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ARTICLE

Spontaneous rotation can stabilise ordered chiral
active fluids
Ananyo Maitra 1 & Martin Lenz 1,2

Active hydrodynamic theories are a powerful tool to study the emergent ordered phases of

internally driven particles such as bird flocks, bacterial suspension and their artificial analo-

gues. While theories of orientationally ordered phases are by now well established, the effect

of chirality on these phases is much less studied. In this paper, we present a complete

dynamical theory of orientationally ordered chiral particles in two-dimensional incompres-

sible systems. We show that phase-coherent states of rotating chiral particles are remarkably

stable in both momentum-conserved and non-conserved systems in contrast to their non-

rotating counterparts. Furthermore, defect separation—which drives chaotic flows in non-

rotating active fluids—is suppressed by intrinsic rotation of chiral active particles. We thus

establish chirality as a source of dramatic stabilisation in active systems, which could be key

in interpreting the collective behaviors of some biological tissues, cytoskeletal systems and

collections of bacteria.
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B iological systems are driven out of equilibrium by a con-
tinuous supply of energy at the scale of constituent parti-
cles. This nonequilibrium driving generates macroscopic

forces and currents that are responsible for diverse phenomena
ranging from rotation of the cell nucleus1 to motion of tissues to
flocking of starlings2. Active hydrodynamics3–6, which augments
traditional theories of ordered fluids with extra “active” terms
arising from nonequilibrium driving, presents a general con-
tinuum framework to model the macroscopic behaviour of such
microscopically driven systems.

Orientationally ordered phases in such active systems have
properties that are qualitatively distinct from their equilibrium
counterparts. This includes the existence of long-range order in
active versions of two-dimensional X-Y models7, anomalously
large number fluctuations3,8 and a generic instability whereby an
ordered phase of active particles devolves to a spontaneously
flowing state in active momentum-conserved fluids1,9,10.

Despite their variety, previous studies of active orientable fluids
are overwhelmingly restricted to achiral assemblies of particles.
Biological objects are, however, generally chiral, and this micro-
scopic chirality is manifested at all scales up to the cellular11 or
even at multicellular12,13 levels. Further, organisation of sperm
cell into rotating vortices14,15 and circular motion of bacteria at a
planar surface16 have been reported. While some authors have
considered “circle swimmers” in the absence of fluid
hydrodynamics15,17–22 and three-dimensional chiral active
fluids23–25, the dynamics of many two-dimensional biological or
biomimetic chiral systems in the presence of hydrodynamic
interactions ranging from epithelia to confined bacterial suspen-
sions remain poorly understood.

In this paper, we consider orientationally ordered phases of
such systems in a wide array of experimentally realisable dyna-
mical settings. We consider both nematic and polar objects in
two-dimensional momentum-conserved fluids, two-dimensional
systems at the interface between two fluids and suspensions in
contact with substrates acting as momentum sinks. We study
systems that break top-bottom inversion symmetry, which allows
for new, strictly two-dimensional chiral stresses and active rota-
tion of individual particles. Such systems may display ordered
phases where many particles rotate in phase in the plane, and we
show that a fast enough rotation suppresses the generic instability
in these systems, allowing long-range order under most condi-
tions, including momentum-conserved systems where it was
hitherto assumed that all orientationally ordered phases are
generically destroyed by active forcing. We also demonstrate that
another destabilising mechanism, the activity-driven separation
of ±1/2 defects in systems with nematic symmetry, is also sup-
pressed by autonomous particle rotation. Indeed, the self-
propelled +1/2 defect generically moves in circles, which pre-
vents it from separating ballistically from a −1/2 defect. In chiral,
yet non-rotating systems, the +1/2 defects do propagate ballis-
tically, albeit at an angle relative to the direction of their polarity.
In the following, we present a detailed study of the prototypical
case of apolar chiral particles in a momentum-conserved two-
dimensional film, and then discuss how changing the modalities
of momentum exchange with the substrate and/or introducing
polar particles modify our results.

