
HAL Id: hal-02102852
https://hal.science/hal-02102852

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based System Engineering in Practice: Document
Generation - MegaM@Rt2 Project Experience

Andrey Sadovykh, Adnan Ashraf, Alessandra Bagnato, Dragos Truscan,
Pierluigi Pierini, Hugo Bruneliere, Orlando Avila-Carcia, Wasif Afzal

To cite this version:
Andrey Sadovykh, Adnan Ashraf, Alessandra Bagnato, Dragos Truscan, Pierluigi Pierini, et al..
Model-Based System Engineering in Practice: Document Generation - MegaM@Rt2 Project Experi-
ence. 14th Central and Eastern European Software Engineering Conference Russia (CEE-SECR’18),
Oct 2018, Moscow, Russia. pp.1-6, �10.1145/3290621.3290633�. �hal-02102852�

https://hal.science/hal-02102852
https://hal.archives-ouvertes.fr

Model-Based System Engineering in Practice: Document Generation

- MegaM@Rt2 Project Experience

Full paper

Andrey Sadovykh
Softeam, 75016 Paris, France
andrey.sadovykh@softeam.fr

Innopolis University, 420500 Innopolis,
Respublika Tatarstan, Russia,

a.sadovykh@innopolis.ru

Adnan Ashraf
Åbo Akademi University, 20500 Turku,

Finland
adnan.ashraf@abo.fi

Alessandra Bagnato
Softeam, 75016 Paris, France

alessandra.bagnato@softeam.fr

Dragos Truscan
Åbo Akademi University, 20500 Turku,

Finland
dragos.truscan@abo.fi

Pierluigi Pierini
Intecs, 56121 Pisa, Italy

pierluigi.pierini@intecs.it

Hugo Bruneliere
IMT Atlantique, LS2N (CNRS) &
ARMINES, 44000 Nantes, France
hugo.bruneliere@imt-atlantique.fr

 Orlando Avila-Carcia
Atos, 38110 Tenerife, Spain

orlando.avila@atos.net

Wasif Afzal
Mälardalen University, Sweden

wasif.afzal@mdh.se

ABSTRACT

MegaM@Rt2 project is a collaborative initiative of the ECSEL
Joint Undertaking under Horizon 2020 EU programme. The
project regroups 26 partners from 6 different European countries
who jointly address challenges of engineering modern cyber-
physical systems by using model-based engineering methods.
Since it is a model-based project, we adopted a similar approach
for dealing with requirements analysis, architecture, design,
roadmap planning and development status checking. In these
tasks, document generation methods were particularly useful to
create a set of “live” reference specifications and contractual

reports. We believe that these methods perfectly demonstrate
relevant benefits of the model-based approach and are applicable
to many other contexts. Document generation has several
challenges, since the produced documents should address several
goals and target different audience. Hence, we describe this
approach in detail in this paper in the form of an experience
report.

In essence, the MegaM@Rt2 project had a rather trivial task to
document inception phase of the project. The challenge arises
from the scale of the project, we had to deal with hundreds of
requirements from completely different users, hundreds of
features of 29 tools, which had to be mapped to those
requirements in order to analyze a gap and devise a roadmap for a
consistent tool chain. With limited resource on technical
coordination we had to be extremely efficient and thus we adopted
a model-based approach that we describe in this paper. The paper
should be helpful to project managers and architects who wish to
discuss on model-based approaches from a practical side.

CCS CONCEPTS

• Software and its engineering → Software systems models;
Model-driven software engineering

KEYWORDS

document generation, requirements, model-based system
engineering, model-driven software engineering, UML, SysML,
traceability.

1 INTRODUCTION

MegaM@Rt2 is a three-years project, funded by European
Components and Systems for European Leadership Joint
Undertaking (ECSEL JU) under the H2020 European program,
that started in April 2017 [4, 5, 9, 11]. The main goal is to create
an integrated framework incorporating methods and tools for
continuous system engineering and runtime validation and
verification (V&V). The underlying objective is to develop and
apply scalable model-based methods and tools, in order to provide
improved productivity, quality, and predictability of large and
complex industrial systems.

