time x group interaction

at 90min (p�0.01) with higher values in the CONT than in the MICT and HIIT groups (Fig

Fig 4. Effect of 10 weeks of training on intestinal permeability. Zonula occludens-1 (ZO-1) (A) and occludin (B) expression were assessed by western

blotting. Representative images of the western blot results (C). Plasma levels of lipopolysaccharide binding protein (LBP) determined by ELISA (D). Data are

expressed as the mean ± SD; �p�0.05, ��p�0.01 and ���p�0.001.

https://doi.org/10.1371/journal.pone.0214660.g004
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7A). The net area under the curve (netAUC) was lower in the MICT and HIIT groups than in

the CONT group (p�0.05) (Fig 7B). After 10 weeks, the plasma level of LDL cholesterol was

higher in the MICT than in the CONT group (p�0.05). Conversely, plasma total cholesterol,

HDL cholesterol, triglycerides and FFA were not modified by physical training (Table 1).

HIIT and MICT modify the resting respiratory exchange ratio, but not the

mean daily spontaneous physical activity and energy intake

After 10 weeks of training, the mean daily total energy expenditure and food intake (for the

12h-light period and during 24h) were comparable in the three groups (Table 2). Conversely,

for the 12h-dark period, spontaneous physical activity was increased in the two training groups

(p�0.05), and energy intake was higher in the MICT than in the CONT group (p�0.05).

At the end of the study, the respiratory exchange ratio (RER), evaluated by indirect calorim-

etry in mice housed in calorimetry cages for 24h, was significantly higher in the two training

groups (0.97 ± 0.02 in the HIIT and 0.97 ± 0.02 in the MICT vs 0.93 ± 0.05 in the CONT

group; p� 0.05) (Table 2).

Fig 5. Effect of 10 weeks of exercise training on adipose tissue and systemic inflammation. Free fatty acid (FFA) secretion by subcutaneous adipose tissue

(A) and visceral adipose tissue (B). Keratinocyte-derived chemokine (KC) secretion by subcutaneous adipose tissue (C) and visceral adipose tissue (D). IL-6

secretion by subcutaneous adipose tissue (E) and visceral adipose tissue (F). Plasma myeloperoxidase (MPO) concentration (G). Data are expressed as the

mean ± SD. �p�0.05 vs CONT.

https://doi.org/10.1371/journal.pone.0214660.g005
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Discussion

This study in Zucker rats, a genetic model of obesity, confirms that HIIT is more efficient than

MICT in decreasing total FM, in particular visceral adipose tissue, which is responsible for

numerous metabolic complications. In contrast, both exercise training modalities reduced sys-

temic and adipocyte inflammation and improved glucose metabolism. Finally, endotoxemia

Fig 6. Effect of 10 weeks of exercise training on lipolysis factors. The α-adrenergic receptor/β adrenergic receptor (α AR/β AR) ratio determined by q-PCR

in subcutaneous adipose tissue (A) and epididymal adipose tissue (B). Level of phosphorylated hormone-sensitive lipase (phospho-HSL) in subcutaneous

adipose tissue (C) and epididymal adipose tissue (D). Data are expressed as the mean ± SD; ��p�0.01 and ���p�0.001.

https://doi.org/10.1371/journal.pone.0214660.g006

Table 1. Lipid and glycaemic profiles after 10 weeks of training (mean ± SD).

Total Chol

(mg.dL-1)

LDL

(mg.dL-1)

HDL

(mg.dL-1)

TG

(mg.dL-1)

FFA

(mmol.L-1)

Insulin

(ng.mL-1)

Glucose (mmol.L-1) HOMA-IR

CONT 227.1 ± 49.9 260.2 ± 74.0 69.0 ± 36.0 603.0 ± 470.6 556.5 ± 442.4 2.5 ± 1.6 5.7 ± 1.1 17.4 ± 10

MICT 217.8 ± 33.4 314.5 ± 43.7#£ 80.2 ± 19.3 426.5 ± 155.8 415 ± 141.7 3.4 ± 3.6 5.6 ± 0.6 25.0 ± 31.1

HIIT 209.2 ± 40.2 270.1 ± 52.5 74.9 ± 26.6 450.8 ± 94.9 493.9 ± 163.9 2.6 ± 3.7 5.3 ± 0.7 17.1 ± 23.1

Chol, cholesterol; LDL, low-density lipoproteins; HDL, high-density lipoproteins; TG, triglycerides; FFA, free fatty acids; HOMA-IR, homeostatic model assessment of

insulin resistance.