Results
Dynamical equations for an apolar chiral fluid. We describe our
apolar suspension by a nematic order parameter that depends on
the two-dimensional position vector r:

Qðr; tÞ ¼ S
2

cos 2θ sin 2θ

sin 2θ � cos 2θ

� �
; ð1Þ

where S denotes the degree of orientation and θ(r, t) is the
orientation angle of the apolar particles with respect to the x-axis.
In the absence of fluid flow and activity, the relaxational
dynamics of the system is governed by the standard Landau-de
Gennes free energy functional, which we write in a single Frank
constant approximation for simplicity:

H ¼
Z

d2r
α

2
Q : Qþ β

4
ðQ : QÞ2 þ K

2
ð∇QÞ2

� �
: ð2Þ

This free energy favours an orientationally ordered phase when α
< 0. We further introduce the hydrodynamic velocity field v(r, t)
and its symmetrized gradient tensor Aij= ∂ivj+ ∂jvi. Including all
terms allowed by symmetry to leading order in gradients, the
evolution equation for the order parameter generically reads

DtQ ¼ �ΓQHþ λA� λc � A� 2Ω �Q; ð3Þ

where Dt denotes the co-rotational derivative and is the two-
dimensional Levi–Civita tensor. The first term on the right-hand
side of Eq. (3) describes the passive relaxation of Q under the
influence of the passive torque H ¼ δH=δQ derived from Eq. (2),
and the second term expresses the tendency of the apolar particles
to orient along the velocity gradient. The next two terms are
explicitly chiral: the third is a coupling between orientation and
flow allowed in passive fluids, while the fourth is specifically
active and describes the intrinsic rotation of chiral particles. In a
perfectly ordered phase without any flow or concentration gra-
dient, this last term makes the ordering direction rotate globally
at a constant rate: ∂tθ=Ω.

As the order parameter deviates from this perfectly ordered
configuration, flows are generated according to the force balance
equation

�η∇2v ¼ �∇Πþ ζ∇ �Q� ζc∇ � ð �QÞ; ð4Þ

where η is the viscosity, Π the pressure enforcing the
incompressibility constraint ∇ · v= 0, and ζ and ζc are, respec-
tively, achiral and chiral active coefficients. The achiral active
force stems from the fact that a local polarity leads to a local force
in active systems; since ∇ ·Q implies a local polarity (associated
to bend or splay in two dimensions), it leads to a local force along
or opposite this polarity depending on the sign of ζ9. By contrast,
the ζc term characterises the fact that in the absence of a left-right
symmetry, a local polar distortion can lead to a force in the
direction transverse to it. Equation (4) ignores passive force
densities, which are proportional to ∇ ·H due to Onsager
symmetry, as they are higher order in gradients than the active
force densities. It also uses a simplified form for the viscous
dissipation, taking the viscosity η to be a scalar instead of a more
general Q-dependent rank four tensor. This simplification does
not change any of our results qualitatively even if an antisym-
metric “odd viscosity” specific to chiral nonequilibrium systems is
included26,27, as this term ends up being a pure gradient and is
therefore irrelevant to the dynamics of incompressible flows.

Enhancement of linear stability by chiral rotation. Having set
up the dynamical equations, we investigate the stability of a
homogeneous ordered phase with a constant S= 1 rotating at a
rate Ω. We thus write θ(r, t)=Ωt+ δθ(r, t), where δθ denotes a
small perturbation. Using Eq. (4) to eliminate the velocity field,
Eq. (3) yields an evolution equation for the angle field δθq in
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Fourier space. To zeroth order in wavevector q, it reads

∂tδθq ¼ � 1
2η ζ cos½2ðϕ�ΩtÞ�f
þζc sin 2ðϕ�ΩtÞ½ �g
´ 1þ λ cos½2ðϕ�ΩtÞ�f
�λc sin½2ðϕ�ΩtÞ�gδθq;

ð5Þ

where ϕ is the angle that q makes with the x-axis, implying that
(ϕ−Ωt) is the angle between the wavevector direction and the
instantaneous ordering direction. When both ζc and Ω vanish, Eq.
(5) leads to the well-known O q0ð Þ mode of an active nematic9.
This mode has a positive q-independent growth rate for some
values of ϕ, irrespective of the value of ζ, reflecting the well-
known generic instability of active suspensions to either bend
(perturbation along the ordering direction) or splay (perturbation
transverse to the ordering direction)3,9. Now considering a non-
zero ζc at Ω= 0, the ordered phase is still generically unstable as
the relaxation rate (ζcos 2ϕ+ ζc sin 2ϕ)(1+ λcos 2ϕ− λcsin 2ϕ) is
always negative for some value of ϕ irrespective of the parameter
values. This can be seen by noting that the relaxation rate van-
ishes at least at tan 2ϕ0=−ζ/ζc, and depending on the sign of the
constant cos 2ϕ0[ζc+ (λζc+ ζλc) cos 2ϕ0], it must therefore be
negative either for ϕ≲ ϕ0 or for ϕ≳ ϕ0. If λ

