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Abstract. We review recent advances in the theory of trapped fermions using
techniques borrowed from random matrix theory (RMT) and, more generally,
from the theory of determinantal point processes. In the presence of a trap, and
in the limit of a large number of fermions N > 1, the spatial density exhibits
an edge, beyond which it vanishes. While the spatial correlations far from the
edge, i. e. close to the center of the trap, are well described by standard many-
body techniques, such as the local density approximation (LDA), these methods
fail to describe the fluctuations close to the edge of the Fermi gas, where the
density is very small and the fluctuations are thus enhanced. It turns out that
RMT and determinantal point processes offer a powerful toolbox to study these
edge properties in great detail. Here we discuss the principal edge universality
classes, that have been recently identified using these modern tools. In dimension
d = 1 and at zero temperature T = 0, these universality classes are in one-to-
one correspondence with the standard universality classes found in the classical
unitary random matrix ensembles: soft edge (described by the “Airy kernel”) and
hard edge (described by the “Bessel kernel”) universality classes. We further
discuss extensions of these results to higher dimensions d > 2 and to finite
temperature. Finally, we discuss correlations in the phase space, i.e., in the space
of positions and momenta, characterized by the so called Wigner function.
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1. Introduction

Over the past few decades, there have been spectacular experimental developments
in manipulating cold atoms (bosons or fermions) [1, 2] that have led to a number of
Nobel prizes. These developments allow one to probe quantum many-body physics,
both for interacting and noninteracting systems. In these systems the nature of the
interaction can be tuned experimentally and the effective interaction can actually
be removed. However, even noninteracting bosons and fermions display interesting
collective many-body effects emerging purely from the quantum statistics [3, 4, 5].
For noninteracting fermions, which we focus on here, the Pauli exclusion principle
induces highly non-trivial spatial (and temporal) correlations between the particles.
Remarkably, the recent development of Fermi quantum microscopes [6, 7, 8] provides a
direct access to these spatial correlations, via a direct in situ imaging of the individual
fermions, with a resolution comparable to the inter-particle spacing. The theoretical
understanding of these spatio-temporal correlations in noninteracting fermions is
therefore an outstanding and challenging problem.

In contrast to classical systems, quantum systems display non-trivial spatial
fluctuations even at zero temperature (T = 0) due to the zero-point motion of the
particles. These purely quantum fluctuations, in combination with the quantum
statistics of particles (Bose-Einstein or Fermi-Dirac), give rise to non-trivial spatial
correlations. The presence of a confining trap also affects these spatial correlations in
a non-trivial way and this is our main object of interest here. Indeed, the confining
trap breaks the translational invariance of the system. The physics in the bulk near
the trap center (where the fermions do not feel the curvature of the confining trap)
can be understood using the traditional theories of quantum many-body systems such
as the local density approximation (LDA) [4, 9]. However, away from the trap center,
the fermions start feeling the curvature induced by the confining trap. As a result the
average density profile of the fermions vanishes beyond a certain distance from the
trap center—thus creating a sharp edge, see Fig. 1. Near this edge, the density is small
(there are few fermions) and consequently, quantum and thermal fluctuations play a
more dominant role than in the bulk. The importance of these fluctuations means
that traditional theories such as LDA break down in this edge region. Indeed, this
was pointed out by Kohn and Mattson that the uniform electron gas, the traditional
starting point for density-based many-body theories of inhomogeneous systems, is
inappropriate near electronic edges [10]. One thus needs new methods to describe
this edge physics. In this review we will demonstrate a connection to Random Matrix
Theory (RMT) which can thus be exploited to provide precise and powerful tools to
address the edge physics (see Fig. 2). The methods we discuss will be used to derive
the average density profile for the free fermionic system, but also the two point kernel
from which all statistics and correlation functions can be inferred.

