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Abstract
Perceptual evaluation is still the most common method in clin-
ical practice for the diagnosing and the following of the con-
dition progression of people with speech disorders. Many au-
tomatic approaches were proposed to provide objective tools to
deal with speech disorders and help professionals in the severity
evaluation of speech impairments. This paper investigates an
automatic phone-based anomaly detection approach implying
an automatic text-constrained phone alignment. Here, anoma-
lies are related to speech segments, for which an unexpected
acoustic pattern is observed, compared with a normal speech
production. This objective tool is applied to French dysarthric
speech recordings produced by patients suffering from four dif-
ferent pathologies. The behavior of the anomaly detection ap-
proach is studied according to the precision of the automatic
phone alignment. Faced with the difficulties of having a gold
standard reference, especially for the phone-based anomaly an-
notation, this behavior is observed on both annotated and non-
annotated corpora. As expected, alignment errors (large shifts
compared with a manual segmentation) lead to a large amount
of anomalies automatically detected. However, about 50% of
correctly detected anomalies are not related to alignment errors.
This behavior shows that the automatic approach is able to catch
irregular acoustic patterns of phones.
Index Terms: Dysarthria, speech disorders, automatic speech
processing, objective anomaly detection

1. Introduction
Dysarthria is a motor speech disorder resulting from neurologi-
cal damages located either in the central or in the peripheral ner-
vous system. This may lead to disturbances in any of the com-
ponents involved in the speech production, including respira-
tory, phonatory, resonatory, articulatory and prosodic elements.
Consequently, this may be reflected by weakness, spasticity,
incoordination, involuntary movements, or abnormal muscle
tone, depending on the location of the neurological damage.
Dysarthric speech has been studied according to different axes :
perceptual evaluation of speech alterations for dysarthria classi-
fication [1, 2, 3], perceptual measurement of dysarthria severity,
notably related to the speaker’s intelligibility [4, 5, 6, 7] or artic-
ulatory or/and acoustic analysis [8, 9, 10, 11, 12] in order to ob-
serve and characterize the effects of dysarthria in the speech sig-
nal. These studies aim at helping clinicians in their knowledge
of the speech impairment and its clinical evaluation, crucial for
following the condition progression of patients in the case of
treatment or/and of speech rehabilitation to enhance them. In
this context, automatic speech processing approaches have been
seen, very early, as potential solutions to provide objective tools

to deal with speech disorders [13, 14, 15, 16, 17, 18]. In addi-
tion, they can also help people with speech disorders in their
everyday life through Alternative and Augmented Communica-
tion (AAC) tools, involving automatic speech recognition for
instance [19, 20, 21, 22, 23].
In the literature, the set of acoustic-perceptual cues includ-
ing imprecision of consonants, distorsion of vowels, slow rate,
monopitch, hypernasality is commonly used to characterize the
main disturbances of the various types of dysarthria in the
speech production. But, more descriptive acoustic and phonetic
analyses are still necessary to take into account the large vari-
ability in terms of speech alterations observed among people
in different groups of diseases and also within the same group
[24]. Moreover, so that such analyses are relevant, they require
a large number of people with speech disorders, a variety of dis-
eases related to the different types of dysarthria (spastic, flaccid,
ataxic, hyper- or hypokinetic, unilateral upper motor neuron, or
mixed), various levels of condition progression and of severity
degree in order to observe their effects on the speech produc-
tion, but also possible compensation strategies set up by speak-
ers. Still here, automatic speech processing approaches would
be of major interest in the task of focusing the attention of hu-
man experts on specific speech segments (among a large amount
of speech productions) exhibiting unexpected acoustic patterns
compared with a normal speech production.
As reported in [25] in a more general context, anomaly detec-
tion refers to the problem of finding patterns in data that do
not conform to an expected behavior. In dysarthric speech,
anomalies can refer to the unexpected acoustic patterns men-
tioned above and observed at different units of speech like
phones for instance. In previous works [26, 27], the authors
have proposed an automatic phone-based anomaly detection ap-
proach in two steps : a text-constrained phone alignment to
obtain the phone segmentation and a classification of speech
segments into normal and abnormal phones (anomalies). The
ability of this approach for detecting phone-based anomalies
was measured globally, without considering the precision of the
phone-based alignment. In [28], the authors studied the large
inter-pathology variability between phonetic classes in the text-
constrained phone alignment process. In this paper, the authors
investigate the impact of the phone-based alignment on the clas-
sification process. Indeed, the major hypothesis, which can be
raised on the behavior of the detection approach is that an align-
ment error on a given phone should induce the detection of an
anomaly. But, it is interesting to study if this behavior is the
only one the detection approach can have or if it is also able to
catch distorted acoustic patterns on correctly aligned phones.
This study is conducted in the context of dysarthric speech
produced by people suffering from four different pathologies.
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Faced with the difficulties of having a gold standard reference,
especially for the manual annotation of acoustic anomalies at
the phone level, the behavior of the detection approach is ob-
served on both annotated and non-annotated corpora.