2 þ λ2c<1; this is also
the only condition for a vanishing relaxation rate and therefore
the ϕ angle sector where the fluid is unstable would be exactly
equal to the sector in which it is stable. When λ2 þ λ2c>1, the
relaxation rate also vanishes for wavevectors at which (1+ λ cos
2ϕ− λc sin 2ϕ)= 0, thereby making the ϕ angle sector where the
system is stable larger (or smaller) than the sector where it is
unstable. The instability of chiral fluids is qualitatively similar to
the generic instability of achiral fluids with one crucial difference:
unlike in active nematics, its growth rate is not invariant under
ϕ →−ϕ, reflecting the breaking of the left-right symmetry by
chirality. As a result of this symmetry breaking, when chiral fluids
are confined to and strongly anchored at the boundary of a
straight10,12 or annular1,11,28 channel whose width is larger than
the / 1=

ffiffiffi
ζ

p� �
length scale for active instability, left-tilted and

right-tilted patterns are no longer equally probable. Now con-
sidering Ω ≠ 0 systems, we found that the rotation of the particles
can suppress this generic instability. This stabilisation is most
easily understood in the fast-rotating limit where Ω � ðζSÞ=2η
and Ω � ðζcSÞ=2η, meaning that the angular frequency of the
particles is much larger than the growth rate of the generic
instability. Averaging over this fast rotation, we obtain the
effective long-time dynamics of the angular fluctuations as

∂tδθq ¼ � ζλ� ζcλc
4η

δθq: ð6Þ

In this limit, angular fluctuations thus have an isotropic relaxa-
tion rate independent of the wavevector magnitude. That rate is
positive if ζλ > ζcλc, leading to the stabilisation of the ordered
phase. Since δθ is also the phase of the angular rotation of the
particles, this implies that the fluctuations about the phase-
coherent state is damped out by the fluid-mediated interactions
(see Supplementary Note 2a for a more detailed description of
this stabilisation). To understand this stabilisation, consider a
system that, for Ω= 0, is unstable to bend (ϕ≃ 0) deformations
and stable to splay (ϕ≃ π/2). In such a system, when the global
ordering direction rotates at the rate Ω, a bend deformation
becomes a splay deformation after the rotation of the global
ordering direction through π/2 (Fig. 1). Thus, for fast enough
rotation, the unstable configuration is converted into a stable one
before the instability has had time to grow. In general, if for Ω= 0
the integral of the growth rate over all ϕ, that is, all possible

wavevector directions, is negative, rotation of the particles at a
fast enough Ω stabilises it. This is reminiscent of the stability of a
ball on a rotating saddle. A similar stabilisation mechanism is also
used in Paul traps or quadrupolar ion traps; since static electric
fields are solenoidal and have both stable and unstable directions,
these devices trap ions by a fast switching of the stable and the
unstable directions. Further, since Eq. (6) is independent of |q|,
the relaxation rate of angular fluctuations does not vanish even
for infinite systems when ζλ > ζcλc. As a result, when modelling a
noisy system by adding a small noise to Eq. (3), we find that the
root mean square value of δθ remains finite for q → 0 in two
dimensions, that is, limr!1h½θðr; tÞ � θð0; tÞ�2i does not diverge.
This implies that the system has long-range order even in two
dimensions. This chirality-induced spontaneously rotating phase
is the only known long-range ordered state in two-dimensional
momentum-conserved active systems.