In a series of recent studies we have shown how the techniques from RMT
can be exploited to make precise predictions for the spatial correlations between
noninteracting fermions near the edge [11, 12, 13, 14]. In one dimension and at zero
temperature, the joint distribution of the positions of the fermions in a trap (that
characterizes the purely quantum fluctuations) can be mapped, for certain types
of traps, to the joint distribution of eigenvalues of an appropriate classical random
matrix ensemble (see Fig. 2). For example, the harmonic potential corresponds to the
Gaussian Unitary Ensemble (GUE), the hard box potential corresponds to the Jacobi
Unitary Ensemble (JUE) and the potential V (z) = A 2%+ B/2? (x > 0) corresponds to
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Figure 1. Sketch of typical density profiles for non-interacting trapped fermions,
a) ind =1 and b) in d = 2. In both cases, it exhibits an edge (in red) beyond
which the (scaled) density vanishes in the limit N — oco: a) in 1d the “edge”
consists of two points while in d = 2 the edge is a circle (for spherically symmetric
potential).

the Laguerre Unitary Ensemble (LUE). The fact that these ensembles are all unitary
reflects the fact that the fluctuations are quantum in nature, as we will see below. In
dimensions d > 1 or at temperature T' > 0, these direct connections to RMT ensembles
no longer hold. However, the underlying structure of spatial correlations is still
described by a determinantal point process (DPP) which is completely characterized
by a temperature and dimension dependent kernel. In this short review, we briefly
discuss some of these developments involving RMT and describe how it leads to precise
predictions for the spatial correlations in this trapped Fermi gas, both in the bulk as
well as at the edges. In the bulk, our results recover in a controlled way the results
of the LDA, which is extensively used in the atomic physics literature. However, at
the edge, RMT techniques lead to new results which can not be obtained using the
semi-classical (LDA) approximation.

The paper is organised as follows. We start in Section 2 by explaining the
exact correspondence between the position of N spin-less trapped fermions at zero
temperature in one dimension, with a number of confining potentials, and the
eigenvalues of a number of unitary Gaussian random matrix ensembles. These
exact correspondences allow a number of results from random matrix theory to be
directly transposed to the context of trapped fermions. In Section 3 we describe the
determinantal structure of the statistics of the trapped fermion problem. In particular,
we show how all correlation functions can be expressed in terms of a kernel and how
this kernel behaves in the limit of a large IV. In particular, we show how the statistics
are strongly modified at the edge of the Fermi gas, where the effects of quantum
fluctuations are much more important than in the bulk. In section (4) we consider
trapped fermions at zero temperature in higher dimensions d > 2. Although the
direct link with RMT no longer holds in this case, these systems still possess the
determinantal structure exhibited by those in one dimension. We present results for
the behaviour of the average density and kernel as a function of spatial dimension,
both in the bulk and at the edge. In Section 5 we examine what happens at non-zero
temperature. There we show that in the canonical ensemble, i.e. for fixed particle
number, the determinantal structure is lost. However it is recovered if one passes to
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the grand canonical ensemble. By exploiting this we can obtain the bulk and edge
properties, in a well defined low temperature regime, by using the equivalence between
the canonical and grand canonical ensembles in the thermodynamic limit. In Section
6, we consider the correlations in the phase space, i.e. in position and momentum
space (z,p), characterized by the so-called Wigner function, which also exhibits an
edge in the (x,p) plane. Focusing on the edge in momentum space, we also discuss
some recently discovered connections with multi-critical matrix models. Finally, we
conclude in Section 7.

2. 1d noninteracting trapped fermions at 7= 0 and random matrix
ensembles

We consider N spinless noninteracting fermions in a one-dimensional trapping
potential V' (z). The system is thus described by the N-body Hamiltonian Hy =
ij=1 hj where h; = h(Z;,p;) is a single-particle Hamiltonian of the form

~2

h= -+ V(@) (1)

Let us denote by ¢;(x) the I-th single-particle eigenfunction (I = 1,2,---) with
eigenvalue ¢, i.e.,

hoi(x) = agi(z) . (2)
The ground-state of the N-body system corresponds to filling up the N first single-
particle energy levels with one fermion per level (as dictated by the Pauli exclusion
principle). Correspondingly, the N-body ground-state wave-function is given by the
Slater determinant

1

Yo(z1,- - ’xN)_ﬁ 13%21\1@(%) g (3)
with the associated energy Ey = Zz]i1 €;. The quantum probability density function
(PDF) is then given by

2

2 =N Gu(z;)| - (4)
This joint PDF is normalised and encodes the quantum fluctuations of the Fermi gas.
For an arbitrary potential V() it is hard to solve this Schrodinger equation (2) and
evaluate explicitly the Slater determinant in (3). However, for a few specific potentials
V(x) the Slater determinant can be computed as we show below.