One of the main challenges is to cover the needs coming from
diverse and heterogeneous industrial domains, going from
transportation and telecommunications to logistics. Among the
partners providing case studies in the project, we can cite Thales,
Volvo Construction Equipment, Bombardier Transportation and
Nokia. These organizations have different product management
and engineering practices, as well as regulations, commercial and
legal constraints. This results in a large and complex catalogue of
requirements to be realized by the architecture building blocks at
different levels of abstraction. Thus, the development of the

2

MegaM@Rt2 framework is based on a feature-intensive
architecture and on a related implementation roadmap.

The MegaM@Rt2 framework plans to integrate more than 29
tools implementing the above-mentioned methods and satisfying
requirements of the case studies. The tool features are grouped
into three complementary conceptual tool sets:

MegaM@Rt2 Systems Engineering Tool Set regroups
a variety of current engineering tools featuring standard
and domain specific languages and methodologies, e.g.:
AADL, EAST-ADL, Matlab/Simulink, AUTOSAR,
Method B or Modelica, SysML and UML, in order to
precisely specify both functional and non-functional
properties. Moreover, system level V&V and testing
practices are also supported by this tool set, in order to
assess the correctness of the model.

MegaM@Rt2 Runtime Analysis Tool Set seeks to
extensively exploit system data obtained at runtime.
Different methods for model-based V&V and model-
based testing (MBT) are rethought and/or extended for
runtime analysis. Model-based monitoring allows to
observe executions of a system (in its environment) and
to compare it against the executions of corresponding
model(s). Monitoring also allows a particular system to
be observed under controlled conditions, in order to
better understand its performance.

MegaM@Rt2 Model & Traceability Management

Tool Set is a key part of the framework as it is
dedicated to support traceability between models across
all layers of the system design and execution (runtime).
This can go from highly specialized engineering
practices to low-level monitoring. Relying on the
unification power of models, it should provide efficient
means for describing, handling and keeping
traceability/mapping between large-scale and/or
heterogeneous software and system artefacts.

In the context of the Model-driven Architecture (MDA) and
Model-based approaches, developed and deployed in the last two
decades, automated document generation was foreseen as one of
the primary benefits [1, 6]. Indeed, models as the first-class
entities of the engineering process should contain all the necessary
information for the design documentation. Automated document
generation was one of the first benefits offered by the Model-
driven Architecture (MDA) [1, 6]. Indeed, models as the first-
class entities of the engineering process should contain all the
necessary information for the design documentation. However,
several related challenges arise. First, the software architecture
team should decide the right organization for the global
architecture model. Second, it should be carefully planned what
level of details is appropriate for the design of the individual
contributions. Third, it should be considered that the architecture
model will be used during the project's timeframe for numerous
purposes, thus it needs to accommodate unforeseen changes in
methodology. Fourth, several documents need to be generated by
extracting the relevant information from all over the architecture
model.

In this paper, we present our experience on providing and
using model-based tool support for on providing model-based tool
support for generating documentation necessary for documenting
the project (e.g, via deliverables) with respect to the definition of
MegaM@Rt2 framework architecture, of the solution to be
implemented in the context of the project and of the
corresponding roadmap for the development of architecture
components throughout the project. In particular, we focus on the
document generation challenges and practical solutions to these.