Suppression of defect separation. Chirality also has important
consequences beyond linear stability. At high activity (large ζ), the
dynamics of achiral active nematics is known to be governed by
the proliferation and motion of defects, which induce chaotic
flows beyond those predicted by a linear stability analysis29. In
nematics, the most abundant defects are those with charge ±1/2,
which can be parametrised by

θ ¼ Ωt ±
1
2
ψ; ð7Þ

where ψ is the angle of the two-dimensional polar coordinates.
Defect pairs with no net topological charge are spontaneously
nucleated even in equilibrium at any finite noise strength. In
equilibrium, all such defects recombine due to the attractive force,
which scales as the inverse of the separation between the defects.
However, in active systems dynamics is not governed by an
energy functional, and, in particular, any geometrically polar
object is inevitably associated with a propulsive force either along
or opposite to the polarisation direction. A nematic +1/2 defect
has a polar structure, and, therefore, in an achiral but active
system, it moves either in the direction of or opposite to the
polarity29–31. In contrast, the −1/2 defects have a triaxial sym-
metry, implying that they can only diffuse. As a result, the relative
ballistic motion of the two types of defects leads to a separation of
þ 1

2 ;� 1
2

� �
defect pairs at least at low noise (at intermediate noise

strengths, the decorrelation of the direction of motion of the +1/2
defect due to its rotational diffusivity suppresses defect separation
resulting in a re-entrant nematic phase; see ref. 32). This activity-
driven unbinding of charge-neutral pairs at low noise (or high
activity) destroys the orientationally ordered phase via an active
analogue of Kosterlitz–Thouless transition32 and eventually
results in spatio-temporal chaos. In a chiral system, the self-
propulsion velocity of +1/2 defect is, however, markedly differ-
ent: by introducing Eq. (7) into the right-hand side of Eq. (4), we
can calculate the active force density associated with a +1/2 defect
oriented along the x-axis at t= 0 (see Supplementary Note 4 for
the detailed calculation):

fþ1=2 ¼ 1
2r ζ½cosð2ΩtÞx̂ þ sinð2ΩtÞŷ�f
�ζc½sinð2ΩtÞx̂ � cosð2ΩtÞŷ�g; ð8Þ

where r is the radial distance from the defect core. Using the
Oseen tensor appropriate for two-dimensional momentum-con-
served flows in a domain of size R, we calculate the fluid velocity
at the origin (i.e. at the centre of the defect), which in turn advects
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the defect core29:

vþ1=2 ¼ R
4η ζ ½cosð2ΩtÞx̂ þ sinð2ΩtÞŷ�f
�ζc½sinð2ΩtÞx̂ � cosð2ΩtÞŷ�g: ð9Þ

This is the self-propulsion velocity of a +1/2 defect in a chiral
apolar fluid. For non-rotating systems (Ω= 0), we see that unlike
in achiral systems, the defect does not move along (or opposite)
to its polarity, but at an angle tan�1ðζc=ζÞ to it. In contrast, when
Ω ≠ 0 the polar axis of the defect rotates systematically (see
Fig. 2a, b). Therefore, an isolated +1/2 defect does not move

ballistically, but in a circle of radius ðR=4ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ2 þ ζ2c

q
=2Ω. This

implies that a +1/2 defect nucleated at finite distance from its −1/
2 partner remains within a finite distance of it, as opposed to
continuously moving away from it, simply due to the determi-
nistic rotation of its direction of motion. In addition to this
rotation, the passive attractive elastic interaction ∝−(K/r2)r,
where r is the relative position of the defects, promotes the
eventual recombination of the ±1/2 pair. Figure 2c shows a typical
deterministic trajectory for this recombination, and we further
discuss its dynamics in Supplementary Note 5. This implies that
beyond conferring linear stability, chirality-induced active rota-
tion also leads to the suppression of chaos-inducing defect
separation.

It is instructive to compare this mechanism for the suppression
of defect separation with the recently proposed one for achiral
active nematics32. There, the rotational diffusivity of self-
propelling +1/2 defects ultimately suppresses defect separation
at low but non-zero noise strength. The same mechanism is
operative in chiral but non-rotating active nematics, which
implies that defect unbinding in this case is suppressed for low
enough activity and intermediate noise strengths. In contrast, in
spontaneously rotating nematics, we have shown that an
additional active mechanism, namely spontaneous rotation of
individual particles, and hence, a coherent spontaneous rotation
of the propulsion direction of a +1/2 defect, hinders defect
separation. This implies that the re-entrant disordered phase that
is generically present in achiral active nematics32 is absent in this
case—the spontaneously rotating ordered phase persists even at
arbitrarily small noise strengths.