Piging(z1,--- ,2n) = [Yo(z1, -+ ,2N)]

det
1<j,l<N

2.1. Harmonic potential and the GUE

We consider first the harmonic trap V(z) = %m w?2?. In this case, the single-particle

eigenfunctions ¢ (z) are given by

or(x) = [\/7?2’%'] e” 7 Hg(aw), (5)
where k = 0,1,--- (note that here, and what follows, the index k starts at 0 while the
generic index [ in Eq. (2) starts at 1), Hg(2) is the k-th Hermite polynomial of degree
k and o = y/mw/h is the characteristic length scale of the trap. The associated single-
particle energy levels are given by e, = (k + 1/2) hw. Here, to construct the Slater
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V(z), pn(2)

i -R 0 +R i 0 x

a)  Gaussian Unitary Ensemble | b) Jacobi Unitary Ensemble  ic) Laguerre Unitary Ensemble
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Figure 2. Quantum potentials V(z) (black solid line) and associated bulk
fermion density pn(z) (blue dotted line) corresponding to three different unitary
ensembles of RMT discussed here: a) the harmonic potential V(z) = mw? 22/2,
for which the limiting density is the Wigner semi-circle (38), corresponds to the
GUE (6), b) the hard box potential on [—R,+R)], for which the limiting density
is uniform (51), corresponds to the JUE as in (12) with parameters a = b = 1/2
(more general JUE ensembles correspond to potentials of the form (13)) and c)
the potential V(z) = Az? + B/z? on (0,+oc0) (14) for which the density is a
“half” semi-circle (58), corresponds to the LUE (16).

determinant, we take the first N energy levels labelled by £k = 0,--- , N — 1. In the
Slater determinant, the Gaussian factors come out of the determinant, leaving us to
compute the determinant of a matrix consisting of Hermite polynomials. The Hermite
polynomials Hy(z), Hi(2),- - , Hyv—_1(2) provide a basis for polynomials of degree N—1
and by manipulating the rows and columns, the determinant can be reduced to a
Vandermonde determinant. Hence, we can evaluate the Slater determinant explicitly
to obtain

1 2N 2
Pjoint(ﬂfh . ,fEN) — We CADDNEE + H(xl o xj)z ’ (6)
N i<j
where zJC\;,UE is a normalisation constant. We identify immediately that, up to a

trivial rescaling factor «, this is precisely the joint distribution of the eigenvalues
of a N x N GUE matrix of RMT [15, 16]. Clearly the Vandermonde square
term ], (2 — x;)? provides an effective repulsion between any pair of fermions
coming purely from the Pauli exclusion principle. Thus even though the fermions are
noninteracting to start with, their quantum statistics provides an effective pairwise
repulsion. Note that in the context of GUE eigenvalues, the Vandermonde square term
has a purely mathematical origin, coming from the Jacobian of the transformation
from matrix entries to eigenvalues and eigenvectors [15]. Finally, we notice that, since
in quantum mechanics, the probability density is always the square of the modulus of
the wave function, the power of the Vandermonde term is naturally 2, and hence the
corresponding random matrix ensemble is necessarily a unitary ensemble.

Before we discuss other potentials, it is interesting to point out one immediate
consequence of the one-to-one mapping between the positions of the fermions in a 1d
harmonic trap at zero temperature and the eigenvalues of GUE. In the RMT literature
there has been a tremendous recent interest in the distribution of the largest eigenvalue
Amax (for short reviews see [17, 18]). When appropriately centered and scaled, the
limiting distribution of Ayayx is the celebrated Tracy-Widom (TW) GUE law [19]. This
TW distribution has since appeared in a wide variety of, apparently unconnected,
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problems [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and has also been measured
in experiments [33, 34], albeit somewhat indirectly. From the above mapping (6), we
see that the position xya.x of the rightmost fermion at T' = 0 corresponds to Apax
and, hence, the quantum fluctuations of x.yx, appropriately centered and scaled, is
also described by the TW-GUE law. This provides a possibility to directly measure
the TW-GUE distribution in trapped fermion systems [12].