2. Automatic anomaly detection
The anomaly detection approach studied here relies on two
steps. The first step is a text-constrained phone alignment.
The second step consists of a two class (normal and abnor-
mal phones) supervised classification. In each class, phones are
characterized by a set of features considered as relevant for the
discrimination task.

2.1. Automatic phone-based alignment

The segmentation of speech utterances into phones is carried
out thanks to an automatic text-constrained phone alignment
tool. This tool takes as input the sequence of words pronounced
in each utterance and a phonetized phonologically-varied lexi-
con of words based on a set of 37 French phones. The sequence
of words comes from a manual orthographic transcription per-
formed by a human listener, following some specific rules to de-
note deletions, substitutions, insertions and repetitions of some
words/phone sequences. For this manual transcription, inter-
pausal units (IPUs) are annotated by the human listener. An
IPU is defined as a pause-free unit of speech separated from
another IPU by at least 250ms of silence or non-speech. The
automatic alignment process is then based on a Viterbi decod-
ing and graph-search algorithms, the core of which is the acous-
tic modeling of each phone, based on a Hidden Markov Model
(HMM). In this work, each phone is modeled using a 3-state
context-independent HMM topology which are built using the
Maximum Likelihood Estimate paradigm on the basis of about
200 hours of French radiophonic speech recordings [29]. This
automatic alignment process results in a couple of start and end
boundaries per phone produced in the speech recordings.

2.2. Normal and abnormal speech classification

First, this step aims at characterizing each phone with a set of
features found to be relevant for the anomaly detection task.
The set of features used is mainly derived from the automatic
text-constrained phone alignment outputs. The list of fea-
tures extracted includes acoustic scores and length (expressed
in number of 10ms frames) [26]. The classification task is
based on Support Vector Machines (SVM), which have been
largely applied to pattern recognition problems [30, 31]. Here,
the SVM theory is applied to a two-class problem: discriminat-
ing between normal and abnormal phones (anomalies). In or-
der to better take into account the specificities of each phonetic
category and to refine abnormal and normal classes, different
SVM models are trained by distinguishing the speech produc-
tions by gender and phonetic categories (unvoiced consonants,
voiced consonants, oral vowels, nasal vowels). The different
SVM models are trained using the SVMlight tool (see [32] for
more information).

3. Experimental procedure
3.1. Corpora

The current study is based on two speech corpora. The first cor-
pus (LSD) contains 8 dysarthric speakers and 6 control subjects.
The dysarthric speakers had been diagnosed with rare lysoso-

Table 1: Information related to patients of both corpora includ-
ing the number of speakers, the mean and <Min;Max> values
of perceptual Dysarthria Severity Degrees (DSD) and the mean
and <Min;Max> values of perceptual speech rates per disease.