2 DOCUMENT GENERATION CHALLENGES

Documentation is an inherent part of any engineering process
that contributes to quality, maintainability and reusability of
produced systems. Arguably, there is no clean engineering process
without a proper documentation. As an example, ISO supports the
software engineering process with a set of standards dedicated to
different audience such as designers, developers, testers,
managers, suppliers and agile team members [7, 8]. The famous
ISO 9001 defines a set of mandatory documents including e.g. the
requirements specifications. Another popular set of standards is
European Space Agency system engineering standards ECSS-E-
40 / ECSS-Q-80, also strongly requiring a set of documents and
reports to accompany the engineering process on various levels.
This includes software-requirement analysis, top-level
architectural design, design of software and hardware items, test
reports, and user documentation. These documents include
mandatory parts that are particularly important on various stages
of the process. Many times, the documentation is also a
contractual obligation or a part of a certification.

In the meantime, the documentation is an extremely tedious
task. The documentation should be readable, useful, consistent
and always up-to-date. These characteristics are very difficult to
achieve. Documentation is a mechanical production of
specifications that often cannot follow the pace of engineering
work. Thus, many developers consider this as a useless task that
can sometimes contribute to confusing situations. Consequently,
agile approaches encourage developers to limit the documentation
effort to bare minimum – notes in code should be enough. While
such approaches can be appropriate for small-to-medium size
projects, they are often not relevant or even counterproductive in
larger and/or critical projects.

Model-driven and model-based approaches suggest generating
documents from a system model by extracting relevant
information such as diagrams, textual descriptions and
dependencies. The major benefit is the possibility to regenerate
the documents when needed, thus having in place always updated
“live” documents that can follow precisely the best standards. The
main challenge is about defining the right generation templates for
multiple documents:

 Various parts of the model are used in different
documents. Requirements in the requirement
specifications. Interface definitions in analysis
documents;

 Level of details varies depending on the document type
and the audience;

 3

 The choice of the “target platform” for document

generation, e.g. MS Word or HTML would require
changes in structure and style of the documents. Word
documents are usually supposed to be read sequentially,
while web pages should be easy for navigation in
sporadic manner.

Considering the above-mentioned challenges, it is essential to
structure and define the model properly as well as to define how
the information is shared and used in different documents
depending on its goal and intended audience. In order to deal with
these challenges in a practical way we suggest the following steps:

Define a structure of an architecture model based on the
most important information to be shared within the team
at the current stage of the project;

Define a structure of reports, which are supposed to
benefit of generation;

Define which information should be extracted from the
model, in order to contribute to the report;

Develop tool support.
In the following sections, we will further describe our

approach based on the MegaM@Rt2 project experience.

3 MEGAM@RT2 ARCHITECTURE MODEL

SPECIFICATION

The architecture model had to support the inception phase of
the MegaM@Rt2 project and a set of contractual reports to be
delivered during the project. At this phase, it was essential to lay
down the user requirements coming from case study partners, list
the available tools from the consortium, outline the gaps in tool
features with regards to the user requirements, track the tool
providers plans to deliver the required features, prepare for tool
sets integration.

We adopted a practical approach for the architecture
specification that is particularly suited to collaborative projects
such as MegaM@Rt2, which integrates tools coming from many
parties. The authors are well informed about of a wealth of
notations and methods for engineering process modelling such as
OMG ESSENCE, SPEM, BPMN as well as The Open Group
ArchiMate. We participated in standardization and implemented
several solutions based on above-mentioned notations. In the
project context, our goal was to avoid ambiguity, reduce the
learning curve and simplify adoption for 60+ engineers who work
on the project. Hence, as a modelling language, we took a
Systems Modelling Language (SysML) [2] subset for
requirements specification and a Unified Modelling Language
(UML) [3] subset for the high-level architecture specification. We
have picked the requirements concept from SysML, while from
UML we borrowed components, interfaces, nodes,
aggregation/composition, dependencies, generalization and
realization. We believe that these concepts are the most familiar
to a large audience of architects.

As for the model structure, we split the architecture model in
several parts and divided the responsibilities among the different
Tool Set (TS) leaders, tool providers and case study providers.
The following terminology and subsystems has been defined:

Requirements/Purposes level, specified in SysML:

Case study requirements - specified by case study
partners. These are the user requirements, which we
imported for traceability purposes.