2.2. Hard box potential and the JUE

Let us now consider the case of a hard box potential V (z) of the form

V(x):{ 0, |2 <R )

oo, |z|>R.

In this case, the single-particle Schrodinger equation (2) can be solved exactly with
eigenfunctions and energies given by

. lm ., R*n?
¢l($) = Sin <2R($ + R)) and €] = %kl = Wl 5 (8)
forl =1,2,---. Weset in the following R = 1, which amounts to rescaling all positions

by R. The N-body ground state wave function is given by the Slater determinant
constructed from the single-particle eigenfunctions in Eq. (8),

1 1 AL
Uo(zy, - ,aN) = W 1§(ji,elt§N bi(xj) = W 1g(ji,eithsm (Q(mj + 1)) . (9

This Slater determinant can be written in a more convenient way by using the identity
sin(nz) = sin(x)U,—1(cos(z)) where U, (t) is the Chebychev polynomial of second kind
of degree n. By rearrangements of rows and columns, the joint quantum PDF of the
positions in Eq. (4) reads [35, 36, 37, 38]

N N
1 L] L (TX; L /TXi\ |2
Pt (21, ,xN) = —oE l_lcos2 (7) H ’sm (#) — sin (TJ)‘ , (10)
AN i<j
where 23VE is a normalisation constant. Introducing the new variables u; = (1 +

sin(7x;/2))/2, the joint PDF of uy,--- ,uy can be worked out from (10). It coincides
with the joint PDF of the eigenvalues of a matrix belonging to the JUE [15, 16, 36, 35]

N N
1 2
Pioint(u1, -+, un) = %]Vﬁn\/ul(l —up) [ ] lwi —wy* . wi€[0,1]. (11)
=1

i<j

This is of course a special case of a more general Jacobi ensemble [16]

N N
Piging (u1,- -+ ,un) o< H uf (1 —y)° H lus — s 5w €[0,1], (12)

k=1 i<j
parametrised by two real numbers @ > —1 and b > —1. The joint PDF for the hard
box potential in Eq. (11) corresponds to a = b = 1/2. It is natural to ask the question
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if there exist quantum potentials that correspond to the general JUE with arbitrary
parameters a and b. Indeed, it was shown recently [38] that a potential of the type

Ve - i Poa e (13)
xXr) = X
8sin*(%) = 8cos?(§)’ 7

generates a joint PDF of the form in (12) with arbitrary a and b.

2.8. The potential V(x) = Ax? + B/xz?, with x > 0, and the LUE

Here we consider a potential of the form V(z) = Az? + B/z? which we conveniently
parametrise as follows [39]

b? ala—1

3x2+7(2 5 ) , x>0,

V(z) = . (14)

400, <0,
with b > 0 and o > 1. For convenience, we set here h = 1 as well as the mass
m = 1. For a potential of this form (14), the Schrédinger equation (2), together with
the boundary condition ¢(0) = 0 (since we impose a hard wall at x = 0), can be
solved exactly. The single-particle eigenfunctions ¢;(x) and associated energies ¢; are
given by

a-1 1
or(r) =k e*gﬁxo‘ﬁ,& 2‘)(b:v2) , g =10 (Qk' +oa+ 2) , (15)
where £ = 0,1,--- is a non-negative integer, c; is a normalisation constant and

L,iai%)(z) is a generalized Laguerre polynomial of degree k. Constructing the Slater
determinant out of the first N states, one gets (again using the fact that the
determinant of orthogonal polynomials, in this case generalized Laguerre polynomials,
reduces to a Vandermonde form)

N
‘Pjoint(xh e ,ZCN) X 6_b2£\;1 I? Hxl2a H(wg - LU?)2 . (16)
I=1 i<y
Making further the change of variables y; = 22, the joint PDF of the y;’s reads [39]

N
1
Point (Y1, ,yn) = %e_bziv:lyi Hyla_i H(yz -y, ¥vi>0. (17)
“N =1 i<j
This corresponds to the joint PDF of the eigenvalues of a Wishart-Laguerre unitary
ensemble (LUE) of random matrices [15, 16].