Generality of our results. The qualitative conclusions described
above for momentum-conserved two-dimensional systems also
hold for more experimentally accessible two-dimensional inter-
faces in contact with a three-dimensional fluid. However, the
relaxation rate of angular fluctuations in these systems depend
linearly on the wavevector magnitude |q|:

∂tδθq ¼ � qj j
8η ζ cos½2ðϕ�ΩtÞ�f
þζc sin½2ðϕ�ΩtÞ�g
´ 1þ λ cos½2ðϕ�ΩtÞ�f
�λc sin½2ðϕ�ΩtÞ�gδθq;

ð10Þ

where the fluids above and below the interface are both taken to
have a viscosity η for simplicity. As a result, an Ω= 0 system is
still unstable as q → 0. Nevertheless, rotation stabilises the system
and leads to a long-range ordered phase as described above (see
Supplementary Note 2b for a detailed discussion of this case). Our
conclusions about the motion of defects are also still valid.

Our basic conclusion regarding the enhanced stabilisation due
to the chiral rotation of particles is also valid for a system that
exchanges momentum with a solid substrate, for example, an
epithelial cell layer. This case is, however, more complex than the
previous ones, as the force balance equation (4) is modified in two
crucial ways. First, a frictional force −Γv is introduced. Second, a
further achiral active force 2ζ2Q · (∇ ·Q) is allowed33. In this
system, the relaxation rate of angular fluctuations is proportional
to Oðq2Þ due to the presence of friction. As a result, the root
mean square value of δθ in this case diverges logarithmically,
which in turn implies that the ordered phase only has quasi-long-
range order. The conclusions reached earlier about the lack of
ϕ →−ϕ symmetry of the relaxation rate and the motion of defects
when Ω= 0 remain valid, however. The fast rotations for large
Ω ≠ 0 again wash away the anisotropy of the angular relaxation

π / 2 rotation

a

Unstable bend configuration

b

Stable splay configuration

Fig. 1 Stabilisation of the ordered phase due to the autonomous rotation of
chiral particles. a The achiral force ζ∇ ·Q (blue arrows) destabilises a bent
configuration by inducing a torque that tends to enhance the distortion
relative to a perfectly horizontally aligned state. b As the particles rotate by
an angle π/2, however, the bent configuration is converted to a splayed
configuration. This results in a reversal of the achiral force, which now
suppresses the distortion. Depending on parameters, the superposition of
these opposite trends may result in an overall stable system

π / 4 rotation

a b

c +1/2 −1/2

Fig. 2 Rotation of a +1/2 defect and consequent recombination with its −1/
2 partner. a The combined influence of the achiral (ζ) and chiral (ζc) active
forces endows a +1/2 defect with a self-propulsion velocity (blue arrow)
that makes an angle tan�1ðζc=ζÞ with the main direction of the defect
(dashed line). b As each particle rotates autonomously, this main direction
rotates as well. The defect velocity thus also rotates at a constant rate Ω,
and the self-propelling defect moves in a circle. c When in the vicinity of a
−1/2 defect (dark blue circle, assumed stationary here), the circling +1/2
defect is additionally attracted to it, leading to a recombination trajectory
materialised by the solid black line (see the Supplementary Note 5 for the
defect equations of motion)
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rate, leading to an average growth equation

∂tδθq ¼ � q2

4Γ
2ζ2 þ λζ � λcζcð Þδθq � ΓQKq

2δθq; ð11Þ

with similar characteristics to Eq. (5) (see Supplementary
Note 2c). As before, +1/2 defects move in circle. Note that while
achiral apolar fluids on a substrate are not generically unstable
even at high activities33, the spontaneous rotation of the chiral
particles enlarges the range of parameter in which the chiral
system is stable relative to the achiral one. In particular, unlike in
the achiral case, neither ζ2 > ζ1 nor |λ| < 1 is essential for stability.

Now considering polar particles instead of apolar ones, our
conclusions regarding the stability of the long-ranged ordered
rotating phase and generic instability of the non-rotating one
remain unchanged for both free-standing films or those
exchanging momentum with a three-dimensional fluid. Indeed,
in these momentum-conserved systems, polarity does not affect
the dynamics at lowest order in gradients (see Supplementary
Note 3a, b). The case where the particles are in contact with a
substrate does, however, qualitatively differ from its apolar
counterpart, as it allows for particles that both self-propel and
rotate. These particles thus swim in circles. The absence of
momentum conservation additionally allows for a coupling
between the polarisation of the particles and the velocity of the
fluid. In the presence of an incompressible fluid, which was
ignored in previous treatments17–21, these couplings can enhance
the stability of the ordered phase-coherent state of these circle
swimmers, leading to a stable long-range ordered phase with a
relaxation rate independent of system size34 and Supplementary
Note 3c.