Framework requirements - specified by TS leaders. We
grouped the tools by consortium in conceptual tool sets
described in Section 1. The framework requirements
summarized the users feature requirements related to
those groups.

Tool purposes - specified by tool providers. Tool
purposes in our terminology are the tool requirements
that correspond to available features or to features be
developed. Each tool provider specified the baseline
features and the features to be developed as a
contribution to the MegaM@Rt2 project.

Requirements traceability - the gap analysis and
roadmap specification require that the user requirements
are linked to the tool features. TS leaders and tool
providers established those traceability links in the
model.

Architecture level, specified in UML:

Framework - TS leaders specified conceptual tool sets
in a form of component diagrams.

Tool set – tool providers described their tools
individually with diagrams following a common
template.

Common interfaces – as a part of tool sets integration
preparation we asked tool providers to list the support
exchange forms and APIs. This helps to identify tools
that can potentially work together.

Common deployment frameworks – again as a part of
tool sets integration, we explored possibilities for
common deployment of tools in the frame of the tool
sets.

Figure 1: Overview of the Architecture and Development

process in MegaM@Rt2.

The approach is further outlined in Fig. 1, where we present
the steps to define the MegaM@Rt2 framework architecture. At
the step 1, the Tool Set leaders summarized and extracted the
essence and commonalities from the users’ requirements provided
by the case study partners. This resulted in a MegaM@Rt2
Framework Requirements. At the step 2, tool providers linked

4

purposes (features) to those generalized user requirements the
MegaM@Rt2 Framework Level. Therefore, by the indirect traces
between framework requirements and tool purposes (features) we
were able to provide the gap analysis, identifying the unsupported
user requirements and the relevant mitigation measures e.g.
additional tools, new purposes (features) for provided tools, etc.

For further analyses in order to prepare development and
integration of coherent tool sets, we devised a conceptual
architecture with the steps 3 and 4. The MegaM@Rt2 Framework
is regrouped in Conceptual Tool Sets (Section 1). At the step 3
we identified the relevant interfaces to satisfy framework
requirements and subordinate tool sets to further detail the
implementation. Then, at the step 4, for each Conceptual Tool Set
Component we specify concrete tool set components to realize the
desired functionality. Those concrete tool set components expose
features and satisfy purpose requirements that include the release
milestone indications for the roadmap definition.

3.1 Requirements modeling

In our approach, requirements originated from different
sources, i.e. from 9 case study providers and 22 tool providers. In
order to have a uniform approach for requirement specification
that would facilitate gap analysis and roadmap identification, we
defined requirement templates that were used to define the
expected properties to be collected, such as criticality for the case
study requirements and planned release date for tool purposes.

We edited requirements in both diagram view and tabular view
(see Fig. 2) in the Modelio tool [12]. The requirements were
manually edited or automatically imported from other documents,
e.g. MS Excel.

Figure 2: Example: Requirements editing.

3.2 Architecture modeling.

At the architecture level, we used Class and Deployment
diagrams. We limited modelling to a subset of UML to enforce
the common understanding of the architecture and simplify
editing. In particular, we chose to use UML Components,
Interfaces, Associations, Generalizations and Dependencies.

For tool components, we set a template for the architecture
specification that included class diagram to specify functional
interfaces, tool component subordinates and the relation to the
conceptual tool set in the framework, and deployment diagrams to
identify the execution environment of the tool component. In
addition, Package diagrams have been used to define the high-
level structure of the MegaM@Rt2 framework architecture. For

instance, Fig. 3 shows that the MegaM@Rt2 framework
architecture is composed of three parts corresponding to the three
complementary conceptual tool sets of the project. System
Engineering, Runtime Analysis, and Model and Traceability
Management, respectively.

Figure 3: Example: Editing architecture and documentation

with Modelio.

In Modelio, the documentation (Fig. 3) can be added in the
textual notes or attached as separate documents. Both plain text
and rich text notes are supported. In our work, we deliberately
restricted editing to plain text notes to make sure that the
generated documents are formatted correctly.