We end this section with the following remark. In the original fermion problem,
there is an external quantum potential V(x). We have shown that, for some choices
of this V(x), the Slater determinant square can be interpreted as the joint PDF of
the eigenvalues of a corresponding unitarily invariant random matrix ensemble. It is
natural to ask the reverse question. Suppose we start with a unitarily invariant random
matrix ensemble, where the entries of an N x N complex matrix X are distributed as
Pr(X) oc e~ TVa(X) wwhere V), (X) is typically a polynomial matrix potential. Given
Var(X), one can ask if there is a fermion problem with a suitable potential V' (x) whose
Slater determinant square would correspond to the joint PDF of this RMT ensemble.
For GUE (corresponding to Vjs(X) = X?), we have seen above that V() is also a
harmonic potential. However, for a general Vj;(X), it is not clear that there is an
underlying fermion problem with a suitable quantum potential V(z).
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3. Determinantal structure of the spatial correlations in d=1and T =0

For noninteracting fermions in an arbitrary potential V'(x), all the information about
the (quantum) spatial fluctuations are contained in the joint PDF in Eq. (4). Of
special interest are the m-point spatial correlation functions R, (x1,---,z,), with
1 <n < N, which are given by the different marginals of the full joint PDF, i.e., [15, 16]

N!
Rn(xla"' a‘rn) = (Zv_n)!/dxn+1"'/d:cNRjoint(I17'" s Tny Tn41, " 71'N) )
(18)

where the integrals over the positions z;’s run over their full domain of definition (and
which thus depends on the quantum potential). In particular, for n = 1

Rl(l‘) =N /dl‘g"'/d.%‘NPjoint(x,Jfg,"' ,J?N), (19)

which is directly related to the average density of fermions in the ground-state via

N
zmmsz@%fwm=;<§ﬁ@—m>, (20

0

where (---)o denotes an average in the ground state Wo(z1, -+ ,zn) (4). Note that

this density pxn(x) is normalized to unity, and not to the total number of fermions.
To perform the multiple integrals in Eq. (18) or (19), it is convenient to rewrite

the joint PDF in (4) as

= 31 det  or(ws) _det dulz;) (21)

Using the property det(AT) det(B) = det(AB), the product of two determinants in

(21) can be written as a single determinant

1
=i 1§§1,61th K (xj, ), (22)

-F}oint(xlv e ,QCN)

Pjoint(xla e )‘TN)

where we have introduced the kernel K, (z,y) defined by

N
Ku(z,y) =Y 0 —ea)é; (@)di(y) , (23)
=1

where 6(z) is the Heaviside theta function, i.e. 8(z) =1if z >0 and 0(z) =0if z < 0,
and p is the Fermi energy (here this is simply the energy of the last occupied level,
ie, p = en). Exploiting the ortho-normality of the single-particle eigenfunctions,
Le., [dx¢;(x)pr(z) = 0, it is easy to check that the kernel K, (z,y) in (23) is
self-reproducible, i.e., it satisfies the important property

[ v Kula ) Koln.2) = Koo 2). (24)
This property plays an important role because it implies that the n-point correlation
function R, (x1,- -+ ,x,) can be written as an n X n determinant [15, 16]

Ry (z1,- ,xp) = det K, (zj,x), (25)

1<j,1<n
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for any 1 < n < N. In particular, for n = 1, this result (25), together with the relation
in (20), implies

1 1 & )
PN(Z') = NK;L(J;7$) = N Z |¢l(x)| . (26)
1=1

This property (25) establishes that the positions of N noninteracting fermions trapped
in an arbitrary potential V(z) constitute a determinantal point process [40, 41] with
a kernel K, (x,y) given by Eq. (23).