The theory presented here may be extended to study the
dynamics of concentration fluctuations as well. We perform this
analysis in Supplementary Note 6, and show that the number
fluctuations in almost all rotating ordered phases are normal, that
is, the root mean square number fluctuations in a region

containing N particles on average scale as
ffiffiffiffiffiffiffiffiffiffiffiffi
ðδNÞ2

q
� ffiffiffiffi

N
p

, as it
should in all equilibrium systems. The number fluctuations in the
chiral apolar phase on a substrate are, however, giant and scale asffiffiffiffiffiffiffiffiffiffiffiffi

ðδNÞ2
q

� N both when Ω= 0 and Ω ≠ 0 (see Supplementary
Note 6b iii for a more detailed discussion of this case).

Discussion
Our study has implications for recent experiments suggesting that
some epithelial cell layers form chiral, albeit non-rotating pha-
ses12. These cellular aggregates display an asymmetry between left
and right-tilted patterns when confined in narrow straight
channels, as predicted by our theory. Such experiments should
additionally allow for the measurement of the direction of pro-
pagation of a +1/2 defect, which we predict should be tilted at an
angle tan�1ðζc=ζÞ with respect to their polarity axis. As a result,
the measurement of this angle can immediately reveal the
strength of chiral active forces relative to the achiral ones.

Beyond these non-rotating systems, chiral rotation has recently
been observed in a nematic quasi-two-dimensional layer of
microtubules with kinesin motors35,36. In these system, micro-
tubules locally rotate in synchrony, with their phase being pre-
served over distances of milimetres, that is, hundreds of times the
length of microtubules. This persistence of order is striking when
compared with the rapid onset of spatio-temporal chaos in non-
rotating microtubule assays37, and could hint at a stabilisation of
order by rotation. Furthermore, increased density of microtubules
or enhanced volume exclusion interaction led to the disruption of
the ordered state in ref. 36, as is to be expected since steric
interaction and large densities hinder the formation of locally

rotating phases. Reproducing these rotating phases at a two-fluid
interface in conditions similar to those of ref. 37 would yield more
insights into their relative stability as in this case, the non-rotating
ordered phase is generically unstable even at infitesmal activity.
Further, an examination of the motion of topological defects in
these experiments would allow for the verification of the pre-
dicted circular motion of +1/2 defects.

Finally, our predictions regarding polar chiral swimmers could
also be tested experimentally; for instance, using sperm cells or
bacterial strains known to swim in circles near a solid
surface14,16,38. A dense collection of such sperm cells or bacteria
in a confined channel would be an example of a polar chiral fluid.
We predict that such systems can sustain a state of long-range
synchronised circular motion due to hydrodynamic interactions,
somewhat akin to the “vortex array” phase described in ref. 14

(albeit there, each “vortex” contains multiple sperm cells).
While our theory provides a generic explanation for stability of

rotating active phases in biological systems such as in refs. 35,36, a
truly discriminating test for our stability mechanism would
require decoupling chiral rotation and activity—it would involve
demonstrating that an achiral but active orientationally ordered
state is unstable, while the same system, with the same level of
activity but with chiral rotation, remains stable. At present, this
degree of control is unavailable in biological systems. However,
artificial chiral anisotropic particles39 endowed with a self-
propulsion mechanism40–42 may provide an ideal test-bed for
such well-controlled and quantitative tests. Such chiral active
swimmers can be engineered, for instance, using chemotactic
colloids41,43 in which the mobility axis, which depends on the
shape of the particle, is not coincident with the chemical axis, that
is, the axis along which the catalytic coat is applied. A further
apparent difficulty for experimental tests of our theory concerns
obtaining the synchronised rotating state itself. Liquid crystals are
generally thought to orient via steric interactions, which, however,
cannot lead to synchronisation of rod-shaped rotating particles.
This is, however, not as great a difficulty as it appears at first sight:
ordering in both polar and apolar active fluids is known to set in
even at low densities at which direct steric interactions between
the particles is irrelevant34,44,45 due to hydrodynamic or other
interactions, which do not depend on physical contact between
the particles. Such interactions are possible in chiral rotating
systems as well (A. Maitra, manuscript in preparation) and would
generically lead to the kind of ordered states that we have con-
sidered here and our detailed predictions regarding stability and
defect motion may be quantitatively tested, with the various
phenomenological coefficients appearing in our models being
determined directly from the design parameters of the active
particles. More precisely, a measurement of the static structure
factor of δθ fluctuations, when the rotating active fluid is stable,
would scale as the inverse of the relaxation rate in Eq. (6) or its
equivalent expressions for systems on a substrate or at an inter-
face between two fluids. Overall, we argue that the study of chiral
active systems has the potential to overturn the widespread belief
that incoherent flows are inevitable in active systems.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper (and its Supplementary Information files).