# p �0.05 CONT vs MICT

£ p �0.05 MICT vs HIIT

https://doi.org/10.1371/journal.pone.0214660.t001
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reduction was comparable in both training groups (LPB expression), although HIIT increased

the synthesis of tight junction proteins to a greater extent than did MICT. These positive adap-

tations observed in the HIIT group, in which rats ran shorter distances than those in the

MICT group, demonstrate the time efficiency of this exercise modality.

MICT protocols are still traditionally recommended for sedentary overweight or obese

individuals to reduce FM. However, a growing body of evidence shows that HIIT can be a

more amusing and time-efficient exercise modality to lose total and visceral adipose tissue

[21,22,44]. Our present results in obese Zucker rats confirm that HIIT (6 sets at 18 m.min-1 for

4min followed by 3min at 10 m.min-1 for 10 weeks) significantly reduces total and epididymal

FM compared with MICT (12 m.min-1 for 51min for 10 weeks). Other studies also demon-

strated a greater effect of HIIT on total and abdominal FM loss than with MICT in different

animal models of obesity. Wang et al. showed that in mice fed a high-fat diet, the adiposity

index (44% and 53%, respectively) was lower in the HIIT (10 x 4min [85–90% VO2max]/2min

active rest [5 m.min-1]) than in the MICT group (65–70% of VO2max [distance-matched con-

tinuous running]) [45]. Similarly, in male Sprague-Dawley rats fed a high-fat diet, HIIT (30sec

[32 m.min-1 ]/10sec passive recovery, 5˚ slope) decreased epididymal FM, whereas MICT (16

m.min-1 for 40min, 5˚ slope) had no effect [46]. In the sole study, to our knowledge, to assess

the effects of an HIIT protocol (4min at 65–80% of VO2 max/3min at 50–65% of VO2 max) in

Zucker rats, the authors observed reduced FM and abdominal fat pad in the HIIT group (5.7

±0.2 vs. 6.4±0.2g in the control group without exercise) [35].

Fig 7. Effect of 10 weeks of exercise training on glucose tolerance. Blood glucose monitoring during the oral glucose tolerance test (A) and net area under the

curve (netAUC) for glucose (B) at the end of the 10 weeks of exercise training in the three groups. Data are expressed as the mean ± SD. ## p�0.01 CONT vs

MICT; § § § p�0.001 CONT vs HIIT and �p�0.05.

https://doi.org/10.1371/journal.pone.0214660.g007

Table 2. Indirect calorimetry results after 10 weeks of training (mean ± SD).

24 hours 12h-light (08:05–20:00) 12h-dark (20:05–8:00)

EE/LM (kJ/

g)

RER Spontaneous

activity (m)

Food intake

(g)

EE/LM (kJ/

g)

RER Spontaneous

activity (m)

Food intake

(g)

EE/LM (kJ/

g)

RER Spontaneous

activity (m)

Food intake

(g)

HIIT 0.93 ± 0.05 0.97 ± 0.02 211.1 ± 40.9 22.31 ± 3.3 0.50 ± 0.03 0.97 ± 0.03 131.1 ± 31.0 13.69 ± 2.2 0.42 ± 0.02 0.96 ± 0.03 73.9 ± 12.9 7.91 ± 1.8

MICT 0.93 ± 0.08 0.97 ± 0.02 184.9 ± 49.0 21.79 ± 2.7 0.50 ± 0.05 0.97 ± 0.03 112.4 ± 28.8 13.78 ± 2.7 0.43 ± 0.03 0.96 ± 0.02 67.6 ± 21.9 8.36 ± 1.41

CONT 0.95 ± 0.12 0.93 ± 0.05#$ 171.8 ± 46.5 19.05 ± 4.2 0.51 ± 0.07 0.94 ± 0.04 113.5 ± 37.9 12.57 ± 2.9 0.43 ± 0.06 0.91 ± 0.06#$ 50.5 ± 14.8#$ 6.36 ± 2.5 #

EE: energy expenditure, LM: Lean mass, RER: respiratory exchange ratio.