Before analysing the large N behaviour of the kernel, we present a few important
and useful properties of determinantal processes. Let us first consider the number of
fermions N7 within an interval Z = [a,b]: we would like to describe the statistics of
N7z in the ground state Wq(xy, - ,zy) given in Eq. (3), i.e., compute the generating
function (2M7)q, from which the full counting statistics for the fermions within the
interval Z can be obtained. To this purpose, it is useful to introduce the indicator
function xz(z) defined as

1,ifxe?
x) = ’ 27
xz(z) { 0,ifz¢T. (27)
Hence N7 can be written as Ny = Zf\il xz(z;), which implies that 2Nz =

vazl 2Xz(#i)  Therefore the generating function can be written as

N

(=)o = <H(1 - (1= Z)Xf(l“i))> ; (28)
i=1 0

where we have used that z2XZ(®) = 1 — (1 — 2)xz(z) for the binary variable yz(z) (27).

Since the x;’s form a determinantal point process (25), the average in the right hand

side of Eq. (28) can be written as [40, 41]

<ZNI>0 = Det (1 - (1 - Z)XI K,u XI) ) (29)

where Det denotes a Fredholm determinant [we recall that Det(l — K) =
exp(— z:p>1TrK'p/p)]7 K, = K,(z,y) is the kernel in (23) and xz = xz(x) is the
projector on the interval Z (27) — and therefore xzK,xz = xz(z)K.(z,y)xz(y).
From this exact formula (29) it is then possible to extract the cumulants of Nz and, in
principle, recover the full distribution of Nz. For instance the probability that there
is no fermion in the interval Z, Pr.(Nz = 0), is simply given by the right hand side of
Eq. (29) evaluated at z = 0,

Pr.(Nz =0) = Det (1 — xz K, x1) - (30)

Specialising this formula (30) to the case Z = [M,+o0) yields the cumulative
distribution of the position of the rightmost fermion Zmax(T = 0) = max;<;<n ;.
Indeed, Pr.(2max(T" = 0) < M) = Pr.(Njas,400) = 0) and therefore, from Eq. (30), we
obtain immediately

Pr.(zmax(T =0) < M) =Det (1 — xz K, xz) , with Z = [M,+oc0).  (31)

These results in Egs. (25), (29) and (31) show that a huge amount of information can
be obtained from the kernel K, (z,y) (23), which is thus a central object.

Of course, for finite N, the kernel (23) and thus these different observables (25),
(29) and (31) will depend on the specific form of the trapping potential V(z) in (1).
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But what happens in the large N limit? Quite generically, in the presence of a trapping
potential V'(x), the density pn(z), for N > 1, has a finite support [—Zedge, +Tedge) (for
simplicity we consider here a symmetric potential V(z) = V(—x)) and thus it exhibits
edges at ¥ = FTeqge beyond which the density vanishes. Far from the edges, in the
bulk, the density can be computed using the LDA [4, 9]. The starting point of the
LDA is a semi-classical approximation of the so-called Wigner function Wy (z, p) (see
Section 6.1 below), which can be interpreted as a (pseudo) single-particle probability
distribution over the phase space (z,p): by integrating Wy (z,p) over p one obtains
the spatial density py(x) and by integrating it over x one obtains the density in
momentum space [see Eq. (110) below]. At finite inverse temperature 5 = 1/T, the
LDA approximates Wy (x, p) by the Fermi-factor (up to a prefactor) corresponding to
the total energy E(x,p) = p?/(2m) + V(x)
1 1

orh eBE@P) i) £ 1
with f the finite temperature chemical potential. At T'= 0, i.e. § — oo, i = p and
the Fermi factor in (32) reduces to a simple Heaviside theta-function, i.e.

Wi (z,p) = (32)

1 p2
Wi (z,p) » %9 (N o V($)> : (33)
By integrating (33) one obtains the LDA prediction for the density
V2m
pn(x) = /WN(JUJ?) dp ~ me(ﬂ = V() [n— V(x)]1/2 ) (34)
which has a finite support [—Zedge, +Zedge] Where the edge is thus defined as
V(xedge) =K, (35)

and we recall that p is the Fermi energy, i.e., here the last occupied single-particle
energy level in the many-body ground state. Since the density has a finite support (34),
one naturally expects that the kernel K, (z, y) in (23) will exhibit a different behaviour
in the bulk, for z,y far from the edges, and close to the edges, for & ~ y ~ Zcqge (or
equivalently & ~ y ~ —Zcdge), see Fig. 3. In the bulk, for generic  and y with a
separation of the order of the local inter-particle distance, i.e., |t —y| ~ 1/(Npn(z)),
the kernel K,,(x,y) takes the scaling form