Received: 3 July 2018 Accepted: 6 February 2019

References
1. Kumar, A., Maitra, A., Sumit, M., Ramaswamy, S. & Shivashankar, G.

Actomyosin contractility rotates the cell nucleus. Sci. Rep. 4, 3781 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08914-7 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:920 | https://doi.org/10.1038/s41467-019-08914-7 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


2. Ballerini, M. et al. Interaction ruling animal collective behavior depends on
topological rather than metric distance: Evidence from a field study. Proc.
Natl. Acad. Sci. USA 105, 1232–1237 (2008).

3. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys.
85, 1143 (2013).

4. Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev.
Condens. Matter Phys. 1, 323–345 (2010).

5. Ramaswamy, S. Active matter. J. Stat. Mech. Theory Exp. 5, 054002 (2017).
6. Prost, J., Jülicher, F. & Joanny, J.-F. Active gel physics. Nat. Phys. 11, 111–117

(2015).
7. Toner, J. & Tu, Y. Flocks, herds and schools: a quantitative theory of flocking.

Phys. Rev. E 58, 4828 (1998).
8. Ramaswamy, S., Simha, R. A. & Toner, J. Active nematics on a substrate: Giant

number fluctuations and long-time tails. Europhys. Lett. 62, 196 (2003).
9. Simha, R. A. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in

ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002).
10. Voituriez, R., Joanny, J.-F. & Prost, J. Spontaneous flow transition in active

polar gels. Europhys. Lett. 70, 404 (2005).
11. Tee, Y. H. et al. Cellular chirality arising from the self-organization of the actin

cytoskeleton. Nat. Cell Biol. 17, 445 (2015).
12. Duclos, G. et al. Spontaneous shear flow in confined cellular nematics. Nat.

Phys. 14, 728–732 (2018).
13. Wan, L. Q. et al. Micropatterned mammalian cells exhibit phenotype-specific

left-right asymmetry. Proc. Natl. Acad. Sci. USA 108, 12295–12300 (2011).
14. Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of

hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).
15. Yang, Y., Qiu, F. & Gompper, G. Self-organized vortices of circling self-

propelled particles and curved active flagella. Phys. Rev. E 89, 012720 (2014).
16. Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. Swimming in circles:

motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006).
17. Liebchen, B. & Levis, D. Collective behavior of chiral active matter: pattern

formation and enhanced flocking. Phys. Rev. Lett. 119, 058002 (2017).
18. Hoell, C., Löwen, H. & Menzel, A. M. Dynamical density functional theory for

circle swimmers. N. J. Phys. 19, 125004 (2017).
19. Löwen, H. Chirality in microswimmer motion: from circle swimmers to active

turbulenc. Eur. Phys. J. Spec. Top. 225, 2319 (2016).
20. Yamchi, M. Z. & Naji, A. Effective interactions between inclusions in an active

bath. J. Chem. Phys. 147, 194901 (2017).
21. Levis, D. & Liebchen, B. Micro-flock patterns and macro-clusters in chiral

active Brownian disks. J. Phys. Condens. Matter 30, 8 (2017).
22. Denk, J., Huber, L., Reithmann, E. & Frey, E. Active curved polymers form

vortex patterns on membranes. Phys. Rev. Lett. 116, 178301 (2016).
23. Fürthauer, S., Strempel, M., Grill, S. W. & Jülicher, F. Active chiral processes

in thin films. Phys. Rev. Lett. 110, 048103 (2013).
24. Fürthauer, S., Strempel, M., Grill, S. W. & Jülicher, F. Active chiral fluids. Eur.