Disease Number of mean DSD mean speech rate
speakers <Min;Max> <Min;Max>

LSD 8 2.0 <1.5;3.0> -0.5 <-2.9;2.8>
ALS 12 2.0 <0.9;2.9> -1.3 <-2.7;1.5>
PD 8 0.8 <0.4;1.4> 0.5 <-0.5;1.7>
CA 8 1.3 <0.8;2.1> -1.1 <-2.2;0.8>

mal storage diseases (LSD), resulting in a mixed dysarthria, and
showed disparities in the Dysarthria Severity Degree (DSD).
Each patient recorded 3 to 6 longitudinal records approximately
every six months. The second corpus (Typaloc [33]) contains
28 dysarthric speakers and 12 control subjects. Unlike the first
corpus in which only LSD patients were recorded, this cor-
pus presents various diseases: Amyotrophic Lateral Sclerosis
(ALS)/mixed dysarthria, Parkinson’s Disease (PD)/hypokinetic
dysarthria and Cerebellar Ataxia (CA)/ataxic dysarthria dis-
tributed over various DSDs. All the speakers from both cor-
pora were asked to read the same text, a French fairytale called
“Le cordonnier” (The cobbler), as naturally as possible. Speech
recordings of patients were evaluated perceptually by a jury of
11 experts who were asked to rate each patient on perceptual
items of speech quality. These items included the DSD rated
on a scale of 0 to 3 (0 -no dysarthria, 1 -mild, 2 - moderate, 3
-severe dysarthria) and the speech rate on a scale of -3 to 3 (-3
-very slow, 0 -normal, 3 -extremely fast speech rate) on which
this paper is focused. In addition, speech utterances were manu-
ally segmented by human experts by making corrections, if nec-
essary, to the automatic phone segmentation boundaries. How-
ever, since the expert could encounter difficulties when defin-
ing phone boundaries, such non-segmentable phone sequences
were not considered in the rest of the study. Table 1 provides
information on both speech corpora, including the number of
patients, the DSD and the speech rate measures per disease.
Finally, all the speech utterances of the LSD corpus were an-
notated by a human expert in order to identify acoustic anoma-
lies at the phone level. Consequently, this corpus was involved
in the estimate of the normal and abnormal models required in
the classification step described in section 2.2. This annotation
task being drastically time-consuming, such annotations are not
available for the Typaloc corpus. The “leave-one-out” cross-
validation technique is applied so that the corpus-LSD can be
used within both the model estimate and testing step, consid-
ering the limited amount of labeled data available, notably in
terms of abnormal phones extracted from patients (compared to
normal ones provided by the control speakers).

3.2. Evaluation

The anomaly detection approach is evaluated by comparing its
phone-based decision with the manual annotation of acoustic
anomalies available for LSD corpus only, which remains, de-
spite its limits, the gold standard reference for such a task. This
evaluation is carried out by comparing the annotations provided
for each phone as well as the two adjacent phones (local con-
text). In this case, if the human expert considers a given phone
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as abnormal while the automatic approach detects an anomaly
on the previous or next phone and not on the given phone, then
a right match is counted as well. This approach aims at support-
ing a “one-phone delay” in the automatic detection due to small
boundary shifts in the automatic phone segmentation, for in-
stance. This comparison permits the computation of two evalu-
ation measures which focus on the automatic anomaly detection
task: (1) the abnormal-class-based recall measure, ranging from
0 to 1, named AbnRecall, is given by the ratio between the
number of zones correctly detected as anomalies by the auto-
matic processing and the number of zones labeled as abnormal
in the reference; (2) the abnormal-class-based precision mea-
sure, ranging from 0 to 1, named AbnPrec, is given by the ratio
between the number of phones correctly detected as anomalies
by the automatic processing and the total number of anomalies
reported by the automatic processing (truly or falsely). These
measures focus on the detection of abnormal phones only. They
have to be considered as complementary in the automatic de-
tection approach assessment. In addition, the precision of the
text-constrained phone alignment step is measured by compar-
ing the automatic phone segmentation outputs with the manual
segmentations provided by the human expert. This compari-
son permits the computation of the Start Shift (SS) measure,
which is given by the absolute value of the difference between
the phone start boundaries from the automatic and manual seg-
mentations.