3.3 Requirements traceability.

Once the requirements had been specified, for each tool
component we defined a traceability matrix to link case study
requirements to framework requirements, and respectively
framework requirements to tool purposes as described by the steps
1 and 2 of the modelling approach in Fig. 1. This allowed us to
use instant traceability diagrams, as the one in Fig. 4, to visualize
the whole set of dependencies for a given requirement. This has
been beneficial not only for the requirement analysis and toolset
integration planning, but also for identifying common interfaces
for tool components and visualize gaps for the requirements
analysis.

Figure 4: Example: Traceability links among the tool set,

framework and case study requirements.

4 STRUCTURING MEGAM@RT2 REPORTS

The information extracted from the above-mentioned model is
used to generate the contents of different deliverables in the
project, each focusing on different perspectives corresponding to

 5

various tool sets and thematics. The following deliverables have
been already published on the project website [13]:

D1.2 Architecture specification and roadmap – initial
version;

D1.4 Architecture specification and roadmap – final
version;

D2.2 MegaM@Rt design tool set specification;

D2.3 MegaM@Rt design tool set – initial version;

D3.2 Specification of the MegaM@Rt Runtime
Analysis tool set;

D3.3 MegaM@Rt Runtime Analysis tool set – initial
version;

D4.2 Specification of the Model Management &
Traceability tool set;

D4.3 Model Management & Traceability tool set –
initial version;

These documents included the sections that where generated
based on the information extracted from the models. In particular,
the all specifications included tables for features, diagrams for
interfaces, subordinates and deployment.

It was particularly helpful to extract the traceability links
information in a form of matrix tables that enabled us to visualize
the relations between user requirements and tools, which provide
the corresponding features.

Figure 5: Example: D3.2 Traceability and release plan excerpt

for framework requirements and corresponding concrete

tools.

On the later stages of the project we linked the tools features to
the release milestones and their status in order to track the
progress (Fig. 5).

5 TOOLING APPROACH FOR MODELING

AND DOCUMENT GENERATION

Appropriate tooling support is important for the success of the
model-driven engineering process as shown in Fig. 1. In order to
provide tool support for our architecture specification approach,
we selected the Modelio and Constellation tools [10, 12] provided
by one of the project participants, SOFTEAM.

When collecting inputs from 50 users, it was important to
provide guidelines and diagram templates. Otherwise, the
integration work may have become extremely challenging. As
such, we defined a set of template diagrams both for specifying
requirements and for collecting tool purposes. Users were able to
clone these templates inside the model to describe their concrete
tools.

Modelio offers fairly flexible model query and document
generation facilities that were used for editing and maintaining
four specifications in the project. The template editor (Fig. 6) was
particularly useful to implement custom extraction of model
elements in order to create specific sections of the documents. In
the example below, the template specifies that the generator will
search for a Tool Components package, look at all the UML
components to generate a tool section. This document section
included an introductory paragraph, a “Purpose” subsection, and

subsections for all class and deployment diagrams as well as a
section on the owned interfaces.

Figure 6: Example: Custom document generation template for

individual tools section.

When editing the architecture model, it is quite useful to see
the generation result. Along with developing custom document
templates, we integrated the document generation to the Modelio
interface. This way, regular users could call the document
generation directly from the tool using a context menu (Fig. 7).
The new customized document templates can be done by users
without programming skills with the help of Modelio visual
editors.

Figure 7: Example: Architecture document generated with

Modelio Document Publisher.

6

The effort required to develop templates was insignificant
comparing to the time required to devise the documents structure
and collect the inputs from project partners in a model form.

6 CONCLUSIONS

In this paper, we presented the model-based documentation
approach that we adopted at the inception stage of the
MegaM@Rt2 project. Our approach enforced the coordination
and collaboration among many different stakeholders, and thus
the manageability of this complex project.