# p �0.05 CONT vs. MICT

$ p �0.05 CONT vs. MICT; p�0.05 MICT vs. HIIT

https://doi.org/10.1371/journal.pone.0214660.t002
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However, the mechanisms by which HIIT decreases abdominal and in particular visceral

FM are still unknown. Here, we assessed the potential role of the gut microbiota in such adap-

tations. In our study, exercise (MICT and HIIT) did not have any effect on gut microbiota

composition (quantity and function). In addition, the main faecal SCFAs (acetate, propionate

and butyrate) were not modified by the two exercise modalities. This result is surprising

because previous studies have often reported that bacterial richness and function are improved

by regular physical activity, and that some bacterial species related to the anti-inflammatory

profile, health and leanness could also be increased by exercise [27,28,30,31,47–49]. To investi-

gate the effect of exercise on gut microbiota, MICT training or spontaneous exercise (sponta-

neous activity wheel) are generally used, and only two studies have tested the effect of a HIIT

programme on gut microbiota modulation. The first one found an increase in the Bacteroi-

detes/Firmicutes ratio and in Lactobacillus, Bacteroidales and Dorea species in mice after HIIT

training, without any change in the epididymal FM, suggesting there is no correlation between

these variables [33]. The second study reported slight differences in gut microbiota composi-

tion in rats undergoing MICT and HIIT (increase in Parasutterella excrementihominis and

Lactobacillus johsonii in the MICT group, and in Clostridium saccharolyticum in the HIIT

group). Unfortunately, the authors did not measure total and visceral FM [32]. In Zucker rats,

only one study has assessed modulation of gut microbiota after an MICT training programme

(12.5 m.min−1 for 30min, 5 days per week for 4 weeks). At the end of the training period, the

authors found that the composition of the gut microbiota had changed [26]. However, this

analysis concerned only faecal samples of three animals/group, whereas in our study, 16S

sRNA gene expression in colon tissue was investigated, which is a more suitable assay [50,51].

In our study, the extreme amount of adipose tissue in Zucker rats could mask the changes

in gut microbiota composition induced by regular exercise [23,52,53]. Nevertheless, Lamour-

eux et al. observed minor effects of spontaneous exercise on gut microbiota composition also

in normal-weight C57BL/6 mice [24]. Hence, other factors than weight or total FM could

explain the absence of modulation of gut microbiota after MICT or HIIT in our study. As

most of the publications on exercise and gut microbiota are observational studies, the potential

links between physical activity and gut microbiota modulation are still unknown and mecha-

nistic investigations in animal models are needed. The lack of protocol standardization for gut

microbiota analysis (DNA extraction, regions analysed, bioinformatics analysis etc.) could also

complicate interpretation of the results. In addition, following a perturbation, gut microbiota

can return to its initial functional or taxonomical composition following a perturbation, which

is defined as resilience. As we did not analyse gut microbiota during the training programme,

we do not know whether gut microbiota is resilient or resistant to training interventions.

Intestinal permeability is regulated by the tight-junction proteins claudin, occludin, and

ZO-1. In obesity, their expression, localization and distribution are altered [7], leading to an

association between obesity (FM) and intestinal permeability [54]. In our study, the colon

expression of occludin and ZO-1 was increased at the end of the HIIT and, to a lesser extent,

the MICT programme. Moreover, the amount of epididymal adipose tissue was negatively

associated with their expression level, reinforcing the beneficial effect of HIIT. Holland et al.
showed that 10 days of exercise in Sprague–Dawley rats (30m.min-1 for 60min, 5 days/week)

reduces 24h post-exercise intestinal inflammation and reinforces the intestinal barrier function

[55]. In agreement, our study showed a negative correlation between the expression of occlu-

din and ZO-1 and IL-6 secretion by the epididymal adipose tissue. Moreover, secretion of KC

(the analogue of human IL-8) was decreased in the epididymal adipose tissue. In humans,

plasma IL-8 levels are high in obese individuals and are associated with abdominal adiposity

and insulin sensitivity [56]. Neels et al. showed in genetically and diet-induced obese mice an

increase in KC in the blood and in the epididymal adipose tissue [57]. They also found that

HIIT, fat mass loss and microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0214660 April 9, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0214660


after KC treatment, adipogenesis is not directly affected, but inflammatory factors (MCP-1,

IL-6, TNF-α) are increased in adipose tissue [57], leading to low-grade systemic inflammation.

Similarly, we observed that HIIT and MICT can decrease systemic inflammation, as indicated

by the lower levels of MPO, a biomarker of inflammation and cardiovascular risks [58].

Intestinal permeability promotes metabolic endotoxemia, which is defined as an increase in

LPS plasma levels [16,59]. When LPS is in the bloodstream, it is recognized by LBP and forms

LBP-LPS complexes. LBP levels are correlated with abdominal FM[60], making of LBP a good

obesity marker [41,42]. In our study, plasma LBP was similarly reduced by MICT and HIIT.

This positive exercise effect is supported by the finding that plasma LPS is reduced in male

Wistar rats after chronic (1h/day, 5 days/week, for 8 weeks) and acute swimming exercise (two

3h bouts, separated by a 45min rest period) [61].