4. Results and discussion
4.1. Anomaly detection on annotated corpus

This section details and discusses the behavior of the automatic
anomaly detection approach according to the precision of the
text-constrained phone alignment. Here, only the LSD corpus
is concerned, for which phone segmentations and anomaly an-
notations issued from a manual expertise are available.

Table 2: Performance of the anomaly detection approach ap-
plied on LSD patients, expressed in terms of AbnRecall and
AbnPrec.

Dysarthric speakers AbnRecall AbnPrec
Male average 0.69 0.57
Female average 0.87 0.64
Average 0.78 0.61

Beforehand, table 2 depicts the global evaluation measures
without considering the influence of the text-constrained phone
alignment. Results show an average AbnRecall and AbnPrec
values of 0.78 and 0.61 respectively. As reported in previous
work, the detection approach tends to be more severe by detect-
ing more anomalies than the human expert.
Table 3 displays the distributions of phones, of phones labeled
as anomalies by the automatic approach (automatic anomalies),
of phones labeled as anomalies by the human expert (manual
anomalies) and of phones correctly detected as anomalies by
the automatic approach (true positive) according to the SS val-
ues. This distribution shows that 71% of the phones are aligned
within the acceptable range of SS values, usually used in phone
segmentation evaluation ([-20ms,20ms] i.e. ±2 frame inter-
val). This rate is quite satisfactory considering the range of
Dysarthria Severity Degrees (DSD) given in Table 1 for this

corpus.
Two different behaviors can be pointed out. The first one con-
siders SS values outside the ±2 frame interval. Here, less than
50% of both automatic (44%) and manual (46%) anomalies are
represented. Moreover, the probability for a phone to be labeled
as anomaly by the automatic approach increases with extreme
SS values. This behavior is not so surprising given the nature
of the features used to characterize phones (mainly issued from
the alignment outputs) involved in the normal and abnormal
classification. In a similar way, it is interesting to notice that
the probability for a phone to be manually labelled as anomaly
also increases for high SS values. This observation tends to
confirm the hypothesis we mentioned in the introduction : an
alignment error on a given phone should induce the automatic
detection of an anomaly. To this, a part of the phone alignment
errors can result from speech alterations. In this case, the text-
constrained phone alignment faces more difficulties delimiting
phone boundaries. This results in high SS values computed for
those phones, leading in turn, the classification process to label
these phones as anomalies.
The second behavior seen in table 3 considers SS values in-
side the ±2 frame interval. Here, more than half of the manual
anomalies are represented. For these phones, despite the abnor-
mal acoustic patterns underlined by the expert, their irregular
nature does not disturb the alignment process. Observing now
the distribution of the true positive, roughly 54% of anomalies
correctly detected by the automatic approach are not, therefore,
related to alignment errors. This observation is very relevant as
it demonstrates the ability of the automatic approach to detect
abnormal phones, based uniquely on their acoustic irregulari-
ties. This supports the quality of the set of features used to
characterize phones involved in the anomaly detection process.

4.2. Anomaly detection on non-annotated corpus

Figure 1 reports the distribution of phones according to SS val-
ues for the different populations of the Typaloc corpus. As no
manual anomaly annotation is available for this corpus, figure 2
reports only the distribution of phones labeled as anomalies by
the automatic approach. For comparison purposes, values com-
puted on corpus-LSD are also reported in both figures.
Observing the phone distribution in figure 1, 85%, 64%, 71%
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Figure 1: Distribution of phones according to the SS values for
control, ALS, CA and PD populations (Typaloc) and for LSD
speakers. Each bin refers to a shift of 1 frame (10ms).

and 79% of phones are located in the±2 frame interval for con-
trol, ALS, CA and PD speakers respectively. If these percent-
ages are not far from the one observed for the LSD patients
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Table 3: Distribution of phones, automatic anomalies, manual anomalies and true positives according to the SS values for LSD patients

|SS| ≥60ms |SS|=50ms |SS|=40ms |SS|=30ms |SS|=20ms |SS|=10ms |SS| = 0ms
Phones 1263 259 410 696 1392 2614 2465
Automatic Anomalies 620 92 100 127 199 400 595
Manual Anomalies 363 61 70 81 132 228 310
True Positive 222 32 32 29 59 120 194

Table 4: Relative automatic anomaly rates (%) per pathology and phonetic categories for phones with SS ∈ ±2 frames and phones
with SS /∈ ±2 frames.