The main benefit of our model-driven approach is that all
information was collected from different stakeholders and stored
using a centralized model. In this paper we showed how we can
use the principles of model-driven development where the model
is the first-class citizen and different artefacts are generated from
it. In our case, the generated artefact was the documentation of the
project. The main benefit of having the model as a source of
information, was that we could generate documentation (ie.,
deliverables) that focused on different perspectives of the
MegaM@RT2 framework, at different levels of abstraction and
using different document formats. This also, allowed to bridge the
gap between the experienced modeling users and less experience
ones which could at any moment generate the documentation they
needed related to a given aspect of the project.

Overall, the experience with this approach was mostly
positive, and the approach will be further used 1) in other
architecture deliverables at later stages of the project and 2) as the
reference point for the partners in the project at any moment in
time. Further on the positive site, this approach has already
contributed to delivery of 8 contractual reports in the
MegaM@Rt2 projects. The approach has been highly praised by
the expert as the project review. Finally, we received interest from
H2020 DataBio and ITEA REVAMP projects to apply a similar
technique. Currently, these projects have partially adopted the
document generation as well.

ACKNOWLEDGEMENT

This project has received funding from the Electronic Component
Systems for European Leadership Joint Undertaking (ECSEL JU)
under grant agreement No. 737494. This Joint Undertaking
receives support from the European Union's Horizon 2020
research and innovation program and from Sweden, France,
Spain, Italy, Finland and Czech Republic.

REFERENCES

[1] OMG: Model Driven Architecture (MDA) Guide rev. 2.0,

http://www.omg.org/cgi-bin/ doc?ormsc/14-06-01
[2] OMG: OMG Systems Modeling Language (OMG SysML), Ver. 1.4,

http://www.omg.org/ spec/SysML/1.4/
[3] OMG: Unified Modeling Language (UML), Ver. 2.5,

http://www.omg.org/spec/UML/2.5/
[4] Afzal, Wasif, et al. "The MegaM@Rt2 ECSEL Project: MegaModelling at

Runtime—Scalable Model-Based Framework for Continuous Development
and Runtime Validation of Complex Systems." Digital System Design
(DSD), 2017 Euromicro Conference on. IEEE, 2017.

[5] Bruneliere, Hugo and Mazzini, Silvia and Sadovykh, Andrey. "The
MegaM@Rt2 Approach and Tool Set." DeCPS Workshop, 22nd
International Conference on Reliable Software Technologies-Ada-Europe
2017. 2017.

[6] Di Ruscio, Davide and Paige, Richard F. and Pierantonio, Alfonso: Guest
editorial to the special issue on success stories in model driven engineering.
Science of Computer Programming, Volume 89 (Part B): 69–70, 2014.

[7] ISO/IEC/IEEE 29148: Systems and software engineering - Life cycle
processes - Requirements engineering. ISO/IEC/IEEE. Nov. 2011.

[8] ISO/IEC 25010: Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SquaRE) - System and software
quality models. ISO/IEC. March 2011

[9] MegaM@Rt2 project web-site, https://megamart2-ecsel.eu/, last visited on
July 20, 2018.

[10] Desfray, Philippe. "Model repositories at the enterprises and systems scale:
the modelio constellation solution." Information Systems Security and
Privacy (ICISSP), 2015 International Conference on. IEEE, 2015.

[11] Afzal, Wasif, et al. The MegaM@Rt2 ECSEL project: MegaModelling at
Runtime – Scalable model-based framework for continuous development
and runtime validation of complex systems, Microprocessors and

Microsystems, Volume 61: 86-95, 2018.
[12] Modelio MDE workbench by ModelioSoft, web-site

https://www.modeliosoft.com/en/, last visited on July 19, 2018
[13] MegaM@Rt2 deliverables web-page, https://megamart2-

ecsel.eu/deliverables/, last visited on July 19, 2018.

View publication statsView publication stats