TP G R
e = o () - 4= sy 2

where the scaling function Kgine(2) is universal, i.e., independent of V' (z) [14, 42], and
given by the sine-kernel

Ksine(2) = ==, (37)

Tz

which is well known in RMT [15, 16]. While this result in the bulk can also be obtained
using the LDA [4] or semi-classical approaches, these methods fail to study the large
N behaviour of the kernel near the edges [10]. It is precisely in this region where the
RMT tools are very useful. Indeed, these questions related to the edge of the spectrum
of random matrices have generated a lot of interest during the last twenty years in
the RMT literature [19] (for a short review see [18]). In particular, it is well known in
RMT that the different matrix ensembles corresponding to the three different fermion
models mentioned above (GUE, JUE and LUE) lead to different behaviours at the
edge. Therefore, below, we study the edge behaviours in the three different models
separately.
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Figure 3. Illustration of the different length scales both in the bulk and at the
edge for the 1d harmonic potential V(z) = mw?x2/2. The solid line represents
the bulk density pn(z), given in this case by the Wigner semi-circle (38), which

has a finite support [—Zedge, +Tedgels With Tedge = V2N/a and o = y/mw/h.
In the bulk, close to the center of the trap, the typical inter-particle distance is
£(0) = O(N—1/2) [see Eq. (36)]. In contrast, the inter-particle distance at the
edge, close to Xeqge is much larger and given by wy = O(N~1/6) [see Eq. (40)].

3.1. Harmonic potential (GUE): soft edge scaling and the Airy kernel

For the harmonic potential V(z) = %mwzﬁ, the limiting density given by (34) is the

well know Wigner semi-circle, which takes the scaling form

« azx 1 5
pta) = St (%) L fw(e) = 2VE= 2, (39)

with soft edges at * = EZeqge With Zedge = VoN /a. Therefore, the inter-particle
distance in the bulk (36) is of order £(x) = O(N~'/2). In contrast, one expects
that, near the edge, the inter-particle distance wy is much larger, as ¢(z) — oo for
T — £Tedge. In fact wy can be estimated by considering that the fraction of particles
in the interval [Zeqge — WN, Tedge] is of order O(1/N), i.e.

Tedge 1
L o) dr ~ < (39)

edge "WN

Given the behaviour of the bulk density (38) near = Zeqge = V2N /a, one obtains
1
wy = —=N"16 (40)

which is the width of the edge region (see Fig. 3), well known for GUE [19]. Near the
(soft) edge, for both ,y = Tedge, the kernel takes the scaling form

T — Tedge Y — zedge) (41)

1
K ~ —Kai )
B

where Kaj(z,2’) is the Airy kernel

Ai(2)Ai' (') — Ai'(2)Ai(2)

z—2z

Kai(z,2') =

= /+OO duAi(z +u)Ai(z" +u), (42
0
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where Ai(z) is the Airy function. In particular, from this result (42), together with
the relation (26), we obtain the density profile near the edge. The sharp edge of the
bulk density in Eq. (38) is smeared out, for large but finite N, over a length ~ wy
close to the edges *xcqge Where it is described by a finite size scaling form (say close
to the right edge +edge) [43, 44]

pn(z) =~ NiuN Faj [x _wgijdge} ) (43)
where the scaling function is given by [43, 44]
Fai(z) = [AV(2))? — 2[Ai(2))* . (44)
The scaling function Fa;(z) has the asymptotic behaviors
Fu(e) ~ { VP e e (45)
826 3 as z — +00.

Far to the left of the right edge, using Fa;(2) ~ \/|2]/7 as z — —occ in Eq. (45), it
is easy to show that the scaling form (43) smoothly matches with the semi-circular
density in the bulk (38).

Another important application of this scaling form (42), combined with the
formula in Eq. (31), is the expression of the cumulative distribution of the position of
the rightmost fermion 2. (7 = 0) among N noninteracting fermions in a harmonic
trap at T'