

Entity-Level Event Impact Analytics Govind Govind

▶ To cite this version:

Govind Govind. Entity-Level Event Impact Analytics. WSTNET Web Science Summer School 2018 (WWSSS 2018), Jul 2018, Hannover, Germany. hal-02102815

HAL Id: hal-02102815 https://hal.science/hal-02102815

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Entity-Level Event Impact Analytics Govind govind@unicaen.fr Université de Caen Normandie, France

Objective:

Automatically Predict the Event Diffusion into Foreign Language Communities

Conceptual Approach

"Discovery of semantic connections to languages from named entities in the article"

ELEVATE Framework [1]

- Recursive exploration of yago relations
- Country centric: <isCitizenOf>, <diedIn>, <isLocatedIn>, <isLeaderOf>, <isPoliticianOf>, <wasBornIn>, <livesIn>
- Organization centric:

<owns>, <created>, <worksAt>

Linking of entities to languages

Breadth-first-search (BFS):

Stopping the exploration after the discovery of first language for a named entity

Depth-first-search (DFS):

Revealing all languages associated with a named entity exhaustively

Spread Prediction

Task: Pick the best candidates from all the scored languages

Adjusted Thresholding

- Threshold(θ) = average spread in the ground truth
- k-fold cross-validation
- Risk of picking the irrelevant languages **Multi-label Classification**
- Output labels as the languages in event spread
- Candidate language scores as feature vectors
- Classifiers decide the spread

Publications

[1] Govind, Spaniol M. ELEVATE: A Framework for Entity-level Event Diffusion Prediction into Foreign Language Communities. In Proceedings of the 9th ACM on Web Science Conference 2017 Jun 25 (pp. 111-120). ACM.

[2] Govind, Alec C, Spaniol M. Semantic Fingerprinting: A Novel Method for Entity-Level Content Classification. In Proceedings of the 18th International Conference on Web Engineering 2018 Jun 5 (pp. 279-287). Springer.

[3] Govind, Alec C, Spaniol M. ELEVATE-Live: Assessment and Visualization of Online News Virality via Entity-Level Analytics. In Proceedings of the 18th International Conference on Web Engineering 2018 Jun 5 (pp. 482-486). Springer.

Other Research Works

ELEVATE-Live [3]

- Online news article virality
- prediction to countries
- Extension of ELEVATE framework
- Available at: <u>https://elevate.greyc.fr</u>

Semantic Fingerprinting [2]

- Fine-grained entity-level Web content classification
- Concise semantic representation of documents based on their entities

Short Biography

3rd year PhD student University of Caen, France Advisor: Prof. Marc Spaniol

Research Interests

- Entity-level analytics
- Data aggregation via LOD
- Deep learning for noisy data analytics

Education

- Master degree in Maths and Computing from Indian Institute of Technology (IIT) Patna (India)
- Bachelor degree in computer science from Guru Jambeshwar University of Science and Technology Hisar (India)

Experimental Results

	5 days				10 days				20 days					5 days			10 days				20 days				
Method	Precision	Recall	F1	#PC	Precision	Recall	F1	#PC	Precision	Recall	F1	#PC	Method	Precision	Recall	F1	#PC	Precision	Recall	F1	#PC	Precision	Recall	F1	#PC
Random	0.07736	0.07691	0.07714	11288	0.07736	0.07691	0.07714	11288	0.07736	0.07691	0.07714	11288	Inlinks _{CNC}	0.18634	0.20129	0.19353	7055	0.20312	0.22926	0.21540	8336	0.23301	0.25911	0.24537	9220
Inlinks _{CNC}	0.23571	0.21023	0.22224	5045	0.25685	0.24077	0.24855	5875	0.28541	0.27803	0.28167	6607	Inlinks	0.21763	0.18534	0.20020	6028	0.22731	0.20412	0.21509	7011	0.25686	0.23574	0.24585	7687
Inlinks _{Adamic}	0.23553	0.21011	0.22210	5045	0.25685	0.24151	0.24894	5875	0.28470	0.27854	0.28159	6607	Outlinkscnc	0.27909	0.38017	0.32188	14169	0.28725	0.39046	0.33100	14320	0.28945	0.41396	0.34069	14533
Outlinks _{CNC}	0.33301	0.42227	0.37236	10568	0.34840	0.45237	0.39363	10845	0.36049	0.46988	0.40798	11049	Outlinks	0.30896	0 37136	0 33730	13315	0 30/79	0.40219	0 34678	1/153	0.30112	0.40503	0 34543	1/282
Outlinks _{Adamic}	0.33230	0.42473	0.37287	10568	0.34928	0.45498	0.39518	10845	0.36182	0.47766	0.41175	11049	Distance	0.30070	0.37130	0.33730	15515	0.30477	0.40217	0.54070	14155	0.30112	0.40303	0.34343	14202
DirectMapping	0.35574	0.11457	0.17332	1571	0.36171	0.12032	0.18058	1677	0.36565	0.12337	0.18449	1770	DirectMapping	0.31113	0.14553	0.19830	3538	0.31941	0.14587	0.20028	3529	0.32077	0.14912	0.20359	3755
Entities _{DFS}	0.48845	0.22548	0.30854	4612	0.48580	0.23545	0.31718	4886	0.48444	0.24076	0.32166	5087	Entities _{DFS}	0.49333	0.27747	0.35517	7179	0.47678	0.28490	0.35667	7509	0.47549	0.28420	0.35576	8210
Entities _{BFS}	0.53199	0.19554	0.28597	2842	0.53082	0.20154	0.29215	3068	0.53368	0.20823	0.29958	3234	Entities _{BFS}	0.45635	0.23128	0.30698	5413	0.46679	0.22763	0.30603	5408	0.46420	0.23649	0.31334	5702

Macro-average scores for the adjusted threshold based models (#PC: number of predictions)

Macro-average scores for the machine learning approach (#PC: number of predictions)