Phonetic SS ∈ ±2 frame SS /∈ ±2 frame
Category Control CA PD ALS LSD Control CA PD ALS LSD
Consonants 7 23 11 32 25 10 35 21 46 40
Vowels 3 10 5 29 12 4 16 13 47 28

0.0

0.1

0.2

0.3

0.4

0.5

AL
S CA LS
D PD

XC
on

tro
l

AL
S CA LS
D PD

XC
on

tro
l

AL
S CA LS
D PD

XC
on

tro
l

AL
S CA LS
D PD

XC
on

tro
l

AL
S CA LS
D PD

XC
on

tro
l

AL
S CA LS
D PD

XC
on

tro
l

AL
S CA LS
D PD

XC
on

tro
l

|SS| in terms of frames

Au
to

ma
tic

 an
om

aly
 fr

eq
ue

nc
y

0 1 2 3 4 5 >=6

Figure 2: Distribution of automatic anomalies according to the
SS values for control, ALS, CA and PD populations (Typaloc)
and for LSD speakers. Each bin refers to a shift of 1 frame
(10ms).

(71%), the inter-pathology variability could be explained by
the disparities in the average DSD and speech rate evaluation
across pathologies. Indeed, PD patients related to the lowest
DSD average and the fastest speech rate (0.8 and 0.4 respec-
tively) present the best automatic alignment comparing to the
ALS patients for whom low speech rate (mean -1.3) and high
DSD (mean 2.0) could pose more difficulties to the automatic
alignment tool.
Observing the automatic anomalies distribution in figure 2, vari-
ability in automatic anomaly values per bin can be observed be-
tween diseases. However, it is particularly interesting to point
out that the two behaviors previously noticed on the LSD pa-
tients can be still observed for all the different diseases, even
emphasized notably within the±2 frame interval. Indeed, 77%,
55%, 60%, 64% of the anomalies for control, ALS, CA and
PD speakers are within this interval, compared to 56% for LSD
speakers. The similar trends observed over all the diseases stud-
ied here support the assumption that the performance reached
by the automatic approach in the task of the anomaly detection
over the LSD patients could be transposable to other diseases.

4.3. Automatic alignment and anomaly detection across
phonetic categories

Table 4 reports the relative automatic anomaly rates (%) per
pathology and phonetic categories for phones with SS ∈ ±2

frame interval and for phones with SS /∈ ±2 frames.
First, we observe that consonants exhibit the highest anomaly
rates for all populations whatever values of SS observed. This
behavior is consistent with dysarthria systemic impact over
consonant production.
Overall, for almost all phonetic categories/pathology, higher
relative anomaly rates are observed for phones related to
SS /∈ ±2 frame interval. This does not mean that their is
more anomalies related to alignment errors (outside the ±2
frames interval) but that the probability of a phone to be found
abnormal is higher when the alignment error is more important.
This is consistent with the behavior observed in section 4.1 on
the annotated corpus.

5. Conclusion
This paper investigates the behavior of an automatic phone-
based anomaly detection approach according to the precision
of the text-constrained phone alignment involved in the detec-
tion process when applied on read French dysarthric speech.
This study has shown that the phone-based alignment may be
highly sensitive to the presence of phone-based anomalies (re-
sulting in large shifts compared with a manual segmentation),
which, in turn, leads to a rather good detection of these anoma-
lies. In addition, 54% of the correctly detected anomalies are
not related to alignment errors, which also proves the capabil-
ity of the automatic approach in detecting unexpected acoustic
patterns on well-aligned phones. Further study will investigate
how the automatic prediction of some alignment errors may im-
prove the precision of the automatic anomaly detection in terms
of AbnPrec or to assign a confidence measure to automatic
anomalies.
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