Phys. J. E 35, 89 (2012).
25. Tjhung, E., Cates, M. E. & Marenduzzo, D. Contractile and chiral activities

codetermine the helicity of swimming droplet trajectories. Proc. Natl. Acad.
Sci. USA 114, 4631–4636 (2017).

26. Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral
active fluids. Nat. Commun. 8, 1573 (2017).

27. Avron, J. E. Odd viscosity. J. Stat. Phys. 92, 543 (1998).
28. Fürthauer, S., Neef, M., Grill, S. W., Kruse, K. & Jülicher, F. The

Taylor–Couette motor: spontaneous flows of active polar fluids between two
coaxial cylinders. N. J. Phys. 14, 023001 (2012).

29. Giomi, L., Bowick, M. J., Mishra, P., Sknepnek, R. & Marchetti, M. C. Defect
dynamics in active nematics. Philos. Trans. R. Soc. A 372, 20130365 (2014).

30. Pismen, L. Dynamics of defects in an active nematic layer. Phys. Rev. E 88,
050502 (2013).

31. Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number
fluctuations in a swarming granular nematic. Science 317, 105–108 (2007).

32. Shankar, S., Ramaswamy, S., Marchetti, M. C. & Bowick, M. J. Defect
Unbinding in Active Nematics. Phys. Rev. Lett. 121, 108002 (2018).

33. Maitra, A. et al. A nonequilibrium force can stabilize 2D active nematics. Proc.
Natl. Acad. Sci. USA 115, 6934–6939 (2018).

34. Maitra, A., Srivastava, P., Marchetti, M. C., Ramaswamy, S. & Lenz, M.
Swimmer suspensions on substrates: anomalous stability and long-range
order. arXiv 1901.01069 (2019).

35. Kim, K. et al. Large-scale chirality in an active layer of microtubules and
kinesin motor proteins. Soft Matter 14, 3221–3231 (2018).

36. Tanida, S. et al. Gliding filament system giving both orientational order and
clusters in collective motion. arXiv 1806.01049 (2018).

37. Sanchez, T., Chen, D. T., DeCamp, S. J., Heymann, M. & Dogic, Z.
Spontaneous motion in hierarchically assembled active matter. Nature 491,
431 (2012).

38. Lemelle, L., Palierne, J.-F., Chatre, E. & Place, C. Counterclockwise circular
motion of bacteria swimming at the air–liquid interface. J. Bacteriol. 192,
6307–6308 (2010).

39. Kümmel, F. et al. Circular motion of asymmetric self-propelling particles.
Phys. Rev. Lett. 110, 198302 (2013).

40. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped
nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

41. Golestanian, R., Liverpool, T. B. & Ajdari, A. Designing phoretic micro- and
nano-swimmers. N. J. Phys. 9, 126 (2007).

42. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to
random walk. Phys. Rev. Lett. 99, 048102 (2007).

43. Saha, S., Golestanian, R. & Ramaswamy, S. Clusters, asters, and collective
oscillations in chemotactic colloids. Phys. Rev. E 89, 062316 (2014).

44. Kumar, N., Soni, H., Ramaswamy, S. & Sood, A. K. Flocking at a distance in
active granular matter. Nat. Commun. 5, 4688 (2014).

45. Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D. Hydrodynamics of confined
active fluids. Phys. Rev. Lett. 110, 038101 (2013).

Acknowledgements
A.M. acknowledges insightful and illuminating discussions with S. Ramaswamy, P. Sil-
berzan, and J.-F. Joanny. This work was supported by a Marie Curie Integration Grant
PCIG12-GA-2012-334053, “Investissements d’Avenir” LabEx PALM (ANR-10-LABX-
0039-PALM), ANR grant ANR-15-CE13-0004-03 and ERC Starting Grant 677532 to M.
L. Our group belongs to the CNRS consortium CellTiss.

Author contributions
A.M. and M.L. designed and performed research and wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-08914-7.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08914-7

6 NATURE COMMUNICATIONS |          (2019) 10:920 | https://doi.org/10.1038/s41467-019-08914-7 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-08914-7
https://doi.org/10.1038/s41467-019-08914-7
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Spontaneous rotation can stabilise ordered chiral active fluids
	Results
	Dynamical equations for an apolar chiral fluid
	Enhancement of linear stability by chiral rotation
	Suppression of defect separation
	Generality of our results

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