A second hypothesis concerning the greater impact of HIIT on visceral fat mass loss could

be related to a greater lipolytic activity. Adipocyte lipolysis is regulated by pro-lipolytic path-

ways mediated by the β AR and natriuretic peptide receptors and by anti-lipolytic pathways

via α AR and insulin through insulin receptor substrate-1 (IRS-1). As β AR expression is

higher in visceral than in subcutaneous adipose tissue [62], the higher catecholamine produc-

tion induced by HIIT [63] could explain the greater reliance on visceral FM during HIIT. In

our study, HIIT (but not MICT) increased the α AR/β AR mRNA ratio in subcutaneous adi-

pose tissue, suggesting a greater anti-lipolytic activity. Although we expected a greater lipolytic

effect in the visceral than in subcutaneous adipose tissue, this result is interesting. Indeed, a

greater ability to increase subcutaneous adipose tissue can prevent FM ectopic deposition and

visceral adipose tissue development, as previously described. Moreover, although the α AR/β
AR mRNA ratio in visceral adipose tissue was not changed by physical training, the receptor

sensitivity could be modified. Exercise concomitantly reduces α AR sensitivity and increase β
AR sensitivity, as already shown in the subcutaneous adipose tissue [64,65] of obese subjects.

To evidence a possible increase in lipolytic activity in visceral adipose tissue, we measured the

phosphorylation level of HSL. HSL and adipose triglyceride lipase (ATGL) are responsible for

more than 90% of triglyceride hydrolysis [66], but only HSL induces PKA-dependent lipolysis

[67]. However, the amount of phospho-HSL was not influenced by physical activity.

Both exercise modalities (MICT and HIIT) decreased the glucose AUCnet after OGTT and

improved glucose utilization at rest (as shown by the respiratory exchange ratio at the end of

the study). The improved glucose metabolism in our study can be partly explained by the

reduction of KC secretion in the adipose tissue and by the decrease in LBP levels [57,61]. The

positive association between LBP and the glucose AUCnet supports this hypothesis (r = 0.4).

The present study has certain limitations that should be considered. First, MICT and HIIT

protocols were not based on the animals’ VO2 consumption and VCO2 production. The proto-

cols were originally designed to have the same total running distance for all groups as imple-

mented by Metz et al. in 2005 [34]. The intensity and the duration chosen for each modality

had already been adopted in other studies [34–36]. Second, diet composition did not strictly

comply with the feeding recommended by the American Institute of Nutrition (AIN-93M)

[68]. The three groups nevertheless received the same diet preparation (SAFE 04), and the dif-

ferences in body composition and metabolic profiles observed between groups were therefore

induced by physical activity. A third possible limitation concerns the time spent (48h) in meta-

bolic chambers to determine energy expenditure and substrate oxidation. Owing to the num-

ber of animals, it was not feasible for us to keep the rats for a period of 72h as usually

recommended. However, we took care to start the measurements after 24h of acclimatization,

and all the groups were compared in the same conditions. Fourth, considering the model of

obesity used (Zucker rat), it would have been interesting to determine the plasma level of lep-

tin. However, the total amount of blood recovered after sacrifice required us to make certain
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choices. A lack of leptin response has been documented in obese Zucker rats [69], which carry

a mutation (fa) in the leptin receptor gene [70]. Thus, even though leptin is produced, its effect

is blunted by the mutation. The last limitation of our study concerns the statistical methods

used with such a small sample of animals. In the absence of ‘normal distribution’ and ‘variance

homoscedasticity’, we elected to transform the data with log-transformation and not by non-

parametric tests since repeated values were compared. After transformation, the Newman-

Keuls post hoc test was maintained for analysis.

In conclusion, in this genetic model of obesity, HIIT led to a reduction in total and visceral

FM more efficiently than MICT. Contrary to our initial hypothesis, gut microbiota composi-

tion is not involved in exercise-induced FM loss in obese Zucker rats. The decrease in FM

could be explained by specific changes in the lipolysis pathway, including the sensitivity of

adrenergic or insulin receptors, lipase activities or mitochondrial adaptations. On the other

hand, the excess of adipose tissue in Zucker rats could limit gut microbiota modulation, sug-

gesting that diet-induced obesity models would be more suitable to investigate the potential

link between FM loss and gut microbiota. Finally, despite the lack of HIIT-induced changes in

microbiota composition, we found that both training methods (MICT and HIIT) promoted

total FM loss and decreased inflammation, improving intestinal permeability, decreasing LBP

and enhancing glucose metabolism. As the HIIT programme was based on running a shorter

distance for a shorter time, this modality is as a time-efficient strategy against obesity.
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